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Abstract

Objectives: The objective of this study is to increase the spatial and temporal resolution of 

dynamic 3D MR imaging of lung volumes and diaphragm motion. To achieve this goal, we 

evaluate the utility of the proposed blind compressed sensing (BCS) algorithm to recover data 

from highly undersampled measurements.

Materials and Methods: We evaluated the performance of the BCS scheme to recover dynamic 

datasets from retrospectively and prospectively undersampled measurements. We also compared 

its performance against view-sharing, nuclear norm minimization, and l1 Fourier sparsity 

regularization schemes. Quantitative experiments were performed on a healthy subject using a 

fully sampled 2D dataset with uniform radial sampling, which was retrospectively undersampled 

with 16 radial spokes per frame to correspond to an undersampling factor of 8. The images 

obtained from the four reconstruction schemes were compared to the fully sampled data using 

mean square error (MSE) and normalized high frequency (HFEN) error metrics. The schemes 

were also compared using prospective 3D data acquired on a Siemens 3T TIM TRIO MRI scanner 

on 8 healthy subjects during free breathing. Two expert cardiothoracic radiologists (R1 and R2) 

qualitatively evaluated the reconstructed 3D datasets using a five-point scale (0–4) on the basis of 

spatial resolution, temporal resolution and presence of aliasing artifacts.

Results: The BCS scheme gives better reconstructions (MSE =0.0232 and HFEN =0.133) than 

other schemes in the 2D retrospective undersampling experiments, producing minimally distorted 

reconstructions up to an acceleration factor of 8 (16 radial spokes per frame). The prospective 3D 

experiments show that the BCS scheme provides visually improved reconstructions than other 

schemes. The BCS scheme provides improved qualitative scores over nuclear norm and l1 Fourier 

sparsity regularization schemes in the temporal blurring and spatial blurring categories. The 

qualitative scores for aliasing artifacts in the images reconstructed by nuclear norm scheme and 

BCS scheme are comparable.
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The comparisons of the tidal volume changes also show that the BCS scheme has less temporal 

blurring as compared to the nuclear norm minimization scheme and the l1 Fourier sparsity 

regularization scheme. The minute ventilation estimated by BCS for tidal breathing in supine 

position (4L/min) and the measured supine inspiratory capacity (1.5L) is in good correlation with 

the literature. The improved performance of BCS can be explained by its ability to efficiently 

adapt to the data, thus providing a richer representation of the signal.

Conclusion: The feasibility of the BCS scheme was demonstrated for dynamic 3D free 

breathing MRI of lung volumes and diaphragm motion. A temporal resolution of ~500ms, spatial 

resolution of 2.7 × 2.7 × 10mm3 with whole lung coverage (16 slices) was achieved using the BCS 

scheme.
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INTRODUCTION

Dynamic imaging of respiratory mechanics plays an important role in the diagnosis of 

abnormalities to the active and passive components involved in respiratory pumping, 

including diaphragm paresis or paralysis, abnormal chest wall mechanics, and muscle 

weakness, which are a result of neuromuscular, pulmonary, or obesity related disorders1,2. 

Clinically, these impaired respiratory mechanics are evaluated indirectly by respiratory 

inductive plethysmography, spirometry or magnetometer3. While these schemes can be 

collected with very high temporal resolution, they lack spatial information and hence can 

only detect global changes which occur only during the advanced stages of the disease4. 

Early detection and localization of the disease is very crucial for treatment planning.

Magnetic resonance imaging is gaining popularity over the above techniques because it 

provides a non-invasive and direct visualization of dynamic changes in diaphragm and chest 

wall5–8 positions, without exposure to ionizing radiation. The evaluation of dynamic 

changes in lung volumes and diaphragm movement requires high spatial and temporal 

resolution, plus high volume coverage to cover the entire thorax. Achieving entire volume 

coverage is especially challenging in obese subjects who are at a high risk for impaired 

diaphragm movement. The respiratory rate during tidal breathing is 12–16 cycles per min 

(~5 sec per cycle), while the normal respiratory excursion of the diaphragmatic dome is 

about 1.5 cm9. The speed of the diaphragm is about 0.3 cm/sec. Thus considering a pixel 

size of 3 × 3 mm, the diaphragm position changes at a rate of 1 pixel/sec. To avoid motion-

blurring, imaging time should be much shorter than 1 sec. While 2D imaging techniques can 

offer high temporal resolution, it is challenging to merge the information from multiple 2D 

slices for 3D visualization of the diaphragmatic dome and volume measurements because of 

the irregular nature of respiratory motion in most subjects.

Research has shown that three dimensional dynamic MRI (3D-DMRI) is a more suitable 

option to analyze respiratory mechanics7,10,11 and is reported to have higher correlation with 

spirometry measurements than 2D-DMRI12. However, current 3D-DMRI implementations 

offer limited temporal/spatial resolution and volume coverage. While improved resolution 
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and coverage may be achieved by acquiring 3D volumes at multiple breath-holds, this 

approach does not provide good estimates of respiratory dynamics or account for the 

hysteresis effect that the lung exhibits during normal breathing1,7,9. Furthermore, subjects 

with chronic obstructive pulmonary disease (COPD) have difficulty holding their breath 

making motion analysis difficult. Fast imaging techniques were introduced for 3D 

DMRI12–14 but current schemes still compromise on either spatial resolution or the temporal 

resolution. For example, echo-planar imaging (EPI) based sequences provide a temporal 

resolution of 330ms/frame, but can only achieve low spatial resolution14 and partial lung 

coverage. Similarly, 3D fast low-angle shot (FLASH) sequences with Cartesian 

undersampling, view-sharing, and parallel imaging was used to obtain whole lung 

coverage12, at the expense of a poor temporal resolution of 1 second; these schemes can only 

be used to image the dynamics during slow and controlled breathing conditions, which limits 

the flexibility of experimental paradigms. More recently, higher spatiotemporal resolution 

was reported using a 128 channel coil array15 with a Cartesian 3D-FLASH sequence and 

auto-calibrated parallel acquisition (GRAPPA)16. However, these custom-made 128 channel 

coils are not widely available which restricts the widespread utility of this scheme.

