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Abstract

Background: Chr17g12-21.2 region is the strongest and most consistently associated region
with asthma susceptibility. The functional genes or single nucleotide polymorphisms (SNPs) are
not obvious due to linkage disequilibrium.

Objectives: Whole-genome sequence and RNAseq from human bronchial epithelial cells (BEC)
were comprehensively investigated to dissect functional genes/SNPs for asthma severity in the
Severe Asthma Research Program (SARP).

Methods: eQTL analysis (n=114), correlation analysis (n=156) of gene expression and asthma
phenotypes, and pathway analysis were performed in BEC and replicated. Genetic association for
asthma severity (426 severe vs. 531 non-severe asthma) and longitudinal asthma exacerbations
(n=273) was performed.

Results: Multiple SNPs in GSDMB associated with asthma severity (odds ratio>1.25) and
longitudinal asthma exacerbations (p<0.05). eQTL analyses identified multiple SNPs associated
with expression levels of PGAP3, GSDMB, or GSDMA (3.1x1079<p<1.8x1074). Higher
expression levels of GSDMB correlated with asthma and greater number of exacerbations
(p<0.05). Expression levels of GSDMB correlated with genes involved in interferon signaling,
MHC class | antigen presentation, and immune system pathways (FDR-p<0.05). rs1031458 and
rs3902920 in GSDMB colocalized with interferon regulatory factor (IRF) binding sites and
associated with GSDMB expression, asthma severity, and asthma exacerbations (p<0.05).

Conclusions: By using a unique set of gene expression data from lung cells obtained using
bronchoscopy from comprehensively characterized asthma subjects, we show that SNPs in
GSDMB associated with asthma severity, exacerbations, and GSDMB expression levels.
Furthermore, its expression levels correlated with asthma exacerbations and antiviral pathways.
Thus, GSDMB s a functional gene for both asthma susceptibility and severity.

Capsule summary
By using a unique dataset of gene expression from lung cells of asthmatics, we show strong
evidence for GSDMB as a gene for asthma severity and asthma exacerbations probably through
antiviral pathways.

Keywords

Antiviral pathways; asthma exacerbations; asthma severity; eQTL,; genetics; GSDMA; GSDMB,
PGAP3; whole-genome sequence; RNAseq

INTRODUCTION

Asthma is a common inflammatory airway disease. ORMDL3in chr17q12-21.2 region was
the first gene identified through genome-wide association study (GWAS) of asthma.! Since
then, GWAS, candidate gene replication, and gene expression studies have consistently
identified or confirmed SNPs in multiple genes in this region that are associated with asthma
susceptibility, including PGAP3#4 ERBB2° IKZF35-° ZPBP210-11 GSDMB,15812-20
ORMDL31121-25 and GSDMA.%14-1526 SNPs in IKZFF" ZPBP228 GSDMB,1029-30 and
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PSMD3?9 have also been associated with allergic responses. However, partially due to
linkage disequilibrium (LD), it has been difficult to determine the specific genes or SNPs
responsible for those association. In addition, most published GWAS of asthma has tested
the association of SNPs with asthma susceptibility (mild or severe asthma vs. healthy
controls), not asthma severity. To analyze asthma severity, we performed a genetic
association analysis for severe asthma compared to non-severe asthma and asthma
exacerbations longitudinally over a 3 year period.

Autoimmune diseases (AD) arise from abnormal immune responses to self-antigens. SNPs
in ERBB23Y IKZF332-44 ZzPBP245-46 GSDMB,*"-%8 and GSDMA®*-50 have been
associated with a variety of AD. In a previously published GWAS, we were the first to report
that the opposite risk alleles in /L/3, TNIPI, HLA-DRA, and GSDMB associated with
asthma and AD.5! In this study, we comprehensively compared all the GWAS-identified
SNPs associated with asthma, allergy, and AD in chr17q12-21 region to reveal genetic
effects on the immunopathogenesis of asthma, allergy, and AD.

