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Abstract

Synthetic lethal screens are used to discover new combination treatments for cancer. In traditional 

high-throughput synthetic lethal screens, compounds are tested at a single dose, and hit selection is 

based on threshold activity values from the variance of the efficacy of the compounds tested. The 

limitation of the single-dose screening for synthetic lethal screens is that it does not allow for the 

robust detection of differential activities from compound collections with a broad range of 

potencies and efficacies. There is therefore a need to develop screening approaches that enable the 

identification of compounds with synthetic lethal effects based on changes in both potency and 

efficacy. Here we describe the implementation of a dose response–based synthetic lethal screen to 

find drugs that enhance or mitigate the cytotoxic effect of an immunotoxin protein (HA22). We 

developed a data analysis framework for the selection of compounds with enhancing or mitigating 

cytotoxic activities based on the use of dose-response parameters. The data analysis framework 

includes an ensemble ranking approach that allows the use of multiple dose-response parameters 

in a nonparametric fashion. Quantitative high-throughput screening (HTS) enables the 

identification of compounds with synthetic lethal activity not identified by single-dose HTS.
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Introduction

The identification of compounds that have a synthetic lethal effect in tumor cells is driving 

the search for combination therapies for the treatment of cancer.1–3 High-throughput 

screening (HTS) using cell proliferation assays has been implemented to identify 

compounds with differential activity in the presence of sublethal doses of a 

chemotherapeutic treatment or in paired isogenic cell lines with driver oncogenic mutations.
4 In a traditional HTS campaign, compounds are tested at one concentration (e.g., 10 μM) to 

make the implementation of these large screens practical and economically feasible. The 

differential cytotoxic activity of a compound between two treatments or matched cell lines is 

then determined by calculating a ratio of normalized percent viability in each condition (e.g., 

chemotherapeutic treatment vs. no treatment or wild type vs. mutated gene). This analytical 

method is based on the differential efficacy of the compound, that is, the ability to 

distinguish the different inhibitory effect of compounds on cell viability in each screening 

arm. However, this method does not distinguish differential effects of compounds that are 

fully toxic in both conditions at the dose of compounds screened, even though their 

potencies (IC50) might be several fold different and, therefore, could potentially be used to 

selectively enhance killing at lower doses than those chosen in a screen.5,6 Quantitative HTS 

(qHTS) tests compounds in a dose-response format and fits the results to dose-response 

curves, which are then analyzed to assign a heuristic curve class (CC), summarizing the 

quality of the curve fit, IC50, maximum response (MAXR), and area under the curve (AUC) 

values for each compound in each assay condition.7,8 The CC also classifies the dose 

responses based on the nature of the asymptotes, efficacy, and goodness of fit (R2).9 

However, CCs can be confounded by a variety of factors because of poor curve fits, mostly 

due to compounds with small efficacies, bell-shaped curves due to insolubility or other 

artifacts at the higher doses tested, and, to a lesser extent, outlying data points. In an ideal 

case, a compound would exhibit similar curves in the two treatments and only differ in their 

potencies (potency shift). More commonly, however, compounds will exhibit both potency 

(IC50) and efficacy shifts under each treatment condition. The AUC is used as an alternative 

parameter that can be calculated from a dose-response curve and implicitly considers both 

potency and efficacy.10 However, this parameter is still not an ideal solution because the 

AUC for a compound exhibiting a shift in potency but no shift in efficacy can be the same as 

(or similar to) the AUC for a compound exhibiting a shift in efficacy but not a shift in 

potency.5,6 Hit selection methods that combine the different dose-response curve parameters 

should therefore be developed and tested to ensure that relevant compounds are selected 

from chemical synthetic lethal screens. In practice, a combination of methods to help 

prioritize differentially active compounds, together with the manual inspection of the dose 

responses of the selected compounds at each key step of the selection process, is critical for 

the final selection of synthetic lethal compound candidates.

We implemented dose response–based qHTS to identify compounds that produce an 

enhanced or reduced cytotoxic effect in the presence of an immunotoxin (HA22)11,12 

engineered to target CD22-expressing Nalm6 cells, which are used as a model of acute 

lymphoblastic leukemia (ALL). This engineered CD22-targeting toxin is currently in clinical 

development for the treatment of hairy cell leukemia and other B-cell malignancies, 
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including ALL.13,14 The qHTS was implemented using a library of 466 compounds that 

have been clinically approved or are being developed for the treatment of cancer, so that 

compounds identified from the screen can potentially be efficiently developed into effective 

clinical combinations.15 This library of compounds includes both general cytotoxic (e.g., 

cisplatin, gemcitabine, doxorubicin) as well as targeted (e.g., kinase inhibitors targeting 

PI3K, mTOR, EGFR) compounds. The library exhibits redundancy for some target classes, 

such that there are several compounds with the same primary target. In addition to 

identifying new combinations for existing drugs, the biological annotation of the compounds 

in this collection allowed us to further investigate pathways involved in enhancement and 

resistance to the immunotoxin treatment.

Initial experiments indicated that the Nalm6 cells were very susceptible to the cytotoxic 

effect of the compounds in this oncology collection. Thus, it was difficult to distinguish 

between the cytotoxicity induced by the compound itself and the enhancement of 

immunotoxin cytotoxicity when the compounds were screened in single-dose format. We 

used the qHTS approach in conjunction with a combination of hit selection methods in an 

attempt to better distinguish differential cytotoxic effects of the compounds from the 

primary qHTS. Here we describe the data obtained from a cell viability synthetic lethal 

screen of the MIPE (Mechanism Interrogation PlatE) oncology collection and analytical 

methods that were used to identify compounds belonging to target classes that significantly 

enhanced or mitigated the cytotoxic effect of HA22.