The main focus of this work is to evaluate the feasibility of blind compressed sensing (BCS) 

scheme, coupled with 3D stack of stars based golden angle radial trajectories, to enable the 

dynamic imaging of lung volumes and the diaphragm, with full coverage of the thorax, at the 

spatial and temporal resolution needed to image tidal breathing. We compare the BCS 

scheme against other state of the art compressed sensing schemes that model the voxel 

profiles such as nuclear minimization based low rank reconstruction, l1 Fourier sparsity 

based regularization19–22 and the commonly used view-sharing reconstruction. We have two 

expert radiologists quantitatively score the reconstructions from all the schemes on a four-

point scale to assess the diagnostic image quality.

MATERIALS AND METHODS

Image Acquisition

The institutional review board at the local institution approved all the in-vivo acquisitions. 

All the volunteers were fully informed of the nature of the procedure and written consent 

was obtained. The subjects were scanned on the Siemens 3T Trio scanner (Siemens AG, 

Healthcare sector, Erlangen, Germany) with a 32-channel body array coil.

Retrospectively undersampled 2D acquisition: A fully sampled 2D dynamic dataset was 

collected on a normal subject using a gradient recalled echo (GRE) sequence with uniform 

radial sampling pattern. The sequence parameters were FOV: 350 × 350mm2, slice 

thickness: 10mm, TR/TE: 2.67/1.17ms, and matrix size: 128 × 128. The spatial resolution 

was 2.7 × 2.7 × 10mm3. 180 frames were acquired with 256 radial spokes per frame, which 

resulted in a temporal resolution of 683ms.

Prospective 3D acquisition: 8 healthy volunteers (5 males and 3 females; median age: 28) 

without any evidence of pulmonary disease were included in this study. The 3D dynamic 

data was collected using a FLASH sequence with a 3D radial stack of stars trajectory. The 

3D acquisition uses a golden angle radial trajectory in the axial plane (kx, ky) combined with 
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a conventional phase encoding step in the kz direction. The radial spokes were separated by 

the golden angle (111.25°) to achieve incoherent sampling. The sequence parameters for 6 

of the 8 datasets are: FOV= 350×350mm2, TR/TE= 2.37ms/0.92ms, partial Fourier factor: 

6/8, base matrix size: 128×128, and spatial resolution: 2.7×2.7×10mm3. A total of 3500 

radial spokes were acquired per slice and a total of 16 slices were acquired to obtain whole 

lung coverage. The data was binned by considering 16 radial spokes per frame resulting in a 

temporal resolution of 492.96 ms/frame. The coil sensitivity profiles were estimated using 

an Eigen decomposition method23. The 7th dataset was acquired with a larger FOV: 

400×400mm2 that resulted in slightly lower spatial resolution of 3.1×3.1×10mm3. All the 

other scan parameters were the same as previous acquisitions. Two datasets were collected 

from the 8th subject, one while free breathing and one while breathing from functional 

residual capacity (FRC) to total lung capacity (TLC). The scan parameters for these two 

datasets were FOV= 350×350mm2, TR/TE= 2.37ms/0.92ms, base matrix size: 128×128, 

spatial resolution: 2.7×2.7×10mm3. A total of 18 slices were acquired with 3500 radial 

spokes per slice. 16 radial spokes were binned for each frame, which gave a temporal 

resolution of 683 ms for these two datasets. The scan time for each of these datasets was less 

than 2 min.

Image Reconstruction

In this work, we pre-interpolated the radial data points on a Cartesian grid points that were 

within 0.5 unit of the measured sample using linear interpolation. A similar pre-interpolation 

step is used in constrained reconstruction algorithms for other body part applications18,19,24. 

The pre-interpolation was done for all the schemes. This enabled us to use fast Fourier 

transforms (FFTs) and inverse FFTs in the forward and backward models of the algorithm. 

There was no noticeable change in the quality of reconstructions obtained from pre-

interpolated data as compared to the ones obtained from non-Cartesian data with non-

uniform data with non-uniform FFTs (NUFFTs) and INUFFTs.

Signal representation—The goal of the reconstruction schemes is to recover the 

dynamic dataset Γ from its undersampled measurements. Here, Γ is an M × N Casorati 

matrix, where M is number of voxels in a single time frame and N is number of time frames. 

In other words, the columns of Γ represent the signal at every voxel. The measurements are 

modeled as follows:

bi = Ai(Γ) + ni ; i = 1, ⋯, N (1)

where bi is the undersampled measurement and ni is the noise for the ith time frame. 

Ai = SiFC, where Si is the undersampling mask, F is Fourier operator and C are the coil 

sensitivities. The least squares reconstruction problem can be posed as:

Γ* = argminΓ A(Γ) − b F
2

Dataconsistencyterm
(2)
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The compressed sensing schemes considered in this paper enforce different priors on the 

temporal profiles of the data to make the problem well posed. We discuss each of the 

schemes in detail below.