In a recent review, genetic association, expression quantitative trait loci (eQTL), and
epigenetics of 17 SNPs in chr17q12-21.2 region with asthma have been summarized.52
Proximal (PGAP3-ERBB2), core (IKZF3-ZPBP2-GSDMB-ORMDL 3), and distal
(GSDMA) regions have been suggested as independent regions associated with asthma.%2

In order to delineate the functional genes/SNPs for asthma severity in this region, we utilized
a unique dataset of lung gene expression data obtained from bronchial brushing during
investigational bronchoscopy in extensively characterized patients with current asthma plus
healthy controls. We hypothesize that combing SNP with RNA gene expression data from
lung cells of asthmatics, we will be able to determine the functional asthma genes/SNPs in
this complicated chromosomal region.

METHODS
Study subjects

SARP is a currently active multicenter program funded for the last 18 years by the NHLBI.
Mild to severe subjects with asthma (enriched for severe) and a subset of controls have been
extensively studied using standardized protocols. The earlier SARP cohort was cross-
sectional (n=1,644). In a subset of subjects with mild to severe asthma, RNA was isolated
from epithelial cells (BEC; n=155) that were obtained from brush biopsies (Table I and
Table E1).83-65 The current SARP cohort is an ongoing longitudinal study (n=714),66-68
Bronchoscopy was performed on a subset of the longitudinal cohort to obtain epithelial cells
from brush biopsies (n=156) for RNAseq (Table | and Table E1). All studies were approved
by the appropriate institutional review board at the participating sites including informed
consent.

Statistical analysis

Selection of SNPs and RNAseq Data.—Whole genome sequencing (WGS) in SARP
(n=1,888; version Freeze 6; dbGaP accession: phs001446) was performed through NHLBI-
sponsored TOPMed Program (www.nhlbiwgs.org). Standard quality control (QC) was
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performed. All SNPs in chr17q12-21.2 region were extracted (hg38: PPPIR1IBto CSF3,
chrl7:39,626,924-40,017,813) in the longitudinal cohort with WGS using PLINK 1.9
software,59 and further QC were performed as described.51:70 Similarly, SNPs were
extracted from the cross-sectional cohort with GWAS data and imputed based on TOPMed
reference panel using the Michigan Imputation Server.’?

RNAseq data from BEC in the longitudinal cohort were extracted for 14 candidate genes
(except for ZPBP2and LRRC3C which failed QC) in chr17q12-21.2 region. In brief,
Illumina HiSeq RNAseq reads were quality filtered and mapped to human genome hg38
using STAR package.”? Read counts were regularized logarithm transformed using DESeq?2
package.’3 The RNAseq data will be deposited and accessible through GEO
(www.ncbi.nlm.nih.gov/geo/). Agilent Whole Human Genome Microarray expression data
of these 16 genes were extracted from BEC in the cross-sectional cohort as described.’4-"°
The microarray expression data have been deposited and can be accessed through
GSE63142 and GSE43696.7476-77

Genetic Association Analysis.—Logistic or linear regression, assuming a genetic
additive model, was used for genetic association analysis of asthma severity (426 severe
asthma vs. 531 non-severe asthma) and the number of exacerbations (n=273) due to asthma
in three years in non-Hispanic White adults (age>12 years old) in the longitudinal cohort
(Table I), adjusted for age, sex, and the first five components from the multidimensional
scaling analysis of genome.

We first investigated a set of 48 candidate SNPs identified by previous GWAS of asthma,
allergy, and AD (NHGRI-EBI GWAS catalog;’8 www.ebi.ac.uk/gwas/) incorporated in
UCSC genome browser (genome.ucsc.edu; accessed on August 12, 2019)7° for association
with asthma severity and longitudinal exacerbations in SARP (Figure 1). To reduce multiple
tests due to SNPs with strong LD, the numbers of independent tests were calculated using
GEC.80 14.4 independent tests of 48 candidate SNPs were indicated by GEC, and thus SNPs
with p-value<0.0035 (0.05/14.4 tests) were considered significant. SNPs with p-value<0.05
were considered as nominally significant. From all sequenced SNPs in the chrl7q12-21.2
region, we extracted 1,266 common SNPs (MAF=0.01) to test for association and p-
value<0.05 was considered as nominally significant due to relatively small sample size. Note
that all of the 48 candidate SNPs were included in the set of 1,266 common SNPs. LD was
estimated with 95% confidence intervals of D’ to define LD blocks and LD plots of
candidate SNPs in chr17q12-21.2 region were generated separately for 1,016 non-Hispanic
Whites and 622 African Americans (Table 1) using Haploview.81

