Table 5.
Model | Fixed effects | Goodness of fit and comparison* | ||||||
---|---|---|---|---|---|---|---|---|
Estimate | SE | t | df | p-value | F | df1, df2 | P-value | |
Baseline model | ||||||||
Intercept | 0 | 0.12 | 0.00 | 105 | > 0.999 | 282.3 | 290.4 | – |
EMA model | ||||||||
Intercept | 0 | 0.10 | 0.00 | 104 | > 0.999 | 11.09 | 1, 434 | 0.001a |
Arousal | −0.39 | 0.11 | −3.71 | 74 | <0.001 | |||
GPS model | ||||||||
No predictors identified | ||||||||
Wearable data model | ||||||||
No predictors identified | ||||||||
Combined model: EMA and digital phenotyping model | ||||||||
Not applicable |
For more details on the likelihood ratio test see chapter 5.3.1 in Van Buuren (66).
Comparison against baseline.