• Low-rank recovery using nuclear norm minimization20–22: This scheme assumes 

that the temporal profiles of pixels lie in a low dimensional space. Fig. 1.a 

reveals the low rank structure of the data where the singular values rapidly decay 

to zero. The problem is formulated as a convex optimization problem given 

below:

Γ* = argminΓ A(Γ) − b F
2

Dataconsistencyterm
+ λ Γ *

Nuclearnorm
(3)

where λ is the regularization parameter. The nuclear norm, which is a convex 

relaxation of the matrix rank, is defined as Γ * = ∑i = 1
min M, N σi, where σi are 

the singular values of Γ. The nuclear norm minimization scheme can be viewed 

as a direct alternative to classical two step low rank25 schemes, which pre-learn 

the temporal basis functions from navigator data and use these functions to 

estimate the basis images.

• l1 Fourier sparsity regularization: This scheme exploits the sparsity of the data in 

the Fourier transform domain along the temporal dimension (x-f space) (see Fig. 

1.b). The convex optimization problem is formulated as:

Γ* = argminΓ A(Γ) − b F
2

dataconsistencyterm
+ λ ℱt(Γ) l1

temporal Fourier sparsity 
(4)

where ℱt is the Fourier transform in the temporal direction. The l1 norm in the 

second term enforces sparsity on the Fourier coefficients along the temporal 

dimension. This approach is a widely used scheme and has similarities to k-t 

SPARSE26,27 and k-t FOCUSS28,29 schemes, while the specific algorithms used 

to solve them are different from our implementation. The recovery implicitly 

assumes that the intensity profiles of the voxels are sparse linear combinations of 

Fourier exponentials.

• Blind compressed sensing (BCS)17,18 : The temporal profile for each pixel is 

modeled as a sparse linear combination of a atoms from a learned dictionary. 

Since the dictionary that is learned from the undersampled measurements is 

subject specific, not necessarily orthogonal and may be over-complete, it 

provides a richer representation of the data. The sparsity enforced on the 

dictionary coefficients suggests that very few temporal basis functions are 

sufficient to model the temporal profiles at any pixel. This results in lower 

degrees of freedom and hence minimizes artifacts at high acceleration factors. 

The data Γ is modeled as a product of the sparse coefficient matrix U and 

dictionary V. The signal recovery from undersampled measurements is posed as 

a constrained optimization algorithm as shown below:
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U*, V* = argminU,V A(UV) − b F
2

dataconsistencyterm
+ λ U l1

Sparsityon
spatialweights

sucℎtℎat V

F

2 < 1
(5)

The second term is the sparsity promoting l1 norm on the coefficient matrix U. 

The optimization problem is constrained by imposing unit Frobenius norm on the 

over-complete dictionary V, which makes the recovery problem well posed and 

avoids scale ambiguity issues. Our experiments18 show that the joint estimation 

of the basis functions and its coefficients from a golden angle radial trajectory is 

well-posed, thanks to the oversampling of center of k-space offered by radial 

trajectories.

• View-sharing: In this scheme, each frame of the dataset is reconstructed by 

combining information from a few adjacent frames. For this study we combined 

200 radial spokes to reconstruct each frame with a step size of 16 to match the 

temporal resolution with other reconstruction schemes.

Implementation of constrained algorithms—All the above constrained algorithms are 

implemented using alternating minimization algorithms; these schemes alternate between (a) 
a backward mapping from k-space to image space to enforce data consistency, and (b) a 

projection step, which is a shrinkage or projection operator. These algorithms are guaranteed 

to converge to the global minimum of the cost function, provided it is convex (nuclear norm 

and Fourier sparsity regularization, specified by (1) and (2), respectively). Due to non-linear 

nature of the above algorithms, coupled with a non-uniform k-space sampling, it is complex 

to analyze the spatial and temporal smoothing behavior of the algorithms. However, the 

projection step provides useful insights on how each of these schemes removes the aliasing 

patterns that results from the undersampling. We perform a brief analysis of the constrained 

algorithms to obtain more insights of the tradeoffs involved in accelerating using these 

schemes in the appendix A.

The discussion in appendix A shows constrained schemes that model the temporal profiles 

reduce aliasing artifacts by non-local view-sharing. Specifically, they recover each pixel in 

the dataset as a weighted linear combination of other pixels in the dataset, possibly distant 

from it in time. Note that this approach is drastically different from classical view-sharing 

schemes that combine the data from nearby frames to recover each frame; we term such 

classical view-sharing schemes as local to differentiate them from the non-local ones 

discussed above. Non-local averaging combines information from images in similar 

respiratory phases that are distant in time thus minimizing the temporal blurring introduced 

by local view-sharing schemes, while achieving good suppression of noise-like aliasing 

artifacts. The analysis shows that the BCS and l1 Fourier sparsity regularization schemes 

perform spatially varying non-local view-sharing, while the nuclear norm minimization 

scheme performs space invariant non-local view-sharing. The adaptation of the view-sharing 

strategy with the spatial location enables BCS and l1 Fourier sparsity regularization to 

achieve improved denoising performance.
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Experiment details—The fully sampled dataset (acquired with 256 radial spokes) was 

retrospectively undersampled using 16 radial spokes per frame, corresponding to an 

acceleration factor of 8. This retrospectively undersampled dataset was reconstructed with 

the above mentioned nuclear norm minimization scheme, l1 Fourier sparsity regularization 

scheme, BCS, and standard view-sharing scheme. The reconstructed data was compared to 

the fully sampled acquisition. To study the performance of the BCS scheme as a function of 

acceleration, the 2D dataset undersampled using 20, 16, 12 and 10 radial spokes 

corresponding to acceleration factors of 6.4, 8, 10.2 and 12.8, respectively, was 

reconstructed using the BCS scheme. The slice-by-slice reconstruction was performed for all 

the 3D DMRI datasets using the above-mentioned schemes. All the reconstructions were 

performed in MATLAB on a desktop computer (Intel Xeon E5–1620 with 8 core CPUs, 

3.6GHz processor and 32 GB RAM) with a 5.6 GB NVDIA graphical processing unit 

(GPU).