Materials and Methods

A 1536-Well Cell Viability Assay for qHTS

Nalm6 cells were grown in phenol red–free RPMI with L-glutamine, 1× penicillin/

streptomycin (Gibco, ThermoFisher Scientific, Fair Lawn, NJ). A library of 466 oncology 

small-molecule chemotherapeutics was tested using a cell viability assay in a 1536-well 

format as described previously.15 Briefly, 5 μL of a cell suspension (200 cells/μL) in media 

with 50 ng/mL HA22, 1 ng/mL HA22, or no immunotoxin added was dispensed to each well 

(1000 cells per well) of a white, solid, 1536-well microplate (catalog number 789173-F; 

Greiner Bio-One, Monroe, NC) with a Multidrop Combi Reagent dispenser and a small pin 

cassette (Thermo Scientific, Fisher Scientific, Fair Lawn, NJ). Then, 23 nL of compound 

solution in DMSO was added using a pintool dispenser (Kalypsys, San Diego, CA). 

Bortezomib (2 mM stock in DMSO, final 9 μM) was dispensed as positive control for cell 

death. Next, 23 nL of a plain DMSO solution was added to those wells that did not receive 

compound so that all wells in a plate had the same amount of DMSO in each of them. Cells 

were incubated with the compounds and HA22 (or phosphate-buffered saline [PBS]) for 48 

h at 37 °C and 5% CO2. Then, 4 μL of CellTiterGlo solution (Promega, Madison, WI) was 

added to the cells, and after a 15-min incubation at 25 °C, luminescence was measured using 

a ViewLux reader (PerkinElmer, Waltham, MA).

Data Preprocessing and Curve Fitting

The raw relative luminescence units (RLUs) from the ViewLux plate reader were first 

normalized to the positive controls (0% viability, 9 μM bortezomib) and negative controls 
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(100% viability, plain DMSO). Given a RLU value for a well, denoted as c, the normalized 

value was generated using 100(c − n)/(n − i) + 100, where n and i represent the median of 

the negative and positive control wells, respectively. Compounds were tested at 11 doses 

starting at 46 μM and using 3-fold dilutions. Percent viability data from each compound 

dose were then fitted to a four-parameter Hill curve using a custom algorithm.9 The curve fit 

analysis generates many parameters, including a calculated IC50; MAXR, which is the 

measured percentage viability at the highest concentration (46 μM) tested; and the AUC. 

The AUC was calculated using the trapezoidal rule over all measured responses.16 Finally, 

the qHTS analysis algorithm also assigns each dose response a CC (see Southall et al.17 for 

a detailed discussion on definition of curve classes) that allows for the rapid classification of 

inactive and active compounds, as well as to separate complete dose-response curves from 

partial ones. In this work, we consider active compounds those with CCs ±1.1, ±1.2, ±2.1, or 

±2.2 (here, a negative value corresponds to cytotoxic compound and a positive value 

corresponds to a compound increasing cell proliferation), and inactive compounds are those 

with a curve class of 4. The rest of the compounds with CCs ±1.3, ±1.4, ±2.3, ±2.4, 3, and 5 

were considered to have inconclusive activity and were labeled as “Other.” These are rather 

restrictive constraints, but its use does not affect the underlying methods employed as it 

simply defines the working set of compounds.

Analysis of Differential Activities

Each treatment data set was compared with a corresponding untreated arm screened the 

same day to minimize differences in cell responses due to cell culture conditions on different 

days. In the first analysis method, we identified “obviously” differentially active compounds 

as those that exhibited an inactive curve in the vehicle (PBS) treatment (CC 4) and an active 

curve in the HA22 treatment (CCs −1.1, −1.2, −2.1, and −2.2 for enhancers and CCs 1.1, 

1.2, 2.1, and 2.2 for mitigators). For the second method, we considered differences or fold 

changes (i.e., ratio) of several individual curve parameters between treatment and vehicle, 

and then the differences or fold changes were scaled using the formula (x − mean)/standard 

deviation, using the values of each differential parameter for the set of 466 tested 

compounds as the reference population.18 A scaled value of 3 (enhancers) or −3 (mitigators) 

was used as a cutoff to select differentially active compounds. For the retest data, because 

the sample population was enriched for selected active hits, the data were scaled using the 

activity of the 466 compounds from the primary screen as the reference population, and the 

formula (x − median)/mean absolute deviation (MAD) was used to calculate the scaled 

values. This scaling mechanism allows us to compare different parameters (or rather their 

differences or ratios as the case may be) on the same scale. For this analysis, we used the 

three individual dose-response parameters, MAXR, log IC50, and AUC. Since log IC50 is 

calculated from dose-response fits (see above), compounds that had no activity and for 

which a dose response could not be fitted did not have a log IC50 and were discarded from 

the analysis. For log IC50 and MAXR, we evaluated the difference between the parameter 

value in PBS- and HA22-treated cells. For AUC, we calculated a ratio between HA22 

treatment and vehicle and then log2 transformed the values of the ratios. Log2 ratio instead 