eQTL Analysis.—A linear additive genetic model was used to test the association between
SNPs and inverse normalized expression data as described before.”*~7> The longitudinal and
cross-sectional cohorts were used as discovery and replication datasets, respectively (Figure
1). Significant eQTL SNPs identified in the lung tissue (n=383) from Genotype-Tissue
Expression (GTEX) database2® were also evidence for replication (Figure 1). In the
longitudinal cohort with WGS and RNAseq in BEC (n=114), 252.6 independent tests of 862
common SNPs (MAF=0.05) in chr17g12-21.2 region were indicated by GEC,8 and thus,
SNPs with p-value<1.98x10~4 (0.05/252.6 tests) were considered as significant eQTL SNPs.
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SNPs with p-value<0.05 were considered as nominally significant. Conditional eQTL
analysis of PGAP3, GSDMB, and GSDMA in the longitudinal cohort was performed to
identify independent eQTL SNPs by stepwise adjusting the most significant eQTL SNP.

Colocalization Analysis.—To test whether the same SNP (n=862) is responsible for the
genetic association of asthma severity and eQTL of PGAP3, GSDMB, or GSDMA in the
longitudinal cohort (Figure 1), a Bayesian-based colocalization analysis was performed
using coloc package.82 A posterior probability of 75% or greater was considered as strong
evidence of colocalization. Colocalization analysis of SNPs associated with asthma severity
or longitudinal asthma exacerbations and with gene expression of PGAP3, GSDMB, or
GSDMA in the longitudinal cohort (Figure 1) was also performed through conditional eQTL
analysis by adjusting the most significant SNP associated with asthma severity or
longitudinal asthma exacerbations.

Correlation Analysis of Gene Expression and Asthma Phenotypes.—Correlation
analysis of gene expression and asthma-related phenotypes was performed as described
(Figure 1).74-75 In brief, a generalized linear model was used to test the correlation between
expression levels of 16 candidate genes and asthma-related phenotypes with adjustment of
age, sex, race (dummy variables for non-Hispanic Whites and African Americans), BMI,
and batch effect. P-value<0.05 was considered as nominally significant.

Pathway Analysis.—Correlation analysis of gene expression levels of 16,068 genes in the
longitudinal cohort or 19,567 genes in the cross-sectional cohort was performed using
Spearman’s rank correlation. The genes with expression levels significantly correlated with
PGAP3, GSDMB, or GSDMA (p<0.05/16,067=3.1x1076 in the longitudinal cohort and
p<0.05/19,566=2.5x1076 in the cross-sectional cohort) were input into Reactome software
for pathway analysis83 (Figure 1). Enriched biological pathways were identified using a
hypergeometric distribution test with false discovery rate (FDR) adjusted p-value<0.05.

IRF Binding Site Analysis.—Interferon regulatory factor (IRF) binding sites were
checked for GSDMB based on ENCODE database (Figure 1).84 Genetic association and
eQTL analyses were performed for two common SNPs and four rare SNPs (MAF<0.01) in
the identified IRF binding sites of GSDMB.

Genetic Association Analysis

16 candidate genes in chr17gq12-21.2 region (Figure E1) were selected based on the
published GWAS of asthma, allergy, or AD.”® To elucidate shared genetic variants for
immune diseases, 48 SNPs in this region identified through GWAS of asthma, allergy, and
AD'8-79 or associated with asthma as reported by Stein er a/.52 were investigated (Table I1).

Most of the SNPs previously associated with asthma susceptibility were associated with
asthma severity at the nominal p-value of 0.05 (Table I1). rs2305479 and rs62067034 in
GSDMB were significantly associated with asthma severity after multiple-test adjustment
(odds ratio=1.34; p=0.0029<0.0035). When testing 1,266 common SNPs, several
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independent signals were associated with asthma severity though no SNP reached a more
stringent significance (p<0.05/1266) (Table E2), including five SNPs in GSDMB (odds
ratio>1.3; p<0.0035) with the risk alleles associated with increased GSDMB expression.