Image Quality Analysis

To compare reconstructions, we used the following metrics:

• Mean square error (MSE):

In the 2D experiments, the fully sampled ground truth data was used as reference 

to calculate the reconstruction errors. The optimal regularization parameter λ 
was chosen such that the error between reconstructions and the fully sampled 

data specified by

MSE =
Γrecon  − Γorig  F

2

Γorig  F
2 (6)

was minimized. However, the MSE metric could not be used for the 3D 

experiments, as the fully sampled ground truth was not available. Hence to 

optimize for λ, we used the L-curve strategy30.

• Normalized high frequency error metric (HFEN):

The HFEN metric31 gives a measure of spatial blurring of the image and the 

quality of fine features and edges. The HFEN metric is defined as:

HFEN = 1
N ∑i = 1

N LoG Γref, i − LoG Γrecon, i 2
2

LoG Γref, i 2
2 (7)

where N is the number of pixels in the image and LoG is the Laplacian of the 

Gaussian filter that captures edges. The filter specifications are: kernel size 

15×15 pixels, with a standard deviation of 1.5 pixels31. The regularization 

parameters for all the schemes were optimized using the HFEN and MSE values 

in case of 2D experiments.

• Qualitative evaluation: clinical scoring
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Each of the 3D dynamic reconstructions was evaluated for spatial resolution, 

temporal resolution and artifacts by two expert cardiothoracic radiologists using 

a four-point scale (4-Outstanding Diagnostic Quality, 3- Good Diagnostic 

Quality, 2- Average Diagnostic Quality, 1- Limited Diagnostic Quality and 0- un-

interpretable). The image data sets were viewed using OsiriX.

Image post-processing to demonstrate the utility of 3-D DMRI

To demonstrate the potential applications of this work, the lung was segmented using a 

region-growing algorithm implemented in MATLAB after reconstructing the 3D dynamic 

data using the BCS scheme, the nuclear norm minimization scheme and the l1 Fourier 

sparsity regularization scheme. This analysis was done for the dataset collected with the tidal 

breathing maneuver on subject 8. The analysis was repeated for the same subject with deep 

breathing maneuver using the BCS reconstructed data. The lung volume was calculated in 

terms of the number of pixels within the lung region. The velocity maps of the diaphragm 

were obtained using optical flow method32, which was implemented using a multi-scale 

approach.

RESULTS

Dynamic 2D experiments: The performance of all the schemes was first evaluated by 

retrospectively undersampling a 2D fully sampled dataset. Fig. 2 shows a spatial frame from 

the dynamic 2D dataset (top row), the corresponding error images (middle row), and the 

time profile at a cross-section shown by the yellow line in spatial frame (last row). The 

columns correspond to the fully sampled dataset (first column) and the different 

reconstructions from retrospectively undersampled data. All the comparisons were done at 

an undersampling factor of 8 (using 16 radial spokes per frame). We observe that the 

reconstructions from the nuclear norm minimization and l1 Fourier sparsity regularization 

schemes suffer from spatio-temporal blurring, especially along the diaphragm borders, as 

indicated by the arrows in the error images. The local view-sharing scheme combines 

information from adjacent frames (13 adjacent frames were combined for reconstruction of 

each frame), which results in significant blurring of the respiratory motion as seen from the 

time profiles. The BCS scheme has the lowest MSE errors (0.0232) and HFEN values 

(0.133), which indicates superior reconstruction and less spatiotemporal blurring as 

compared to the other schemes.

Fig. 3 shows the comparisons of the reconstructions from 20, 16, 12 and 10 radial spokes per 

frame with the fully sampled data. We observe that BCS gives reliable reconstructions with 

20 and 16 radial spokes per frame. A reconstruction from 12 or 10 radial spokes results in 

temporal blurring as shown by the arrows. In the 3D experiments, we fixed the number of 

radial spokes per frame to 16 for all the schemes.

Dynamic 3D experiments: Fig. 4 shows the comparisons of the four schemes for two 

subjects. The figures show a single frame and a time profile along the cross section for 4 of 

the 16 slices. We observe that the local view-sharing scheme suffers from temporal blurring 

and aliasing artifacts. The nuclear norm minimization scheme provides better 

reconstructions than view-sharing, but it exhibits more spatio-temporal blurring than the 
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BCS reconstructions as shown by the arrows. Reconstructions from both the l1 Fourier 

sparsity regularization scheme and the BCS scheme show comparable image quality in the 

spatial domain as seen from the spatial frames in both the figures. However, the l1 Fourier 

sparsity regularization scheme results in higher temporal blurring than BCS. In slices where 

the tissue motion is very subtle (slice 6 in Fig. 4), BCS preserves the motion whereas all 

other schemes result in blurring of temporal details. One of the radiologists carefully 

analyzed the performance of all the schemes as a function of slice position while clinical 

scoring as shown in Fig. 5 and found that, the performance of the BCS scheme was 

relatively insensitive to the slice position compared to other schemes. Specifically, the 

reconstructions of the anterior and posterior slices of the lung (2nd and the 3rd column of 

Fig. 5), obtained by the other schemes, showed higher degradation in image quality than the 

more central slices (1st column of Fig. 5) especially in terms of spatial and temporal blurring 

(pointed by arrows).

