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Abstract

Deep learning methods are emerging as powerful alternatives for compressed sensing MRI to 

recover images from highly undersampled data. Unlike compressed sensing, the image 

redundancies that are captured by these models are not well understood. The lack of theoretical 

understanding also makes it challenging to choose the sampling pattern that would yield the best 

possible recovery. To overcome these challenges, we propose to optimize the sampling patterns 

and the parameters of the reconstruction block in a model-based deep learning framework. We 

show that the joint optimization by the model-based strategy results in improved performance than 

direct inversion CNN schemes due to better decoupling of the effect of sampling and image 

properties. The quantitative and qualitative results confirm the benefits of joint optimization by the 

model-based scheme over the direct inversion strategy.

Index Terms

sampling; deep learning

1. INTRODUCTION

The slow acquisition rate is a primary limitation of magnetic resonance imaging (MRI) over 

other medical imaging modalities. Image recovery from heavily under-sampled 

measurements has witnessed extensive research in the past decade that has enabled dramatic 

reductions in the scan time. The quality of images recovered using computational algorithms 

heavily depends on the specific image property (e.g., sparsity, low-rank) as well as specific 

sampling pattern. The general practice is to use variable-density sampling patterns with high 

incoherence, based on the theoretical compressed sensing results. The optimization of the 

sampling patterns to recover images with specific properties has been a long-standing 

problem in MRI.

Several researchers have considered the optimization of sampling patterns assuming 

different image constraints, including known image support [1], parallel MR acquisition [2], 

and transform-domain sparsity [3, 4]. These methods can be broadly classified as 

reconstruction algorithm-dependent and algorithm-independent. For instance, the 

approaches [1–4] assume a specific image property and optimize the sampling patterns to 

improve the diversity of measurements for that class. The selection is independent of any 

specific image reconstruction algorithm or its hyper-parameters. By contrast, [5, 6] considers 

the optimization of the sampling pattern assuming specific reconstruction algorithms (e.g., 
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TV or wavelet sparsity) for a class of exemplar images. These algorithms utilize a subset of 

discrete sampling locations using greedy or sparse optimization strategies so as to minimize 

the reconstruction error using a specific algorithm. The main challenge with these methods 

is the slow reconstruction algorithm, which restricts the optimization of the pattern to a large 

class of images. Further, these methods assume fixed reconstruction algorithm and its hyper-

parameters during the optimization process.

Machine learning algorithms are now emerging as powerful alternatives for compressed 

sensing. These methods use learned-models instead of handcrafted priors such as transform-

domain sparsity to recover the images. The non-linear convolutional neural networks (CNN) 

used in these schemes are far more efficient in capturing the non-linear redundancies that 

exist in images compared to the classical priors. The reconstruction performance of 

machine-learned models is not dependent on the incoherence of sampling patterns, as hinted 

by early studies [7].

The study of the dependence of the optimal sampling pattern on a specific network 

architecture is hence a key problem in deep learning based image recovery. Since the 

specific image property exploited by CNN approaches is not well understood, it is difficult 

to adapt the algorithm-independent optimization strategies (e.g., [1–4]) to this setting. At the 

same time, the fast reconstruction offered by machine learning algorithms makes it possible 

to extend the algorithm-dependent strategies (e.g., [6]) to a large class of images. Further, 

the learnable nature of the reconstruction algorithms can adapt its parameters to the 

sampling pattern.

The main focus of this work is to optimize for the sampling pattern jointly with the deep 

learned reconstruction algorithm to obtain the best performance over a class of images. The 

joint optimization strategy is expected to provide improved performance compared to the 

classical pseudo-random patterns as well as optimization strategies that learn the sampling 

pattern while assuming the algorithm and its hyperparameters to be fixed. Since the joint 

optimization problem is non-convex, it may be challenging to achieve the global minimum 

of the cost function. While the ability of stochastic gradient descent to achieve good 

performance in CNN training is reported, its use in the proposed setting is not studied. We 

study the utility of the proposed strategy with both direct inversion [8–10] and model-based 

methods [7,11].