of differences for AUC was chosen because it appeared to provide better scaling for the 

differentiation between treatments. Compounds that enhanced the cytotoxic effect of HA22 

had positive scaled values, and those that mitigated had negative scaled values. In a third 
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analysis approach, we used an ensemble ranking method19,20 rather than a selection based 

on individual parameters. In this ensemble ranking method, we first computed fold changes 

or differences (as described above) between the control and treatment arms for multiple 

parameters, including log AC50, MAXR, and AUC. The compounds were first ranked by 

each fold change variable. Then a ranking for each compound was obtained by computing 

the product of its rank in each variable. This rank product approach21 is a convenient way to 

compute an ensemble ranking over a set of disparate ranks. Intuitively, a compound that is 

ranked highly by multiple parameters would be expected to have a high rank overall. A 

simple permutation test can also be performed to compute an empirical p-value (although a 

method to compute exact p-values based on an analytical form for the rank statistic has also 

been proposed22). The final ensemble rank is then used to order the data set. Finally, a fourth 

method to determine differential activity of the compounds was used that calculated the 

differences in percent viability between the two treatments (HA22 vs. vehicle) at each 

compound concentration screened, and then the differences were scaled as described above 

at each concentration using the differences in percent viability for the whole set of 466 

compounds at each dose as the respective reference population. Scaled values of more than 3 

(enhancers) and less than −3 (mitigators) were used as a cutoff to select those compounds 

with a differential effect at any one of the concentrations tested. For the retest data, because 

the sample population was enriched for selected active hits, scaling of delta mean percent 

activity per dose was calculated at each dose using the activity of the 466 compounds at each 

dose from the primary screen as reference population. We considered this approach since it 

is equivalent to hit selection from multiple single-point screens, run at different 

concentrations.

Target Enrichment Analysis

Given a selection of compounds, we identified the primary targets, based on manual curation 

of the literature, for these compounds and computed the enrichment for each target 

compared with background, using the Fisher exact test.23 For this test, the background was 

defined as all the targets annotated in the MIPE oncology collection.

Results

A cell viability assay was developed in a 1536-well microtiter plate format for Nalm6 cells 

using the CellTiterGlo reagent, which measures cellular metabolic adenosine triphosphate 

(ATP) levels, after a 48-h incubation with compound. A library of 466 oncology 

chemotherapeutic agents was tested at 11 doses (starting at 46 μM followed by 3-fold 

dilutions) using two sublethal doses of H22A immunotoxin: a dose of 1 ng/mL, which 

produced approximately an IC30 (low dose), and a dose of 50 ng/mL, which produced an 

IC80 (high dose). The data quality for the treatment and vehicle-treated plates was good, 

with average Z′ factors24 of 0.75 and 0.5 for the low and high H22A treatment, respectively 

(see Suppl. Fig. S1 for plots of median RLU and Z′ factors for each plate and each condition 

of the screen).

The results from the dose-response quantitative qHTS were analyzed to assign CCs as 

described in Materials and Methods. Supplemental Table S1 shows the number of 
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compounds in each CC for each HA22 treatment screen and respective vehicle arm. Figure 

1A displays a confusion table summarizing the concordance between the CC values for the 

HA22 versus control arms, in the high and low HA22 dose screens. Compounds that had 

differential cytotoxic activity between HA22 treated and untreated cells were first selected 

based on CC assignments. There were 20 and 21 enhancer compounds (CCs −1.1, −1.2, 

−2.1, and −2.2 for the treated arm and CC 4 for the untreated arm) for the high- and low-

dose HA22 dose conditions, respectively. Four of those compounds were active in both dose 

conditions (Fig. 1B, top), including vapiprost, a prostanoid TP antagonist; KN-62, a 

calmodulin-dependent protein kinase II inhibitor; NCGC-00187940, a 15-lipoxygenase 

inhibitor; and YO-01027, a γ-secretase inhibitor. Dose responses of these four compounds 

in the different screening conditions are shown in Figure 1C. In general, these compounds 

have no activity in the untreated arm and are very efficacious in the HA22 treatment arm 

(complete killing at the highest dose tested), although they are weak in potency. There were 

three and three mitigating compounds (CCs 1.1, 1.2, 2.1, and 2.2 for HA22-treated arm and 

CC 4 for the untreated arm) for the high- and low-dose HA22 dose conditions, respectively. 

There was no overlap between these two sets of three compounds (Fig. 1B, bottom). The 

target redundancy for many of the compounds in the collection allowed us to evaluate 

whether there was target enrichment in the selected hits. Target analysis of the 37 unique 

compounds identified as HA22 enhancers show that aromatase inhibitors (CYP19A1), 

proteasome (PSDM1) inhibitors, androgen receptor (AR) antagonists, and phosphodiesterase 

(PDE4A) inhibitors were enriched, although not in a statistically significant manner (p-

values ranging from 0.15–0.25) (Fig. 1D).

Additional analysis in search of compounds with differential activity in the presence of 

HA22 treatment was done using three dose-response curve parameters: MAXR, log IC50, 

and AUC. Because the log IC50 and AUC are obtained from dose response fitting, 

compounds for which dose responses cannot be fitted because of lack of activity will not 

have a log IC50 and AUC value. Furthermore, the algorithm at times generates IC50 values 

for compounds that are essentially inactive, and therefore these values are artifactual. 