Table 1 shows the visual scores of all the four schemes by both the radiologists (denoted as 

R1 and R2) based on three different factors: 1.a - Aliasing artifacts, 1.b - Temporal blurring 

and 1.c - Spatial blurring. The scores from both the radiologists suggest that the BCS 

scheme performs better than other schemes in the temporal blurring (Table 1.b) and spatial 

blurring (Table 1.c) categories. The improved performance of BCS can be attributed to the 

spatially varying non-local averaging feature and its ability to adapt to the cardiac and 

respiratory patterns of the specific subject. The qualitative scores for aliasing artifacts are 

roughly the same for nuclear norm minimization scheme (3.75±0.7, 2.62±1.19) and BCS 

scheme (and 3.62±0.51, 2.62±0.91); the two figures within parentheses denote the mean 

scores from R1 and R2, respectively, and the number following ± is the standard deviation. 

We observe that the inter-observer variability is high for this category compared to the 

others. The scores for the view-sharing scheme are much lower than other three schemes for 

all the three categories from both radiologists. In summary, the BCS scheme, the nuclear 

norm minimization scheme and the l1 Fourier sparsity regularization scheme perform 

comparably in terms of minimizing the aliasing artifacts. However, BCS scheme out-

performs all other schemes in terms of minimizing spatiotemporal blurring as compared to 

the other schemes.

Fig. 6 shows the lung volume as a function of time and the lung segmentation contours for 

the BCS, nuclear norm minimization and l1 Fourier sparsity regularization schemes on one 

subject with tidal breathing maneuver. The change in lung volume for BCS (approximately 

200 mL) was significantly different from that for the nuclear norm minimization scheme 

(around 150 mL) and l1 Fourier sparsity regularization scheme (<100 mL). The contours 

depict the boundary of the lung obtained from the segmentation of the reconstructions. The 

two time points (a and b) in the figure correspond to maximum inspiratory volume. From the 

contours, we observe that at maximum inspiration the boundary of the lung for nuclear norm 

minimization and l1 Fourier sparsity regularization scheme is higher than that for the BCS 

scheme, which means the volume of the lung is less than that for the BCS scheme. This is 

attributed to higher temporal blurring in the other two schemes as compared to the BCS 

scheme. The time point c corresponds to maximum expiration. From the last row in the 

figure we observe that the segmentations from all the three schemes are the same. The tidal 

volume analysis could not be performed on the view-sharing scheme since the 
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reconstructions in this case suffered from aliasing artifacts, which resulted in poor 

segmentation of the lungs.

Fig. 7 shows the change in volume as a function of time and the segmented lung volumes for 

one subject with tidal breathing and deep breathing maneuvers. The lung was segmented 

from the reconstructions obtained using the BCS scheme. The change in lung volume was 

approximately 200mL. The normal minute ventilation was calculated as tidal volume × 

number of breathing cycles in a minute which was found to be 4L/min. In case of deep 

breathing maneuver we measured the supine inspiratory capacity, which was found to be 

1.5L. This correlates well with the literature for normal subjects in the supine position.

The motion of the diaphragm as tracked using an optical flow method is shown in Fig. 8. 

Two sets of two frames each, one set with a large change in diaphragm position (red segment 

and blue segment) and one with little change in diaphragm position (green segment and 

orange segment) were chosen during inspiration and expiration. The velocity vector maps 

and the color-coded velocity maps are shown in each of the cases. Fig. 8.a–b shows the 

velocity maps during inspiration and Fig. 8.c–d shows the velocity maps during expiration. 

From the color-coded velocity maps we observe that a higher displacement in the diaphragm 

position (higher diaphragm velocity) correlates well with the observed change in lung 

volume between the corresponding frames during both inspiration and expiration.

DISCUSSION

The application of compressed sensing together with parallel imaging to accelerate 3D 

dynamic imaging of lung volumes and diaphragm motion has not been studied extensively in 

the past. We evaluated the performance of four different schemes (view-sharing, nuclear 

norm minimization scheme, l1 Fourier sparsity regularization scheme and BCS scheme) in 

accelerating 2D and 3D dynamic free breathing MRI of the thorax in 8 normal subjects. In 

both our 2D and 3D experiments, we observe that the BCS scheme yields superior 

reconstructions compared to other schemes qualitatively and quantitatively. The BCS 

scheme, along with golden angle sampling patterns, offered a temporal resolution of ~500ms 

and a spatial resolution of 2.7 × 2.7 × 10mm3 with whole lung coverage, while maintaining 

image quality. To the best of our knowledge, this is the first work, which demonstrates 

temporal resolution of less than 1 sec, along with whole coverage of the thorax, which 

enables 3D free breathing dynamic imaging of lung volumes and diaphragm motion.

We observe that the classical view-sharing scheme suffers from severe temporal blurring as 

it combines information from adjacent frames. Since the data acquired is free breathing, the 

respiratory motion between adjacent frames is very high. Hence, the view-sharing approach 

results in extensive blurring. In contrast, the constrained schemes can be thought of as non-

local view-sharing schemes; their ability to combine information from frames/pixels that are 

highly similar enables them to reduce blurring. We observe that the ability of the BCS and 

the l1 Fourier sparsity regularization scheme to spatially adapt the non-local averaging 

depending on the dynamics enables them to provide better reconstructions than the nuclear 

norm minimization scheme. In dynamic datasets with regions corresponding to strikingly 

different dynamics (e.g. cardiac and respiratory motion), the ability to spatially adapt the 
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non-local averaging can give improved results. The l1 Fourier sparsity regularization scheme 

is sensitive to irregular voxel profiles resulting from non-linear interactions between cardiac 

and respiratory motion. This is because irregular voxel profiles result in a higher number of 

non-zero Fourier coefficients, thus disrupting the sparsity assumption. The regularity of the 

