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Abstract

We introduce a model-based image reconstruction framework, where we use a deep convolution 

neural network (CNN) based regularization prior. We rely on a recursive algorithm, which 

alternates between a CNN based denoising step and enforcement of data consistency. Unrolling 

the recursive algorithm yields a deep network that is trained using backpropagation. The unique 

aspect of this method is the use of the same CNN weights at each iteration, which makes the 

resulting structure consistent with the model-based formulation. Also, this approach reduces the 

number of trainable parameters, which hence lower the amount of training data needed. The use of 

a forward model also reduces the size of the network and enables the exploitation additional prior 

information available from calibration data. The use of the framework for multichannel MRI 

reconstruction provides improved reconstructions, compared to other state-of-the-art methods.

Index Terms—

Deep learning; parallel imaging; convolutional neural network

1. INTRODUCTION

Model-based reconstruction is a powerful framework for solving a variety of inverse 

problems in imaging (e.g., MRI, deblurring). The general strategy is to model the 

measurement scheme numerically, followed by the minimization of a cost function involving 

the sum of a data consistency and the regularization prior. Carefully engineered priors 

including total variation [1], adaptive strategies [2], as well as priors learned from exemplary 

data [3, 4, 5] are widely used. Recently, plug-and-play priors were introduced as a means to 

harness the power of denoising methods such as block matching with transform-based 

denoising (BM3D) to regularize inverse problems [6].

Inspired by recent advances in deep learning, several researchers have recently proposed 

convolutional neural network (CNN) architectures for image recovery. A large majority of 

these schemes retrained existing architectures (e.g., UNET & ResNet) to recover images 

from measured data. Surprisingly, this approach yielded better results than pre-designed 

regularization priors, demonstrating the great potential of these methods. The above 

strategies rely on a single framework to invert the forward model and to exploit the extensive 

redundancy in the images. While the ability of such a network to learn the forward model is 

remarkable, it has some deficiencies compared to model-based frameworks. First of all, 

large networks with many hyperparameters (e.g., UNET) are often needed to learn the 
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complex inverse model, which requires extensive amounts of training data and significant 

computational power. Another challenge is that it is often difficult to use a framework 

trained for a specific image recovery problem to another one when there are differences in 

the acquisition setting (e.g., variations in coil sensitivities, B0 distortions, phase distortions). 

For example, most of the current deep learning based MRI recovery schemes [7, 8, 9, 10] are 

only demonstrated in the single coil setting.

The main focus of this work is to introduce a framework termed MOdel based reconstruction 
using Deep Learned priors (MoDL), which merges the power of deep learning with model-

based image recovery. Specifically, we propose to use a learned CNN architecture to capture 

the image redundancy as a plug-and-play prior. This approach enables the easy use of side 

information, often easily available with calibration data, while exploiting image redundancy 

using CNN. Since we make use of the available forward model, a low-complexity network 

with a significantly lower number of parameters is sufficient to obtain good recovery, 

compared to black-box image recovery strategies; this translates to faster training and 

requires less training data. More importantly, the network is decoupled from the specifics of 

the acquisition scheme and is only designed to exploit the redundancies in the image data. 

Hence, the trained network can be reused in a variety of settings, including different coil 

sensitivities, sampling patterns, and undersampling factors. The resulting framework can be 

viewed as a recursive network, where the basic building block is a combination of a data-

consistency term and a CNN; unrolling the recursive network in the single coil setting yields 

a linear network that has similarities to the one proposed by [7, 8]. However, the main 

difference of the proposed scheme is the use of the CNN with exactly the same weights at 

each iteration, unlike the setting in [7]; In addition to reducing the parameters, the weight 

reuse strategy yields a structure that is consistent with the model-based framework. More 

importantly, this approach facilitates its easy use with other regularization terms (e.g., 

SENSE constraints in parallel MRI acquisition). We demonstrate the utility of the 

framework in parallel MRI, where we use two regularization priors. The first CNN based 

prior is learned, while the second prior uses coil sensitivity information that is estimated 

from calibration scans. The comparison of the proposed framework with state-of-the-art 

methods demonstrates the benefits.