Therefore, for the log IC50 and AUC analysis, we only included compounds that have robust 

dose responses (CCs −1.1, −1.2, –2.1, and −2.2 for enhancers or 1.1, 1.2, 2.1, and 2.2 for 

mitigators). To calculate differential activities, each of the differences (MAXR and log IC50) 

or ratio (AUC) between HA22-treated and control arms for each compound and each 

parameter was calculated, and then a scaled value was computed based on the total number 

of compounds for which there was a value for the parameter as described in Materials and 

Methods. The scaled values allowed us to use the same arbitrary cutoff of ±3 to identify 

differentially active compounds. Figure 2A–C shows the plots for the scaled values of the 

difference (MAXR and log IC50) or fold change AUC for the low- and high-dose HA22 

treatment screens. Ten compounds had a scaled value >3 (enhancers of HA22 effect) by 

difference in MAXR, all in the low-dose HA22 treatment screen (Fig. 2A,D). Eleven 

compounds were also mitigators of the cytotoxic effect of the HA22 (scaled value <−3) by 

MAXR, seven from the high-dose HA22 treatment and four from the low-dose treatment 

screen, respectively, with no overlap between the two sets of compounds (Fig. 2A,D). No 

compounds met the scaled value >3 or <−3 criteria for differences in log IC50, at either the 

high or low dose of HA22 (Fig. 2B). However, there were two compounds with a 100-fold 
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difference in potency, everolimus and osanetant, in the low-dose HA22 treatment. Five 

compounds enhanced the cytotoxic effect of the HA22 by AUC (scaled value log2 fold 

change [fc] AUC >3) in the low-dose HA22 treatment, and no compounds were enhancers in 

the high-dose treatment (Fig. 2C,D). Seven compounds mitigated the HA22 cytotoxic effect 

by fold change in AUC (scaled value log2 fc AUC <−3), six from to the high-dose HA22 

treatment and one from the low-dose HA22 treatment (Fig. 2C,D). Target analysis (Fig. 2E) 

of the compounds with the HA22-enhancing cytotoxic effect by each of the parameters 

shows that those hits identified using the MAXR method had a statistically nonsignificant (p 
= 0.12) enrichment for ALK5 inhibitors. In contrast, poly(ADP-ribose) polymerase (PARP) 

inhibitors were significantly enriched in the compounds with mitigator activity, both by 

MAXR and AUC analysis, with p-values of 0.05 and 5.6e−6 for each method, respectively.

We also explored an ensemble rank product approach19,20 that included different dose-

response parameters simultaneously as a way to sort compounds in terms of differential 

behavior. For this analysis, we computed fold changes (HA22 treatment vs. control) 

independently for AUC, MAXR, and AC50. The fold changes were then ranked (larger fold 

changes were assigned better ranks), and the rank product for each compound was 

computed. The compounds were then again ranked according to the rank product, and this 

analysis was performed for the high- and low-dose treatments separately. As for AC50-based 

analysis described above, while this approach is applicable to any type of curve fit, it is 

important to note that potency can be assigned even when the curve is of poor quality. In 

such cases, the potency may not be meaningful. Based on these considerations, we focused 

the ensemble rank analysis on the subset of compounds that were considered active with 

good-quality curves (CCs −1.1, −1.2, −2.1, and −2.2 for enhancers and 1.1, 1.2, 2.1, and 2.2 

for mitigators) in both the treatment and control arms. This filter identified 308 and 331 

compounds from the high- and low-dose treatments respectively (see supplemental material 

for lists of compounds). The ensemble ranking scheme implicitly identifies mitigators and 

enhancers of the HA22 response by placing enhancers at the top of the ranked list and 

mitigators at the bottom. Since this is a ranking procedure, one must decide how many 

compounds will be selected (as opposed to selecting a threshold). This decision is driven by 

various factors, including biological relevance, target enrichment, and number of compounds 

that can be practically pursued in further in vitro and in vivo assays. When considering the 

top 10% enhancers of each ranked list (high- and low-dose HA22 treatment), there are 11 

compounds with enhancing HA22 cytotoxic activity in common (Fig. 3A, left Venn 

diagram): niguldipine (calcium channel blocker and α1-adrenergic receptor antagonist), 

IKK-16 (an IκB kinase inhibitor), nilotinib (an ABL1 inhibitor), afatinib (an epidermal 

growth factor receptor [EGFR] inhibitor), everolimus (mTOR inhibitor), CHIR-265 (BRAF 

inhibitor), osanetant (neurokinin 3 receptor antagonist), BI-78D3 (a MAPK inhibitor), 

AEE-788 (EGFR inhibitor), dacomitinib (EGFR inhibitor), and AV-412 (EGFR inhibitor). 