breathing patterns will vary from subject to subject leading to inconsistent performance of 

the l1 Fourier sparsity regularization scheme. These schemes may not be reliable in the 

dynamic assessment of lung volumes during free breathing in patients suffering from 

emphysema or other causes of dyspnea. The patient specific dictionaries in the BCS scheme 

may be a better choice in patients that are short of breath; these learned basis functions will 

result in a sparser data representation and hence provide reliable recovery from fewer 

measurements. Additionally, incoherent sampling by golden angle ordering aids in obtaining 

a sparser representation, leading to superior reconstructions. Other interleaved sampling 

patterns may also lead to similar accelerations however a thorough validation of this claim is 

beyond the scope of the manuscript. We observe that there are currently several different 

flavors of compressed sensing implementations, which may be applied to this specific 

problem. We restrict our comparisons in this work to few of the state of the art dynamic 

imaging schemes since rigorous comparison with all of them is beyond the scope; alternate 

implementations of these algorithms may produce higher quality reconstructions with less 

temporal/spatial blurring and aliasing artifacts than reported in this work. We have used the 

radial FLASH sequence to demonstrate the feasibility of the BCS scheme. However, this 

scheme can be combined with more efficient trajectories with longer readouts (e.g. multi-

shot EPI, multi-shot spiral) to further improve spatial and temporal resolution and echo-time, 

which is the focus of our current work. The acceleration provided by BCS can enable us to 

keep the readout duration small enough to minimize B0 induced distortions and losses.

The average scores from both the radiologists indicate good agreement for spatial and 

temporal blurring criteria. There is relatively higher inter-observer variability in scores for 

the aliasing artifact criterion, but the mean scores from both the radiologists suggest that the 

BCS scheme performs better. The post-scoring discussion revealed that one of the 

radiologists gave more importance to the blurring and artifacts that affected the diaphragm 

motion or diaphragm delineation. By contrast, the other radiologist rated the datasets based 

on the blurring and artifacts in the whole image rather than placing more emphasis on the 

diaphragm. This explains the bias in the scores pertaining to spatial blurring. The number of 

subjects is insufficient to perform statistical analysis for inter-observer agreement.

Our preliminary results using the BCS scheme for dynamic imaging of lung volumes and 

diaphragm motion obtained from a single dataset appear promising. The normal minute 

ventilation in a resting adult in the upright position is about 5L/min to 8L/min33. However 

the normal minute ventilation in the supine position is less than in the upright position34,35 

and all of our MRI images were obtained in the supine position. The measured minute 

ventilation of 4L/min is within the normal range for a supine subject. The measurement of 

minute ventilation is useful in a number of disease mechanisms that produce arterial 

hypercapnia33. The lung volumes were segmented using a simple region growing approach 

with minimal user interference. There are more sophisticated lung segmentation algorithms 

including the fuzzy-connectedness algorithm that could be performed to further improve our 

lung segmentation.
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The proposed imaging protocol acquires 3D data with 16 partitions using the stack of stars 

trajectory; the sampling pattern is the same for all the partitions, which enables slice-by-slice 

recovery. While the number of slices is sufficient for good depiction of diaphragm and lung 

volume dynamics in normal subjects, it may not be sufficient for obese subjects. Improved 

slice coverage may be obtained using fully 3D recovery exploiting the spatial redundancies 

and using 3D trajectories. The current sequence uses a 3D stack of stars trajectory, where the 

sampling along the kz direction is uniform. Since the kz direction is fully sampled (except in 

some cases where partial Fourier recovery is used), we compute a Fourier transform along kz 

and recover each slice independently. We anticipate that using different angles for different 

kz planes as well as sampling different kz planes with different sampling density will provide 

a more incoherent and appropriate sampling pattern. This strategy may result in improved 

recovery, but at the cost of higher computational complexity and memory demand, since we 

cannot decouple the problem to solve for each slice independently. The golden angle-

sampling pattern was used to achieve incoherent sampling across time frames; however, 

other interleaved patterns can be used with BCS to provide these accelerations. Our future 

work will focus on these and other image reconstruction schemes that are optimized for 

individual patients suffering from respiratory disorders including COPD, asthma, and cystic 

fibrosis.

In conclusion, our study indicates that the blind compressed sensing (BCS) scheme gives 

individualized reconstructions with diagnostically useful image quality and minimal 

spatiotemporal blurring as compared to other accelerated imaging schemes. We showed 3D 

dynamic imaging of lung volumes and diaphragm motion with high spatial and temporal 

resolution is achievable using the BCS scheme.
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APPENDIX A

Tradeoffs in image recovery using constrained algorithms

The nuclear minimization scheme, the l1 Fourier sparsity regularization scheme, and the 

BCS rely on modeling the temporal profiles/columns of the Casorati matrix. The sparsity 

priors on the coefficients U in BCS and on the Fourier coefficients in the l1 Fourier sparsity 

regularization scheme cause many of the coefficients to be zero. Hence these schemes use 

different basis functions at different pixels. The nuclear norm minimization scheme, in 

contrast, does not enforce any sparsity prior and hence uses the same basis functions at each 

pixel. The projection of the intensity profile at the pixel (x, y), denoted by the vector ρ(x, y), 

is obtained as

ρ(x, y) = P(x, y)ρ(x, y),

where the matrix P(x, y) is the specified by
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P(x, y) = Vac′ VacVac′ −1Vac (1)

The rows of the matrix Vac are the temporal basis functions that are active at the pixel. The 

above relation shows that the intensity at the ith frame (ith row of ρ(x, y)) is obtained as the 

weighted linear combination of all the entries in ρ(x, y); the weights are specified by the ith 

row of P(x, y). We term the rows of the P(x, y) matrix in (6) as the temporal point spread 

function (TPSF) since it characterizes averaging across time performed by the above 

constrained schemes to remove aliasing, which is noise-like in case of radial undersampling 

(see Fig A). We observe that each row of the matrix gives the weights for the corresponding 

time point.