2. PROPOSED METHOD

We will first explain the plug-and-play CNN model in the single coil mode for simplicity, 

before generalizing it to the multi-coil setting. We formulate the reconstruction of the image 

x ∈ Cn as

x = arg min
x

Ax − b 2
2

data consistency
+ λ Nw(x) 2

regularization
(1)

Here, A = SF, where S is the sampling operator, and F is the Fourier transform. Nw is a 

learned CNN estimator of noise and alias patterns, which depends on the learned 

hyperparameters w. Note that Nw(x) 2 will be high when x is contaminated with noise and 

alias patterns. The minimization of (1) will yield a solution that is data consistent and is 

minimally contaminated by noise and alias patterns.
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Since Nw(x) is an estimate of the noise and alias terms, one may obtain the denoised 

estimate as

Dw(x) = ℐ − Nw (x) = x − Nw(x) . (2)

This reinterpretation shows that Dw can be viewed as a denoising residual learning network, 

which is a popular deep learning architecture. When Dw is a denoiser, Nw(x) = x − Dw(x) is 

the residual in x. With this interpretation, (1) can be rewritten as

x = arg min
x

‖Ax − b‖2
2 + λ x − Dw(x) 2

(3)

Note that the above formulation is very similar to the plug- and-play prior approach in [6]; 

the main difference is the denoiser is a deep CNN in our setting, whose weights and the 

regularization parameters are trained from exemplary data.

2.1. Iterative algorithm & Training

Since Nw(x) is a complex non-linear function of x, we propose to use the iterative strategy to 

solve (1), where we alternate between the following steps:

z[n] = Dw(x[n]) (4)

x[n + 1] = AHA + λI −1 AHb + λz[n] (5)

Here, x[n] denotes the solution at the nth iteration. The algorithm is initialized with z[0] = 0. 

Note that the above iterative process can be viewed as a cascaded network, which alternates 

between the data consistency update (5) and the CNN based denoising step (4). The outline 

of the iterative framework is shown in Fig. 1(a). This iterative form has similarities to the 

approaches of [7, 11]. However, unlike these works, we use the same denoising Dw operator 

at each iteration. Since the denoiser and variation priors change from iteration to iteration in 

[7] and [11], these schemes cannot be viewed as an iterative algorithm to minimize (1).

Once the number of iterations is fixed, the update rules can be viewed as an unrolled deep 

linear CNN, as shown in Fig. 1(b), whose weights at different iterations are shared. During 

the training phase, we update the network parameters specified by w as well as the 

regularization parameter λ using the ADAM optimization strategy. Note that the data 

consistency term specified by (5), and hence its gradient, can be computed analytically in the 

Fourier domain. This allows the computation of the weight gradients using backpropagation. 

To make the learned network insensitive to changes in acquisition scheme, we use training 

data with different undersampling patterns.

2.2. Parallel MRI reconstruction

As discussed previously, the main benefit of the model-based approach is the ease in 

adapting the framework to general image recovery problems. We will now demonstrate the 

utility of the proposed framework in recovering parallel MRI data. Specifically, we assume 
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that the data is acquired using M coils, whose coil sensitivities are specified by ci i = 1, … , 

M. In this work, we assume that the coil sensitivities are estimated from pre-acquired 

calibration data. We consider the joint recovery of xi i = 1, … , M from the undersampled 

measurements bi = Axi We observe that the different coil sensitivity weighted images are 

restricted to a constraint space

C:xi = ci ⋅ x; ∀i = 1, …, M (6)

where the · operation indicates point by point multiplication of the vectors and x is the coil 

combined image to be reconstructed. The projection of xi i = 1, … , M to the above 

constraint space is specified by

PC xi =
ci* ⋅ xi

∑i = 1
M ci

2 ; ∀i = 1, …, M (7)

We thus pose the joint recovery of the M coil sensitivity weighted images as a minimization 

problem, involving the cost function

ℒ = ∑
i = 1

M
‖Axi − bi‖2

2 + λ1‖Nw xi ‖2 + λ2‖xi − PC xi ‖2

Note that the first two terms are separable in xi, while the last term enforces the constraint C
specified by (6); the constraint will be exactly satisfied as λ2 → ∞. We minimize the above 

cost function by alternating between the following steps

zi[n] = Dw xi[n] ,

yi[n] = PC zi[n] ,

αi[n] = λ1zi[n] + λ2yi[n],

xi[n + 1] = AHA + λI −1 AHbi + αi[n]

for all i = 1, … , M. Here λ = λ1 + λ2. As with the single channel setting, we set the 

regularization parameters λ1 and λ2 as trainable. We note that the denoising network is the 

same for all the channels and all the iterations. Since the weights in the unrolled network are 

all shared, the number of trainable hyperparameters in the multicoil setting is just one more 

than the single coil setting. The outline of the iterative framework is shown in Fig. 2.
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3. EXPERIMENTS AND RESULTS

For validation, MRI data was acquired using a 3D T2 CUBE sequence with Cartesian 

readouts using a 16-channel head coil. The matrix dimensions were 256 × 256 × 208 

locations with 1 mm isotropic resolution. Fully sampled multi-channel brain images of five 

volunteers were collected. We evaluated the inverse Fourier transform of each readout. Out 

of the 208 slices, we selected around 90 slices that had reliable information for training. 