The CNN based direct inversion schemes [8, 9] require fine-tuning according to a specific 

sampling pattern. The strong coupling between CNN parameters and the sampling pattern 

can make the optimization task more challenging. By contrast, model-based schemes use the 

information of the sampling pattern within the reconstruction algorithm, thus decoupling the 

CNN block from changes in sampling pattern. This improved decoupling between the 

parameters in model-based approaches is expected to offer improved performance. This 

work focuses on the single-channel MRI acquisition setting for simplicity while the future 

work will consider its extension to multichannel setting.
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2. METHOD

2.1. Image Formation & Reconstruction

We consider the recovery of the complex image x ∈ ℂM × N from its possibly non-Cartesian 

Fourier samples:

b[i] = ∑
m ∈ ℤ2

x[m]e−jkiTm + n[i], ki ∈ Θ . (1)

Here, Θ is a set of sampling locations and n[i] is the noise process. The mapping can be 

compactly represented as b = AΘ(x) + n. A common approach for recovering images from 

heavily undersampled measurements such as (1) is model based strategies, which pose the 

reconstruction as an optimization problem of the form

x Θ, Φ = arg min
x

‖b − AΘ(x) 2
2 + ℛΦ(x) . (2)

Here, ℛΦ is a regularization penalty (e.g transform domain sparsity, when ℛ(x) = λ Tx l1
with Φ denoting the parameters of the regularizer and the transform. The notation X Θ, Φ
for the solution of (2) denotes its dependence on the regularization parameters as well as 

sampling pattern.

2.2. Deep learning based image recovery

Recently, several authors have proposed to replace the above hand-crafted image 

regularization penalties in (2) with learned priors. For instance, model based deep learning 

(MoDL) [11] formulates the image recovery as

x Θ, Φ = arg min
x

‖b − AΘ(x)‖2
2 + ‖x − DΦ(x)‖F

2 , (3)

where DΦ is a residual learning based CNN that is designed to denoise x. The optimization 

problem specified by (3) is solved using an iterative algorithm, which alternates between DΦ

and a data-consistency step QΘ(z) = AΘ
HAΘ + ℐ −1 z + AΘ

Hb , which is implemented using 

a conjugate gradients algorithm. This iterative algorithm is unrolled to obtain a deep network 

ℳΘ, Φ, where the weights of the CNN blocks and data consistency blocks are shared across 

iterations as shown in Fig. 1. Specifically, the solution to (3) is given by

xΘ, Φ = ℳΘ, Φ AΘ(x) (4)

The parameters of the unrolled deep network are learned from a set of training images xi; i = 

1, .., N, such that the training error
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Φ* = arg min
Φ

∑
i = 1

N
‖ℳΘ, Φ AΘ xi − xi‖2

2
(5)

is minimized. An alternative to the above model-based strategy is direct inversion, which 

relies on a deep CNN to recover the images from AΘ
H(b); the CNN learns to invert the class 

of images for the specific sampling pattern Θ. The key difference between this strategy and 

MoDL is the strong coupling between the CNN blocks and the sampling pattern; the CNN 

parameters need to be fine tuned to the specific sampling pattern. By contrast, the CNN 

parameters in MoDL are more decoupled from the sampling pattern, making the training 

easier. We note that the use of QΘ within the network enables MoDL to use the same learned 

DΦ block for different sampling patterns [11].

2.3. Joint Optimization

The main focus of this work is to jointly optimize both DΦ and QΘ blocks in the MoDL 

framework with the goal of improving the reconstruction performance. Specifically, we 

propose to jointly learn the sampling pattern Θ and the CNN parameter Φ from training data 

using

Θ*, Φ* = arg min
Θ, Φ

∑
i = 1

N
‖ℳΘ, Φ AΘ xi − xi‖2

2 . (6)

This proposed J-MoDL framework can be generalized to other error metrics such as 

perceptual error.

2.4. Parametrization of the sampling pattern

In this work, we restrict our attention to the optimization of the phase encoding locations in 

MRI, while the frequency encoding direction is fully sampled. Mathematically, we model 

the sampling set as the translates of a single pattern Γ.