Since we use the l1 norm, which is a convex relaxation of l0 sparsity, the recovered 

coefficients are not exactly sparse, and have many small non-zero coefficients. Similarly, the 

recovered matrix is not exactly low rank in the nuclear norm setting. For visualization 

purposes, we truncate the coefficients whose magnitudes are less than 0.1% of the maximum 

in the Fourier sparsity regularization and BCS settings to generate Fig. A. Similarly, we 

perform a singular value decomposition of the recovered matrix, followed by a truncation of 

singular values less than 0.1% of the maximum in the nuclear norm scheme. We stress that 

this truncation is only used for visualization; the actual algorithms do not use truncation. 

Fig. A shows the TPSF for one time point corresponding to peak inhalation (specified by 

solid orange line) obtained from the reconstructed data and the corresponding signal profiles 

at three pixels. The pixel intensity at a specific pixel and time point in the denoised image is 

obtained as a weighted linear combination of pixels at all the time points at the same spatial 

location; the weights are specified by the value of the TPSF. We observe that the TPSF 

values are higher for frames with similar respiratory phase (marked by dotted orange 

markers), which implies that these pixels contribute to the summation heavily. We observe 

that the TPSF is spatially and temporally varying for BCS and l1 Fourier sparsity 

regularization scheme. Since the low-rank minimization scheme uses the same set of basis 

functions at each pixel, in this case the TPSF is only temporally varying. The TPSF for view 

sharing method is both temporally and spatially invariant as seen in Fig. A.
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Figure A: 
Illustrations of different algorithms: The TPSFs at a specific time frame at peak inhalation 

(shown by solid orange marker) and the underlying signal time profile are shown for three 

different pixels. The TPSF plots show that all the three constrained schemes provide non-

local averaging of pixel values, thus offering good denoising without resulting in temporal 

blurring. However the TPSF of view sharing is spatially and temporally invariant and thus 

leads to significant temporal blurring. The TPSF of BCS and l1 Fourier sparsity 

regularization scheme are spatially varying, while the nuclear norm minimization scheme is 

spatially invariant. We see that the TPSF from BCS is in good correlation with the 

underlying time profiles (black curves) at the respective pixels. The TPSF for the time 

frames shown by the solid orange marker has high values corresponding to time frames in 

the similar respiratory phase (shown by dotted orange marker). These frames contribute 

predominantly to the recovery of the specific frame, since this recovery is a weighted 

combination of signal at other time frames and the weights are specified by TPSF.
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Figure 1: 
Illustration of the data representation in different transform domains: The nuclear norm 

minimization scheme, the l1 Fourier sparsity regularization scheme, and the BCS scheme 

relies on constrained modeling of the intensity profiles of the voxels, specified by Γ = UV. 

The nuclear norm minimization scheme capitalizes on the efficient representation of the 

voxel profiles using few basis functions. The coefficients in U, along with the singular 

values are shown in a. The singular values of the data (Γ) decay rapidly to zero indicating 

that the data can be represented efficiently using few basis functions. The pseudo-periodicity 

of the data is exploited by l1 Fourier sparsity regularization scheme, using the sparse 

representation of the intensity profiles in the temporal Fourier transform (x-f space) as seen 

in 1.b. Figure 1.c shows the sparse coefficients obtained from the BCS scheme. BCS, similar 

to nuclear norm minimization scheme, learns the dictionary of the basis functions from the 

data itself, thus adapting to the dynamic content of the time series. The adaptation of the 

dictionary to the signal provides sparser representations, which in turn translates to improved 

reconstructions.
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Figure 2: 
Comparison of different schemes on 2D fully sampled dataset: The figure shows comparison 

of reconstructions obtained from view-sharing, nuclear norm minimization scheme, l1 

Fourier sparsity regularization scheme, and BCS schemes with the fully sampled data. The 

top row shows a single frame for each of the schemes. The middle row shows the error 

images with respect to the fully sampled data and the last row shows the time profiles all the 

schemes at a cross section shown by the yellow dotted line. From the mean square errors 

(MSE) and the HFEN metric, we observe that BCS gives superior performance than other 

schemes. All the schemes except BCS suffer from spatio-temporal blurring as shown by the 

yellow arrows in the error images and time profiles.
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Figure 3: 
Performance of the BCS scheme at different acceleration factors: The figure shows the 

single frame (row 1), the time profiles (row 2) and the corresponding error images (row 3–4) 

of reconstructions obtained by retrospectively undersampling the dataset with 20, 16, 12, 

and 10 radial spokes per frames resulting in acceleration factors (R) of 6.4, 8, 10.2, and 12.8 

respectively. Reliable reconstructions are achieved up to R=8. Beyond R=8 we begin to 

observe temporal blurring as shown by the arrows in the error images. Note: All the images 

are in same scale.
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Figure 4: 
Comparison of different schemes on dynamic 3D free breathing: The figure shows 

comparison between view-sharing, nuclear norm minimization scheme, l1 Fourier sparsity 

regularization scheme and BCS scheme (Rows 1–4) for 4 of the 16 slices on subject 2. We 

observe that the BCS gives better reconstructions than other schemes. It is seen that BCS 

shows superior spatio-temporal fidelity in comparison to the other schemes (see yellow 

arrows).
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Figure 5: 
Performance of all the schemes as a function of slice position: The figure shows comparison 

between view-sharing, nuclear norm minimization scheme, l1 Fourier sparsity regularization 

scheme and BCS scheme (Rows 1–4) for slices positioned at the center (1st column), 

anterior (2nd column), and posterior (3rd column) of the lung. We observe that all schemes 

except the BCS scheme suffer from higher temporal blurring in the slices at anterior and 

posterior regions of the lung than those in the center region. BCS scheme is relatively 

insensitive to the slice position as compared to other schemes.
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Figure 6: 
Comparison of BCS, Nuclear norm minimization and l1 Fourier sparsity regularization 

schemes for changes in lung volume as a function of time for Subject 8: The plot shows the 

volume of lung (in mL) as a function of time obtained from reconstructions using BCS (in 

red), nuclear norm minimization (in green) and l1 Fourier sparsity regularization (in blue). 