Figure 3B displays the dose-response curves for the three highest ranked enhancer 

compounds for the low-dose and high-dose treatments, respectively. The dose-response 

curves for all the 11 common compounds in the (high and low) treatment and control arms 

are displayed in Supplemental Figures S4 and S5. Based on the curves, the differential 

enhancing effect in the low-dose setting is somewhat smaller than in the high-dose setting, 

but in general, most compounds exhibit clear differential behavior with respect to control. 
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Target enrichment analysis shows that there is a clear statistical enrichment (p = 0.01) for 

EGFR inhibitors for the 54 enhancer hits identified by this method (Fig. 3C, top). When 

considering the top 10% mitigators of each ranked list (high- and low-dose HA22 

treatment), there are six compounds with mitigating HA22 cytotoxic activity in common 

(Fig. 3A, right Venn diagram). These compounds are dasatinib (Abl inhibitor), 

NCGC00244250 (TYK2 inhibitor), irestatin 9389 (ERN1 inhibitor), BKM-120 (PIK3 

inhibitor), withaferin A (NFKβ inhibitor), and AMG-47a (LCK inhibitor). Target 

enrichment analysis shows that there is no clear statistical enrichment for any target class, 

although there is some enrichment for PI3K inhibitors for the 56 mitigator hits identified by 

this method (Fig. 3C, bottom). The current analysis procedure considers each parameter to 

be of equal importance, but this could easily be modified to give more weight to potency 

than efficacy, for example. To understand whether the ranking approach identified 

compounds that showed similar differential behavior in the high and low doses, we 

examined how many compounds were similarly ranked within the top 5%, 10%, and so on 

of the two dose treatments. The number of common compounds in the top 10% of the 

ranked lists from the two dose conditions is summarized in Supplemental Figure S6. It is 

clear that the different dose conditions lead to relatively unique ranked lists.

Finally, compounds with HA22 enhancing or mitigating cytotoxic effects were also selected 

by analyzing the results at each individual concentration of compound screened by 

calculating the differences in percent viability between the two treatments (HA22 vs. 

control) at each compound concentration and then transforming this difference in percent 

viability into a scaled value of percent viability difference at each compound concentration 

so that we could compare differential activity across the different compound concentrations. 

Scaled values of >3 for enhancers and <−3 for mitigators were used as cutoff to determine a 

significant differential effect for each compound at each dose (Fig. 4A). Thirty-eight 

compounds were found to be enhancers with a scaled value of >3 in at least one compound 

concentration in the low-dose HA22 treatment and two compounds in the high-dose 

treatment (Fig. 4A,B, top Venn diagram). One compound was common between the low and 

high HA22 treatment, GB83, a protease activated receptor 2 (PAR2) antagonist (Fig. 4B, top 

Venn diagram). Twenty-two compounds were found to be HA22 mitigators in the high-dose 

treatment and 17 in the low-dose treatment (Fig. 4A,B, bottom Venn diagram). There was no 

overlap between the two sets of compounds (Fig 4B, bottom Venn diagram). Three 

compounds showed an enhancement effect of scaled value of >3 at more than three 

compound concentrations, which included osanetant, abiraterone (dose responses shown in 

Fig. 4C), and everolimus (dose responses shown in Fig. 3B). Also shown in Figure 4C are 

dose responses for GB-83, the one enhancer compound that is common between the high- 

and low-dose HA22 treatment; finally, the dose responses for rucaparib, as a representative 

of the PARP1 inhibitors that mitigate HA22 cytotoxic effects, are shown as well. Target 

enrichment analysis within the 39 compounds identified to be HA22 cytotoxicity enhancers 

by this method included ALK5 inhibitors (p = 0.01) and, nonsignificantly (p > 0.05), Ca2+ 

channel blockers, PLK1 inhibitors, BCL2 inhibitors, Met inhibitors, and EGFR inhibitors 

(Fig. 4D, top). There was some target enrichment within the 22 compounds found to be 

mitigators in the high-dose treatment, particularly to PARP1 (p = 0.0003) and, less 

significantly, to ATM kinase and PIK3AC inhibitors (Fig. 4D, bottom). Farnesoid X receptor 
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(FXR) antagonists were significantly enriched as mitigators in the low-dose HA22 treatment 

(p = 0.03) (Fig. 4D, bottom).

Figure 5A and Supplemental Figure S7 summarize the overlap between the lists of enhancer 

compounds selected by the different analysis methods described above, particularly 

comparing the scaled values for delta percent activity per dose versus the dose-response 

aggregate parameters. The 10 compounds identified using the delta MAXR method were all 

included in the 39 compounds identified by the delta percent activity per dose method. There 

was minimal overlap (only six compounds) between the 37 compounds identified using CCs 

and the 39 compounds identified by the delta percent activity per dose method. These six 

compounds were letrozole, an aromatase inhibitor; KN-62, a calmodulin-dependent protein 

kinase II inhibitor; SD-208, a TGF-bR1 (ALK5) inhibitor; vismodegib, a hedgehog 

antagonist; GB-83, a PAR2 antagonist; and FMK, a MAPKAP-K1 (RSK; p90Rsk) inhibitor. 

Four of the six enhancers identified using the fold change in AUC were included in the 39 

compounds identified by the delta percent viability per dose method, including everolimus, 

salinomycin, osanetant, and abiraterone. Finally, 16 compounds (Fig. 5A) were common 

enhancers of HA22 by both the ensemble and differences in percent viability at individual 

concentrations methods. The 16 compounds included everolimus, salinomycin, osanetant, 

and abiraterone, as well as niguldipine and SR33805, both calcium channel blockers.