Most of the SNPs previously associated with asthma susceptibility were also associated with
longitudinal asthma exacerbations at the nominal p-value of 0.05 (Table I1). rs2517955 in
PGAP3was significantly associated with longitudinal asthma exacerbations after multiple-
test adjustment (p=0.0034). When testing 1,266 common SNPs, several independent signals
were associated with longitudinal asthma exacerbations though no SNP reached stringent
significance (p<0.05/1266) (Table E3), including four SNPs in PGAP3-ERBBZ region
(p<0.0035) with the risk alleles associated with increased PGAP3 expression.

Multiple SNPs in this region were associated with asthma, allergy, and AD, however, the
risk alleles were opposite between asthma and AD (Table I1). For example, the G allele of
rs907092 in /KZF3was the risk allele for asthma (p<5x10~8)7-8 and asthma severity
(p=0.027), and associated with higher expression levels of GSDMB (p=3.7x1074) and
PGAP3 (p=7.9x107%), but was the protective allele for primary biliary cholangitis (PBCh)
(p<5x1078).38 The G allele of rs2305480 (a missense mutation in GSDMB) was the risk
allele for asthma (p<5x1078),14-15 asthma severity (p=0.015), longitudinal asthma
exacerbations (p=0.0086) and associated with higher expression levels of GSDMB
(p=2.5x107°), but was the protective allele for rheumatoid arthritis (RA) and ulcerative
colitis (UC) (p<5x1078).48:57 The A allele of rs3894194 (a missense mutation in GSDMA)
was the risk allele for asthma (p<5x1078)14-15 and associated with lower expression levels
of GSDMA (p=4.3x1074), but was the protective allele for systemic sclerosis (SS)
(p<5x1078).59 All 48 candidate SNPs identified by previous GWAS (Table 11) were common
SNPs (MAF>0.01), and thus, belonged to 1,266 common SNPs analyzed in this study. When
ranking genetic association of asthma severity p-values of 1,266 SNPs, 35 (73%), 6 (13%), 3
(6%), and 4 (8%) of 48 candidate SNPs were distributed in the 15t to 4! quartile,
respectively.

eQTL Analysis and Colocalization Analysis

Expression of 14 genes (except ZPBP2and LRRC3C) in the longitudinal cohort (n=114
BEC) and 16 gene in the cross-sectional cohort (n=120 BEC) passed QC (Table I and Table
E1). LD pruning (r2>0.8) of 862 common SNPs (MAF=0.05) belonging to these 16
candidate genes generated 273 SNPs. The complete eQTL results of 862 SNPs were
summarized in Table E4. 26 of 273 SNPs were significantly associated with the gene
expression levels of PGAP3, GSDMB, or GSDMA, but not associated with the other genes
in the longitudinal cohort (Table 111 and Table E4-E5). The eQTL findings of 26 SNPs in the
longitudinal cohort were generally replicated in BEC in the cross-sectional cohort at
nominal p-value of 0.05 (Table E6). Considering stringent replication (p<0.05/26=1.9x1073),
16 of 26 SNPs in PGAP3 or GSDMB were replicated in BEC in the cross-sectional cohort;
21 of 26 SNPs in PGAP3, GSDMB, or GSDMA were replicated in GTEXx lung tissue (Table
I11); all together, 22 of 26 SNPs were replicated. Three and six LD blocks were formed for
these 26 SNPs in non-Hispanic Whites and African Americans, respectively (Table IlI,
Figure E2-E3). SNPs in PPP1R1B, PGAP3, and ERBBZ were associated with PGAP3
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expression. SNPs in /KZF3region were associated with the expression levels of PGAPS3,
GSDMB, or GSDMA. SNPs in ZPBPZ, GSDMB, and ORMDL 3 were associated with
GSDMB expression. SNPs in GSDMA were associated with GSDMA expression. Most of
these 26 eQTL SNPs were associated with asthma severity or longitudinal asthma
exacerbations at a nominal p-value of 0.05 (Table E7).