The second, third and fourth rows show the lung segmentation contours for the three 

schemes at three time points a. and b. and c. respectively. The contours are shown for three 

of the 18 slices. From the plot as well as from the segmentations, we can see that the nuclear 

norm minimization and l1 Fourier sparsity regularization scheme suffer from considerable 

temporal blurring. Note: that the segmentations at time point c (peak expiration) are almost 
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the same. This is expected because the position of the diaphragm changes more during 

inspiration than expiration.
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Figure 7: 
Changes in lung volume as function of time: The figure shows the changes in lung volumes 

as a function of time in case of tidal breathing maneuver (shown on the left) and deep 

breathing maneuver from total lung capacity (TLC) to functional residual capacity (FRC) 

(shown on the right). The segmented lung volumes during peak inhalation and peak 

exhalation are also shown for both breathing maneuvers. The tidal volume was measured to 

be approximately 200mL and the normal minute ventilation was around 4L/min. The supine 

inspiratory capacity was measured to be 1.5L. Note that these numbers are for supine 

position
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Figure 8: 
Tracking diaphragm motion using velocity maps: The motion of the diaphragm was tracked 

at two time points between inspiration shown in (a–b) and two time points between 

expiration shown in (c–d). The velocity from inspiration to expiration is considered positive 

(in green) and velocity from expiration to inspiration is considered negative (in red). The 

velocity field maps and the color-coded velocity maps are shown for all four cases. The 

change in lung volume shown by blue segment is much lesser than the change in lung 

volume shown by red segment. This translates to higher diaphragm motion in frames in red 

segment as compared to the blue segment as seen from the color coded velocity maps in a 

and b. Similar results were observed during both inspiration and expiration.
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Table 1

Clinical Scores of 8 3D DMRI datasets for all four schemes by both the radiologist: The clinical scores from 

the radiologists (R1 and R2) based on three different factors of aliasing artifacts, temporal blurring and spatial 

blurring are reported in Table 1.a–1.c respectively. We observe that all schemes except view-sharing are 

comparable in terms of minimizing aliasing artifacts for each radiologist as seen in 1.a. However, there is 

inter- observer disagreement (different scores by R1 and R2) in the scores. BCS scheme has higher scores than 

all the other schemes in temporal and spatial blurring categories (Table 1.b–c), which indicates that BCS has 

minimal spatio-temporal blurring as compared to other schemes. There is good agreement between the scores 

by both radiologists for temporal and spatial blurring categories.

Table 1.a Clinical Scores: Aliasing Artifacts

╲ BCS Nuclear norm minimization
l1 Fourier sparsity 

regularization
View sharing

R1 R2 R1 R2 R1 R2 R1 R2

Subject 1 4 1 4 1 3 1 1 1

Subject 2 3 3 4 3 2 3 1 1

Subject 3 4 4 4 4 4 4 1 2

Subject 4 4 3 2 3 3 3 1 2

Subject 5 4 3 4 3 2 3 1 2

Subject 6 4 2 4 2 4 2 1 1

Subject 7 3 3 4 4 3 2 1 1

Subject 8 3 2 4 1 3 1 1 0

Average scores 3.62±0.51 2.62±0.91 3.75±0.7 2.62±1.19 3±0.76 2.37±1.06 1±0 1.25±0.7

Table 1.b Clinical Scores: Temporal blurring

╲ BCS Nuclear norm minimization l1 Fourier sparsity regularization View sharing

R1 R2 R1 R2 R1 R2 R1 R2

Subject 1 4 4 2 3 3 3 0 0

Subject 2 4 4 3 4 3 4 2 1

Subject 3 4 4 1 3 2 3 1 1

Subject 4 4 4 2 3 3 3 1 1

Subject 5 4 4 3 4 2 4 0 1

Subject 6 4 3 2 2 2 2 1 1

Subject 7 4 4 1 2 2 2 0 1

Subject 8 4 4 3 3 2 3 0 0

Average scores 4 ±0 3.87 ±0.35 2.21±0.83 3±0.75 2.37±0.51 2.5±1.3 0.62±0.74 0.75±0.46

Table 1.c Clinical Scores: Spatial blurring

╲ BCS Nuclear norm minimization
l1 Fourier sparsity 

regularization
View sharing

R1 R2 R1 R2 R1 R2 R1 R2

Subject 1 4 4 2 3 3 3 1 4

Subject 2 3 4 2 4 3 2 1 3
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Subject 3 4 4 2 4 3 3 1 4

Subject 4 4 4 2 4 3 3 1 4

Subject 5 4 4 3 4 3 2 1 4

Subject 6 4 4 3 4 3 2 1 4

Subject 7 4 4 2 4 3 3 1 3

Subject 8 4 4 2 4 3 3 1 3

Average 
scores 3.87±0.35 4±0 2.25±0.46 3.87±0.35 3±0 2.63±0.52 1±0 3.62±0.51
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