One hundred unique HA22 enhancer compounds, including all the hits identified from the 

different scaled value >3 selection methods and the top 10% ranked from the ensemble 

ranking method, were retested using the same treatment conditions as in the primary screen, 

PBS, HA22 (low concentration), and HA22 (high concentration), in triplicate (data are 

included in supplemental material file qHTS data Excel spreadsheet in the tabs named “Hit 

Retest”). Supplemental Figure S8 shows that the correlation between the primary qHTS and 

the retest data at vehicle and each of the HA22 treatment conditions was reasonable, ranging 

from R2 = 0.56 to 0.73, depending on the activity parameter. The one exception is the 

MAXR at high-dose HA22, for which the R2 is 0.15, but this is to be expected because of 

the low signal due to decreased cell viability. Supplemental Figure S9 shows the scaled 

value plots for the differential activity using each of the parameters. Of the 100 compounds 

retested, 40 compounds confirmed as differentially active by at least one of the analysis 

methods used by the scaled value >3 criteria or the CC method (Table 1). ALK5, 

CACNA1S, and NOTCH1 were targets represented with more than one compound. A 

breakdown of the confirmed hits by each of the selection criteria in which the compounds 

were selected from was as follows: 4 of 20 by CC at high endotoxin, 2 of 21 by CC in low 

endotoxin, 9 of 10 by scaled value delta MAXR in low endotoxin, 2 of 10 by scaled value 

delta MAXR in high endotoxin, 3 of 6 by scaled value log fc AUC in low endotoxin, 0 of 1 

by scaled value log fc AUC in high endotoxin, 22 of 38 by scaled value log delta percent 

activity in at least one compound dose in low endotoxin, and 0 of 2 by scaled value log delta 

percent activity in at least one compound dose in high endotoxin. Of the 16 compounds that 

were common enhancers of HA22 by both the ensemble and differences in percent viability 

at individual concentrations methods, 10 reproduced (62% confirmation rate) with a scaled 

value delta mean percent viability >3 in at least one dose of compound tested and by the 

differential AUC, AC50, and MAXR (three confirmed by scaled value delta mean percent 

viability >3 and AUC and AC50, four confirmed by scaled value delta mean percent viability 
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>3 and MAXR, and three by scaled value delta mean percent viability >3) in either 

treatment condition, including everolimus, salinomycin, osanetant, niguldipine, ML 141, 

nilotinib, GSK-1904529A, GB-83, SANT-2, and SR-33805 (dose responses of triplicate 

retesting shown in Fig. 5B).

Discussion

Although many HTS approaches have been described for combination screening of 

compounds,25,26 the challenge remains screening for combinations of compounds (in 

DMSO solution) with biological reagents (in aqueous solution). Here we describe a high-

throughput synthetic lethal screening platform of small molecules in combination with a 

biological therapeutic and a data-processing framework that allows for the incorporation of 

both compound potency and efficacy to identify drugs that enhance or mitigate the effect of 

the biological therapeutic. The approach and analysis described here allow a protein drug (in 

this case an immunotoxin) to be screened with candidate small molecular weight chemical 

drugs. This is important because protein drugs are more fragile in handling and cannot 

always tolerate the same solvents used in a small-molecule HTS environment. In our 

synthetic lethal screening approach, compounds are screened in dose responses (46 μM to 

0.8 nM) instead of the traditional one-dose screening so that enhancing and mitigating 

cytotoxic effects on the activity of the protein drug can be determined by changes in both 

potency and efficacy. Selection of compounds with enhancing and mitigating cytotoxic 

effects from dose-response synthetic lethal screen results required development of a new 

data analysis framework that incorporated features of the dose responses such us IC50, 

percent viability at the maximum concentration of compound tested, and AUC.

In this study, we investigated four analytical approaches to quantify the differential activity 

of compounds in each treatment arm from dose-response qHTS data. Compounds defined as 

“obviously” differential by using CC classification appear to be mostly weak in potency and 

do not show to be significantly enriched for target classes represented in the compound 

collection tested. Our analysis shows that comparing compounds based on individual dose 

curve parameters may be intuitive (e.g., potency or efficacy shifts), but it is not always a 

reliable approach to characterize differential activity behavior, unless all possible 

confounding variables are controlled. For example, identifying differential potencies 

requires that efficacy and slope be more or less equivalent between the two treatments. The 

use of the parameter AUC is attractive choice because it captures the entire dose response in 

a single number and should provide a measure of both the potency and efficacy of the 

compounds. However, based on these individual methods, there were no common 

compounds identified to have a significant enhancing or mitigating differential effect, and 

the target enrichment for each method did not produce statistically significant enriched 

targets, except for PARP inhibitors as mitigators using the AUC parameter.

We considered an ensemble ranking analysis method that provides a nonparametric 

approach to ranking compounds using multiple parameters. Here, parameters are curve-fit 

parameters (e.g., log AC50 and AUC) or curve-derived parameters (e.g., MAXR). This 

ensemble method avoids having to choose a specific parameter a priori, as well as selecting 

arbitrary thresholds. The downside is that the final ranking may not match user expectations 
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since the rank of one parameter may offset the rank of another parameter in the final 

ensemble rank. Importantly, our analysis has shown that the rank method can be thrown off 

by curve parameters derived from poor-quality or nonsensical curve fits. As a result, we 

recommend that using the curve class as a filter to focus on good- to medium-quality curves 

leads to a more robust ranking analysis. We also note that although the AUC metric can be 

considered to “include” log AC50 and MAXR, inclusion of all three parameters in the 

ensemble rank is still meaningful. First, the maximum observed Pearson correlation (R2) 

between the three parameters was 0.13 across the various doses, and thus the parameters are 

largely orthogonal. Second, the AUC exhibits some degeneracy. Specifically, AUC cannot 

differentiate between a highly potent compound and a very toxic compound. Similarly, 

inactive compounds and compounds with poor potency can have similar AUC values. In the 