Five and six LD blocks were identified for 48 GWAS-identified SNPs in non-Hispanic
Whites and African Americans, respectively (Table I1, Figure E4-E5). Significant eQTL
SNPs (p<0.0035) were associated with the expression levels of three genes (PGAPS3,
GSDMB, or GSDMA) in the longitudinal cohort and were generally replicated in the cross-
sectional cohort at nominal p-value of 0.05 (Table Il and Table E8). GTEXx lung tissue eQTL
in this region identified four genes (PGAP3, GSDMB, ORMDL3, and GSDMA) (Table 11
and I11).

Conditional eQTL analysis was performed by stepwise adjusting the most significant eQTL
SNP (Table E9), and indicated that two SNPs (rs2517954 in PGAP3and rs114211283 in
IKZF3), two SNPs (rs11657449 in ZPBP2-GSDMB and rs3794712 in PPP1R1B), and one
SNP (rs3859193 in GSDMA) were independent eQTL SNPs for PGAP3, GSDMB, and
GSDMA, respectively.

Colocalization analysis82 of the signals from genetic association of asthma severity and
eQTL was performed, and indicated no significant colocalization SNP based on the criterion
of posterior probability>75% (Table E10). rs2517954 in PGAPS3, rs11657449 in ZPBP2-
GSDMB, and rs2941522 in GRB7-IKZF3were top colocalization SNPs for PGAPS3,
GSDMB, and GSDMA, respectively (Table E11). Colocalization analysis between SNPs
associated with asthma severity or longitudinal asthma exacerbations and gene expression of
PGAP3, GSDMB, and GSDMA was also performed through conditional eQTL analysis by
adjusting the most significant SNP associated with asthma severity or longitudinal asthma
exacerbations (Table E12, Table II). With adjustment of rs2952156 in ERBBZ, rs2305479 in
GSDMB, and rs3902025 in GSDMA, all eQTL SNPs for PGAP3 (except for rs114211283
in /IKZF3), for GSDMB (except for two SNPs in PPPIR1B and ZPBP2-GSDMB), and for
GSDMA became non-significant. For example, the association between GSDMB expression
and rs11657449 in ZPBP2-GSDMB or rs3794712 in PPP1R1B was weakened when
adjusting for rs2305479, indicating that rs2305479 partly accounted for the eQTL
association but not completely. In summary, the colocalization analyses did not show strong
evidence for colocalization.

Expression Analysis and Pathway Analysis

The risk alleles associated with asthma, asthma severity, and longitudinal asthma
exacerbations were associated with higher expression levels of PGAP3and GSDMB or the
lower expression levels of GSDMA (Table 1), which indicated that expression levels of
PGAP3, GSDMB, and GSDMA may be correlated with asthma phenotypes.

Correlation analysis of gene expression (PGAP3, GSDMB, and GSDMA) and asthma
phenotypes was performed in BEC in the longitudinal cohort (n=156) and replicated in BEC
(n=155) in the cross-sectional cohort (Table 1V). Higher expression levels of GSDMB were
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correlated with asthma (p=0.05), greater number of exacerbations in the last 12 months
(p=0.02), and higher reduction of ACQ-6 after steroid treatment (p=0.0008) in the
longitudinal cohort. Higher expression levels of GSDMB were correlated with emergency
room (ER) visits or hospitalizations due to asthma in the last 12 months (p=0.03) in the
cross-sectional cohort. Other asthma-related phenotypes were not correlated with expression
levels of PGAP3, GSDMB, or GSDMA (Table E13), except that higher expression levels of
GSDMB were correlated with higher FeNO (p=0.03) in the longitudinal cohort. Although
correlation analysis was focused on PGAP3, GSDMB, and GSDMA, the other 13 genes
were also analyzed (Table E14-E15). Higher expression of PNMT and lower expression of
CSF3were associated with asthma susceptibility in BEC in the longitudinal and cross-
sectional cohorts.

Pathway analyses were performed on the genes with expression levels significantly
correlated with PGAP3, GSDMB, or GSDMA. No biological pathways were identified for
the genes correlated with PGAP3 or GSDMA after FDR adjustment (data not shown). 435
and 677 genes were positively and negatively correlated with GSDMB (p<3.1x1076) in BEC
in the longitudinal cohort, among which 636 genes were replicated in BEC in the cross-
sectional cohort (p<0.05) (Table E16). Pathway analysis®3 was performed on 1,112 and 462
genes with expression levels significantly correlated with GSDMB expression in BEC in the
longitudinal cohort (p<3.1x1075) and cross-sectional cohort (p<2.5x1075), respectively.
Expression levels of GSDMB were correlated with genes involved in interferon alpha/beta/
gamma signaling, MHC class | antigen presentation, and immune system pathways (FDR-
p<0.05) (Table V and Table E17).