Principal component analysis (PCA) based dimensionality reduction was applied to reduce 

the number of channels from 16 to 4. The coil sensitivity maps were estimated from the 

central k-space regions of each slice. A total of 380 slices from five subjects were randomly 

permuted, out of which 300 were used for training the MoDL and the remaining 80 were 

used during testing.

We used a five-layer model with 64 filters at each layer to implement Nw. Each layer 

consists of convolution (conv) followed by batch normalization (BN) and a non-linear 

activation function ReLU (rectified linear unit, f(x) = max(0, x)). The proposed recursive 

model was unrolled assuming 7 iterations and implemented in TensorFlow. Since MR 

images are complex, the network was trained to recover a tensor of size 256 × 256 × 2 from 

an input of similar size. The third dimension here corresponds to real and imaginary parts of 

the images. At each 2D convolution, 64 filters of size 3 × 3 were learned. The analytical 

form of the data-consistency (DC) update enabled us to implement it as a separate layer, 

which facilitated the evaluation of the analytical gradients for backpropagation. The training 

was first performed in the single coil mode; the weights from this training were used to 

initialize the model in the multi-coil model, which facilitated faster training. The coil-

independent model (MoDL-CI) was trained for 1000 epochs using a batch size of 2 for seven 

hours using an NVIDIA Tesla P100 accelerator card. The coil-combined model (MoDL-CC) 

was initialized with MoDL-CI and then further trained for 50 epochs within two hours.

Figure 3 shows results obtained from different techniques on a four-fold accelerated data 

acquisition in the presence of Gaussian noise of σ = 0.01. The reconstruction using coil-

independent model followed by coil combination using coil sensitivity maps (MoDL-CI) and 

the reconstruction where all four coil data were simultaneously fed into the network (MoDL-

CC) are shown in the figure. For comparison, a SENSE multichannel reconstruction with 

Tikhonov regularization and a compressed sensing reconstruction using total variation [1] 

and a wavelet-based sparsity prior are also provided.

Figure 4 shows the reconstruction results using the proposed MoDL-CC technique at higher 

acceleration factors of six and ten. Table 1 shows the result of applying the trained MoDL-

CC on a testing data that was 16-fold accelerated with noise of standard deviation σ = 0.03. 

All the reconstructions in Table 1 were performed using a network trained for 16 fold 

acceleration. It is evident from the results that the model based framework allows us to use a 

single trained network for different acceleration factors and different noise levels with 

minimal degradation in performance.
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4. CONCLUSIONS

In this article, we proposed a model-based approach for image reconstruction using a deep 

learned prior. With a fixed number of iterations, the MoDL framework can be unrolled as a 

deep architecture. We use on weight sharing across the CNN networks, thus making it 

consistent to the model-based framework, and reducing the number of learned parameters; 

this strategy reduces both the computation time and the amount of training data required. 

The extended model for parallel imaging has only one extra parameter corresponding to 

SENSE prior. Experimentally it was found that the learned model is robust to different 

undersampling ratio and amount of noise. Further, it was observed that increasing the 

number of iterations of the network helps in better reconstruction.
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Fig. 1: 
MoDL-CI: Proposed deep learning prior based iterative model architecture for coil-

independent (CI) parallel MR image reconstruction. (a) shows the recursive structure, which 

alternates between the denoiser Dw and the data-consistency (DC) layer. (b) is the unrolled 

architecture, where the same network parameters are used consistently for the denoisers at 

all iterations. The parameters of the network, Dw, are the same for all the M channels.
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Fig. 2: 
MoDL-CC: extension of the MoDL architecture by incorporating coil-combine (CC) step for 

parallel MR image recovery. The recursive approach alternates between denoiser Di, 

projection to coil sensitivity constraints denoted by Pi, and data-consistency layer.
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Fig. 3: 
Comparison of proposed MoDL reconstruction with existing techniques for four-fold 

accelerated case with random noise of σ = 0.01 added in k-space. The numbers in caption 

represent PSNR in dB.
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Fig. 4: 
The results obtained by proposed MoDL-CC on 6-fold and 10-fold acceleration in the 

presence of random noise with σ = 0.01. The numbers in caption represent PSNR.
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Table 1:

The average PSNR (dB) values for 80 images obtained using the proposed MoDL-CC for different 

acceleration factors and noise standard deviation.

Noise (σ) 6-fold 10-fold 16-fold 20-fold

0.00 31.03 31.34 31.04 30.49

0.01 30.97 31.3 31.02 30.46

0.03 30.4 30.89 30.71 30.24

0.05 28.84 29.61 29.88 29.48
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