Skip to main content
. 2020 Jul 14;34(2):306–311. doi: 10.5713/ajas.20.0293

Table 5.

Prediction equations for energy concentrations in diets and validation of equations1),2)

Equation No. n Equation3) RMSE R2 Intercept4) Slope5)


Value p-value Value p-value
18 232 DE = 965+0.72×GE−66.40×ADF 187 0.61 −13 (28) 0.646 −0.70 (0.11) <0.001
19 262 ME = 0.98×DE−4.22×CP 55 1.00 31 (4) <0.001 0.06 (0.02) 0.011
20 228 ME = 1,521+0.56×GE−65.30×ADF 184 0.59 21 (29) 0.470 −0.71 (0.11) <0.001
21 185 ME = 3,847+38.69×EE−67.24×ADF 181 0.57 41 (30) 0.174 −0.77 (0.11) <0.001
22 185 ME = 3,741+5.75×CP+39.84×EE−68.86×ADF 179 0.58 63 (29) 0.041 −0.76 (0.10) <0.001

RMSE, root mean square of error; DE, digestible energy; GE, gross energy; ADF, acid detergent fiber; ME, metabolizable energy; CP, crude protein; EE, ether extract.

1)

Thirty two in vivo data points were employed to validate prediction equations for energy concentrations in feed ingredients.

2)

Values in parentheses are standard error.

3)

Energy concentrations and chemical composition are expressed as kcal/kg dry matter and % dry matter, respectively.

4)

The intercept represents the mean bias.

5)

The slope represents the linear bias.