IRF Binding Site Analysis

Interferon regulatory factor (IRF) binding sites were checked for GSDMB and two regions
were identified based on ENCODE database (Figure E6).84 One IRF1/2 biding site was
located at 5’UTR-exon 1-intron 1 region of GSDMB (Figure E7) and one IRF4 biding site
was located at intron 2 of GSDMB (Figure E8). Two common SNPs and four rare SNPs
were found in these two IRF biding sites based on SARP WGS (Table VI). Two common
SNPs (rs1031458 and rs3902920) were associated with GSDMB expression, asthma
severity, and longitudinal asthma exacerbations (p<0.05), making them potential functional
SNPs.

T allele of rs1031458 or C allele of rs3902920 were risk alleles for asthma severity and
longitudinal asthma exacerbations (Table V1), and they were also associated with early onset
of asthma (p<0.005) (Table E18) especially atopic early onset (age onset of asthma<6 yrs)
asthma (p<0.00001) (Table E19 and Figure 2). Similarly, most of the top 10 SNPs associated
with asthma severity (including rs3902920; Table E2) were also associated with asthma
severity in the subjects with early onset asthma (onset<6 yrs) (Table E20). rs1031458 and
rs3902920 were in strong LD (r2>0.8) with multiple neighboring SNPs (Table 11-111) in non-
Hispanic Whites (Table E21). In African Americans, rs1031458 and rs3902920 were in
strong LD with three (rs921650, rs7216389, and rs201413617) and zero neighboring SNPs,
respectively.
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In summary, by using a unique set of gene expression data from lung cells of asthmatics
obtained using investigative bronchoscopy and by performing comprehensive genetic
association, expression correlation, eQTL, and pathway analyses, we have narrowed down
chrl7q12-21.2 region (16 candidate genes; 390 kbp) to two SNPs in GSDMB associated
with asthma severity and asthma exacerbations potentially through antiviral pathways
(Figure 1).

DISCUSSION

Almost all the SNPs identified by previous GWAS in GSDMB now show to be associated
with asthma severity and longitudinal asthma exacerbations, indicating that SNPs in
GSDMB are associated with asthma susceptibility, asthma severity, and asthma
exacerbations. Asthma and AD share extensive immunological pathways, however, the risk
alleles of the same associated SNPs in this region are consistently opposite for asthma and
AD, which may indicate distinct immunopathogenesis processes. In addition to SNPs with
MAF=0.01, we also investigated rare SNPs (MAF<0.01; n=4,006) for association with
asthma severity. 14 rare SNPs were associated with asthma severity at nominal p-value of
0.05 with large effect size (2.9<odds ratio<12) (Table E22). Replication of these rare SNPs
is needed in larger cohorts with sequence data and asthma phenotypes. In conclusion,
findings from genetic association of asthma susceptibility, asthma severity, and asthma
exacerbations in this region are generally consistent, however, genetic association analysis
can not narrow down the 16 candidate genes due to strong and complicated LD structure in
this region.

Gene expression is dependent on cell type or tissue, time, and environmental factors such as
disease status. It is critical that cells are obtained from the appropriate organ (lung for
asthma) and from living subjects with the disease being investigated instead of from surgical
specimens (usually from cancer patients) or autopsy specimens. Even findings of eQTL
analyses in lung cells are not always consistent (Table E23). The most significant eQTL
genes were GSDMA followed by GSDMB and ORMDL3in two eQTL studies in lung
tissue.26:85 Nicodemus-Johnson et a/. identified ORMDL3but not GSDMB in an eQTL
analysis in BEC.* Our eQTL analysis in BEC in both longitudinal and cross-sectional
cohorts’# identified GSDMB but not ORMDL3.