face of this degeneracy, we believe that inclusion of all three parameters in the ranking 

scheme is valid. We also explored the effect of individual parameters on the final ensemble 

rank, summarized in Supplemental Figure S10. Briefly, we generated the ensemble rank 

using log AC50, AUC, and MAXR. Then we computed a new ranking by excluding log 

AC50. This ranking was compared with the original by identifying the fraction of 

compounds in common between the rankings at a given percentage of the ranked list. For 

identical rankings, this results in a flat curve at Y = 1.0. Instead, Supplemental Figure S10 

shows that this is not the case. For example, if we consider the top 25% of the original 

ranked list, only 70% of those compounds from the original ranking occur in the ranking 

where MAXR is excluded. Yet if log AC50 is excluded instead, we observe 77% of the 

compounds from the original ranking occurring in the new ranking. This suggests that 

compared with the ensemble ranking using all three parameters, loss of MAXR is more 

detrimental than log AC50. The ensemble ranked method identified compounds that had a 

clear differential activity between treatments by manual inspection of the dose-response 

curves, and the compounds identified were significantly enriched for several target classes. 

Compared with the compounds identified using the various thresholding methods previously 

described, we observed some overlaps. For example, using the AUC fold change approach, 

we observed that the six enhancers identified in the low-dose setting were found in the top 

10% of the low-dose ranked list. But in contrast, if we considered the 10 enhancers 

identified using the shift in MAXR in the low-dose setting, none of them occur in the top 

10% of the corresponding ranked list, and in fact, only three occur, at relatively high ranks. 

This is mainly driven by the strict constraint employed in the ranking analysis that required a 

compound to have a good-quality curve in both treatment and control conditions. But in 

addition, thresholding approaches based in single parameters, by definition, ignore other 

characteristics of the curve that are explicitly taken into account by the ensemble rank 

method.

Finally, analyzing the data using differences in percent viability at individual concentrations 

of compounds tested produced about 40 compounds with significant differential activity in 

at least one concentration of compound, and overall there was significant enrichment for 

compounds targeting a few target classes. Although this approach is not fundamentally 

different from analyzing differences in percent viability from single-dose screening, by 

doing dose-response qHTS, we incorporate the fact that enhancer and mitigator effects are 

compound and compound dose dependent. In addition, this method does not need a 
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prerequisite for compounds with good-quality curves, because it does not use parameters 

obtained from dose-response curve fitting.

At the end, after retesting in triplicate 100 selected compounds from the primary qHTS, 40 

compounds were confirmed to be cytotoxic enhancers of HA22 by either of the analysis 

methods described, corresponding to a ~9% hit rate of the MIPE oncology collection (Table 

1). Ten of the 16 compounds were common enhancers of HA22 by both the ensemble and 

differences in percent viability at individual concentration methods that confirmed as 

actives. In our experience, this is a reasonable number of compounds to validate in further 

validation studies (unpublished data).

Does qHTS help in identifying differentially active compounds?

The preceding discussion has focused on the use of dose-response curves to identify 

differentially active compounds. Single-point screening is a common (and cheaper) 

paradigm for HTS, and we were also interested in investigating whether using dose-response 

screening data would allow us to identify differentially active molecules more robustly than 

single-dose screening. To evaluate how the compounds selected using a traditional single-

dose screening compared with a dose-response screen, we retrospectively selected hits that 

were differentially active at 5 and 15 μM of compound, which are concentrations close to 

those normally used in HTS. No compounds with HA22-enhancing cytotoxic activity met 

the scaled value delta percent viability of >3 at either compound concentration for the high-

dose HA22 treatment. Only eight and two compounds met the criteria of scaled value delta 

percent viability of >3 for the low-dose HA22 treatment at 5 μM and 15 μM concentrations, 

respectively, with no compounds overlapping between the two sets of compounds. Within 

the eight compounds selected at 5 μM, everolimus and osanetant, as well as (S)-(+)-

niguldipine and GB-83, represented the target classes of MTOR inhibitors, NK antagonists, 

Ca2+ channel blockers, and PAR1 antagonists, respectively. However, representatives of 

other target classes found using the qHTS method were missed, including ALK5 inhibitors 

and PLK1 inhibitors. The two compounds found at 15 μM were SR 33805, a Ca2+ channel 

antagonist, and ML 141, a Cdc42 GTPase inhibitor. A similar analysis was done looking for 

mitigators at 5 μM and 15 μM. In this case, there was good overlap between hits found at 5 

μM and 15 μM at each low- and high-dose HA22 treatment, but as seen with the qHTS dose 

analysis, there was no overlap between hits found at low- and high-dose HA22 treatment. 

The same eight compounds were found to mitigate the HA22 cytotoxic effect, and four of 

the PARP inhibitors were identified, as well as KU-0064, an ATM kinase inhibitor. Five 

compound mitigators were identified at 5 μM and 15 μM, with four overlapping between the 

two.