Similarly, a recent genetic association and eQTL study has shown that eQTL SNPs for
GSDMB (but not ORMDL.3) in BEC play a major role in childhood asthma in African
Americans.86 BEC obtained from brush biopsies are mainly composed of epithelial cells,
although small proportion of basal cells and immune cells also exist. A flow cytometry study
showed that 95% to 97% of the cells from bronchial brushings were epithelial cells.87 In this
study, cell populations were not available for every subject, and thus, were not adjusted.
Future eQTL and expression analyses by adjusting cell composition or single-cell RNAseq
may reveal interesting results.

SNPs in PGAP3-ERBBZ2 region were associated with PGAP3 expression and longitudinal
asthma exacerbations. In a previous GWAS, rs2941504 in PGAP3 has been associated with
asthma.2 Another GWAS has identified rs2952156 in £RBB2 associated with asthma® and
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PGAP3expression in lung tissue.28 Thus, SNPs in PGAP3-ERBBZ2 are associated with
asthma phenotypes by up-regulating PGAP3 gene expression. The first GWAS of asthma has
identified rs7216389 in GSDMB associated with childhood asthma and the expression levels
of ORMDL 3and GSDMB in lymphoblastoid cell lines.! In this study, rs7216389 was
significantly associated with GSDMB expression (p=1.7x10~4) but not ORMDL 3 (p=0.22)
in BEC. Thus, SNPs in ZPBP2-GSDMB-ORMDL 3 are associated with asthma phenotypes
by up-regulating GSDMB gene expression. rs3894194 in GSDMA has been associated with
asthmal4-15 and the expression levels of GSDMA in lung tissue.26 In this study, rs3894194
was significantly associated with GSDMA expression (p=4.3x1074). Thus, SNPs in
GSDMA are associated with asthma phenotypes by down-regulating GSDMA gene
expression. Interestingly, SNPs in /KZF3were not consistently associated with a specific
gene expression, instead, associated with the expression levels of PGAP3, GSDMB, or
GSDMA, which may indicate long-distance gene expression regulation. Interaction between
gene regulatory elements and genes shown by GeneHancers8 also indicated /KZF3was
involved in complicated long-distance regulation of GSDMB, GSDMA, ORMDL 3, and
ERBBZ2 (Figure E9). In summary, our findings confirm the hypothesis that there are
proximal, core, and distal regions independently associated with asthma.®2 In addition,
IKZF3forms a long-distance regulation region. More importantly, we narrowed down 16
candidate genes to three genes (PGAP3, GSDMB, and GSDMA).

We attempted to identify functional SNPs using colocalization and conditional eQTL
analyses. rs2517954 for PGAP3 and rs11657449 for GSDMB were identified by both
colocalization analysis and conditional eQTL analysis, though the posterior probability of
colocalization was not high. The probable reason is that the signals of genetic association are
not strong due to sample size, and thus, eQTL signals drive the colocalization findings in
SARP. Colocalization analysis through conditional eQTL analysis (Table E12) further
indicates that the colocalization analysis based on the Bayesian approach does not show
strong evidence for colocalization.

Previous studies have shown inconsistent relationship between gene expression in this region
and asthma susceptibility.52 The mRNA levels of ORMDL 3in lymphoblastoid cell lines
have not been significantly different in children with or without asthma.l An
immunohistochemistry study has found that GSDMB protein levels are significantly higher
in subjects with asthma than controls.8? In this study, higher mRNA levels of GSDMB were
correlated with asthma and asthma exacerbations, though the correlation was not strong and
not always consistently significant. Although our findings are based on relevant tissues
(BEC) in relevant subjects (healthy controls, non-severe and severe asthma), subjects
involved in this study are all adults (age=12 years old). Typical of adult asthma cohorts, the
SARP cohort consists of those with early onset of asthma and those with older age onset.
63.67 Since asthma is often an early-onset disease, expression or eQTL analyses in children
would be interesting but, of course, research bronchoscopies are not performed in children.
In this study, gene expression correlation and eQTL analyses were performed in all SARP
subjects with mixed races to increase sample size and power. Although gene expression is
less influenced by population stratification than genetic association, the findings may still be
biased due to different allele frequencies and LD structures in different ethnic groups.
Correlation analysis of gene expression (PGAP3, GSDMB, and GSDMA) and asthma

J Allergy Clin Immunol. Author manuscript; available in PMC 2022 March 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Lietal.

Page 11

phenotypes (Table 1V) and eQTL analysis of top five eQTL SNPs for these three genes
(Table E4) were also performed in SARP non-Hispanic Whites (Table E24 and Table E25).
The findings of gene expression correlation and eQTL analyses were similar between non-
Hispanic Whites and all subjects with mixed races. In summary, the association of SNPs in
GSDMB, the expression levels of GSDMB, and asthma phenotypes make GSDMB a strong
candidate for severe asthma.

The function of PGAP3, GSDMB, or GSDMA is not totally understood. PGAP3 may have a
role in controlling autoimmunity and Th1/Th2 balance.®0 GSDMA may regulate or be
regulated by TGF-B1 and mediate immune defense by inducing pyroptosis.?t GSDMB may
regulate apoptosis of epithelial cells and upregulate expression of airway remodeling genes,
chemokines, and heat-shock proteins.89:91 In this study, the expression levels of GSDMB are
positively correlated with MHC class | molecules (HLA-A/-B/-C/-F), type | interferon
(STAT1, STATZ and /IRF9) and type Il interferon pathway genes (/FN-y and STATI), and
Th1 pathway genes (/FN-y, STAT1, IL18R1, and /L18BP). All these biological pathways
are related to antiviral process, indicating that virus infection and expression of antiviral
pathway genes may lead to severe asthma and asthma exacerbations. rs7216389 in GSDMB
has been associated with human rhinovirus (HRV) induced wheezing illnesses in children
and increased expression of GSDMB and ORMDL 3 in HRV-stimulated peripheral-blood
mononuclear cells, which further indicates the potential interaction of GSDMB and virus
infection in asthma pathogenesis.%? In a previous gene expression analysis in human nasal
epithelial cells, GSDMB expression can be induced by IFN-a stimulation.?3 In this study,
two SNPs (rs1031458 and rs3902920) in the promoter region of GSDMB are colocalized
with IRF binding sites and associated with GSDMB expression, atopic early onset asthma,
asthma severity, and longitudinal asthma exacerbations, making them potential functional
SNPs.

One main disadvantage of this study is the relatively small sample size. In genetic
association, eQTL, and gene expression correlation analyses, nominal p-values of 0.05 in
addition to adjusted p-values have been used. Furthermore, the replication results in several
datasets are not always consistently significant. Thus, it requires careful interpretation as for
significance and replication. One main advantage of this study is that multi-level evidence
point to the same gene (GSDMB).

In conclusion, we identified that three independent signals (PGAP3, GSDMB, and GSDMA)
were associated with asthma susceptibility and GSDMB was also associated with asthma
severity, asthma exacerbations, and antiviral pathways. Future candidate gene studies in
large, multiethnic, or children with asthma and functional experiments may further reveal
functional SNPs/genes for asthma including rare variants in this important region.
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Key Messages

. SNPs in GSDMB were associated with asthma, asthma severity, asthma
exacerbations, and GSDMB expression levels, and its expression levels were
correlated with asthma, asthma exacerbations, and antiviral pathways.

. SNPs in PGAP3-ERBBZ2, ZPBP2-GSDMB-ORMDL3, and GSDMA regions
were associated with the expression levels of PGAP3, GSDMB, and
GSDMA, respectively; SNPs in /KZF3 were associated with the expression
levels of PGAP3, GSDMB, or GSDMA.

. SNPs identified by GWAS of asthma or autoimmune diseases (AD) were also
eQTL SNPs for PGAP3, GSDMB, or GSDMA, but showed opposite effect
alleles between asthma and AD.
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Interferon Regulatory Factor (IRF) Binding Site (ENCODE) &
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FIG 1.
Flow chart of genetic analyses in chr17q12-21.2 region
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FIG 2.

Risk allele frequency of rs1031458 (A) and rs3902920 (B) in GSDMB stratified by age
onset of asthma and atopic status. Chi-square test was performed by comparing each asthma
group with general North-Western European controls shown in red line (gnomAD V2.1.1;

https://gnomad.broadinstitute.org/).
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