In conclusion, our multipronged analysis of dose-response HTS synthetic lethal data 

combined with target enrichment analysis enabled by the gene annotation and redundancy in 

our oncology collection highlights that the use of dose-response data provides more 

comprehensive functional results compared with single-point data. In addition, our results 

suggest that computed dose-response parameters such as CC, log IC50, and AUC might not 

individually be the best methods to identify hits from a synthetic lethal screen. Rather, the 

ensemble rank product approach represents a truly nonparametric approach that is 
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sufficiently flexible to take into account multiple curve-derived parameters. Finally, methods 

that analyze percent viability of individual compound doses can also provide a good 

sampling of activities within target classes and produce compounds with obvious 

differentially active compounds by manual inspection of the dose-response curves, and they 

do not required preselecting compounds with good-quality dose responses. Although the 

approaches and results described here lend themselves to automated analyses, we stress that 

manual inspection of curves is a key step in the analytic workflow.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Selection of compounds based on curve class (CC) analysis. (A) Correlation table of number 

of compounds in each CC for the synthetic lethal quantitative high-throughput screening 

(qHTS) for HA22 enhancers and mitigators. The higher the number of compounds in a CC 

correlation box, the darker the red color. Each CC bin includes both positive and negative 

curve classes. The “Other” bin includes CCs ±1.3, ±1.4, ±2.3, ±2.4, ±3, and 5. (B) Venn 

diagram of enhancer hits selected based on HA22-treated CCs −1.1, −2.1, −1.2, and −2.2 

and vehicle-treated CC 4 (top Venn diagrams), as well as mitigator hits selected based on 

HA22-treated CCs 1.1, 2.1, 1.2, and 2.2 and vehicle-treated CC 4 (bottom Venn diagrams). 

Red circles correspond to high HA22 dose treatment arm, and blue circles correspond to low 

HA22 dose treatment arm. (C) Dose responses of the four enhancer compounds that overlap 

between low and high HA22 dose treatment. Solid black circles are high-dose HA22 

treatment arm; open black circles are for the corresponding vehicle arm; solid red circles are 

low-dose HA22 treatment arm; open red circles are the corresponding vehicle arm. (D) Bar 

graph of the target classes enriched (−log p-value) for the 36 enhancer hits identified using 

the CC method. Complete list of hit compounds is included in supplemental material.
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Figure 2. 
Selection of compounds based on differential activity using parameters from the dose-

response curve fit analysis. (A) Scatterplot of scaled values of differential (delta) maximum 

response (% viability at the maximum dose tested) for each compound. (B) Scatterplot of 

scaled values delta logIC50 for each compound. (C) Scatterplot of scaled values log2 fold 

change (fc) AUC for each compound. (D) Venn diagrams of hits selected based on the 

different parameters. In all plots and diagrams, red circles correspond to high HA22 dose 

treatment arm and blue circles correspond to low HA22 dose treatment arm. (E) Bar graph 

of the target classes enriched (−log p-value) for the 36 enhancer hits identified using the 

different curve class parameters. Complete list of hit compounds is included in supplemental 

material.
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Figure 3. 
Selection of compounds based on the ensemble ranking method. (A) Venn diagram of top 

10% ranked enhancers (left Venn diagram) and mitigators (right Venn diagram) of HA22 

cytotoxic effects. Red circles correspond to high-dose HA22 treatment arm, and blue circles 

correspond to low-dose HA22 treatment arm. (B) Dose responses for three top-ranked 

compounds by ensemble ranking method for the high- and low-dose HA22 treatment. 

Everolimus and IKK16 were selected as hits in both dose treatments. Solid black circles are 

high-dose HA22 treatment arm; open black circles are for the corresponding vehicle arm; 
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solid red circles are low-dose HA22 treatment arm; open red circles are the corresponding 

vehicle arm. (C) Bar graph of the target classes enriched (−log p-value) for the 54 enhancer 

hits (top) and 56 mitigator hits (bottom) identified using the ensemble ranking method. 

Complete list of hit compounds is included in supplemental material.
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Figure 4. 
Selection of compounds based on per individual compound concentration analysis. (A) Line 

plot of scaled values difference (delta) percent viability at each dose of compound tested. 

Each line corresponds to a compound. Plot on the left (red) and plot of the right (blue) 

correspond to the high- and low-dose HA22 treatment, respectively. (B) Venn diagrams of 

selected enhancer hits with scaled values of delta percent viability >3 (top Venn diagram) 

and mitigator hits with scaled values of delta percent viability <−3 (bottom Venn diagram) 

for at least one dose of compound screened. (C) Dose responses for two compounds with 

scaled values of delta percent viability >3 at three compound concentrations, osanetant and 

abiraterone (everolimus also meets these criteria, and dose responses are shown in Fig. 3B); 

GB-83, the one enhancer compound that is common between the high- and low-dose HA22 

treatment using this selection method; and rucaparib, as a representative of the poly(ADP-

ribose) polymerase 1 (PARP1) inhibitors that mitigate HA22 cytotoxic effects. (D) Target 
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enrichment (−log p-value) for the 38 enhancers (top) and mitigators (bottom) selected by 

scaled values delta activity >3 (enhancers) or <−3 (mitigators) for at least one dose of 

compound screened. Complete list of hit compounds is included in supplemental material.
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Figure 5. 
(A) Venn diagram for enhancers of HA22 cytotoxic effect identified using the ensemble 

ranking method (purple) and by the scaled values delta percent activity per dose method 

(blue). (B) Dose responses for 10 of the 16 compounds that overlapped between the 

ensemble ranking and individual compound concentration analysis methods confirmed after 

retesting in triplicate. Blue, red, and black dose-response curves correspond to the 

phosphate-buffered saline (PBS), low HA22, and high HA22 treatment arms, respectively. 

Error bars correspond to SEM, n = 3.
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