Θ = ∪
i = 1

P Γ + θi (7)

Here Θ = {θi; i = 1, .., P} are the P phase encoding locations, while Γ is the set of samples 

on a line. In addition to reducing the parameter space, this approach also simplifies the 

implementation; the QΘ blocks can be implemented analytically in-terms of 1-D Fourier 

transforms. Note that this framework can be generalized to sample arbitrary trajectories (e.g. 

radial lines with arbitrary angles).

2.5. Network details and Initialization

The J-MoDL reconstruction network is shown in Fig. 1. In our experiments, we observe that 

a three iteration unfolding was sufficient in the single-channel setting. As seen from [11], 

more iterations are needed in the multichannel setting. The sampling operator AΘ is 

implemented using a 1-D discrete Fourier transform from the spatial locations to the 
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continuous domain Fourier samples specified by Θ. The data-consistency block QΘ is 

implemented using conjugate gradients algorithm. The CNN block DΦ consists of a UNET 

with four pooling and unpoolong layers. The parameters of the blocks DΦ and QΘ are 

optimized to minimize (6).

We utilized publically available knee dataset in [7]. The training data constituted of 381 

slices from 10 subjects, whereas test data had 80 slices from 2 subjects. A coil combination 

was performed to simulate single-coil images. For comparison, we also study the 

optimization of the sampling pattern in the context of direct inversion (i.e, when a UNET is 

used for image inversion). A UNET with same number of parameters was used in the study.

In our experiments, we trained the UNET and MoDL architecture with different random 

sampling masks to make the CNN parameters Φ relatively insensitive to the undersampling 

patterns. These CNNs were used as the initialization for the networks in the remaining 

experiments. Starting with this initialization, we first optimize for the sampling pattern Θ 
alone while keeping the reconstruction frameworks fixed. Second, we simultaneously 

optimized both the sampling patter Θ and the network parameters Φ in the two frameworks 

(UNET and MoDL).

3. EXPERIMENTS AND RESULTS

The results of the optimization are reported in Table 1, where we have reported the average 

PSNR and SSIM values obtained on the test data. The top row corresponds to the 

optimization of the network parameters Φ alone, assuming incoherent undersampling 

patterns. The MoDL framework provides an approximate 3.5 dB improvement in 

performance over a UNET scheme with the same number of parameters. The second row 

corresponds to the optimization of the sampling pattern Θ alone, while the network 

parameters are fixed as the above initialization. We note that the optimization of the 

sampling pattern provided a 1.5 dB improvement in performance with MoDL, while the 

performance of the UNET degraded. This deterioration is likely due to the close coupling 

between the UNET parameters and the sampling pattern in direct inversion schemes; when 

the sampling pattern differs from the ones that were used to train the UNET, it is not 

guaranteed to yield good performance. The last row corresponds to the joint optimization 

scheme, where both Θ and Φ are trained. The resulting J-MoDL scheme offers a 0.6 dB 

improvement in performance over the optimization of Θ alone, while the resulting J-UNET 

approach provides a 0.6 dB improvement over the initialization. The results demonstrate the 

benefit of the decoupling of sampling pattern and CNN parameters offered by MoDL in the 

joint optimization.

Figure 2 shows the visual comparison of the reconstruction quality obtained by the joint 

optimization with UNET as well as the MoDL based strategies. The proposed J-MoDL 

method provides significantly improved results, as highlighted by the zoomed region.

Figure 3 demonstrates the benefits of performing joint optimization of both the sampling 

pattern and the network parameters as compared to the network alone. The red arrows 

clearly show that the proposed J-MoDL architecture preserves the high-frequency details 
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better than the MoDL architecture. Figure 4(b) shows the learned sampling mask by the J-

MoDL approach while the initialization was done using the mask in Figure 4(a). The learned 

continuous values were rounded to nearest integer for display purpose.

4. CONCLUSIONS

This work shows how to jointly optimize the sampling pattern and the reconstruction 

network simultaneously while obeying the physics of MR acquisition. The proposed joint 

model-based deep learning framework (J-MoDL) has decoupled sampling and CNN blocks. 

This decoupling makes J-MoDL architecture relatively insensitive changes in sampling 

pattern as compare to a direct inverse based method. The experimental results show that the 

proposed J-MoDL produces better results than J-UNET architecture for the same 

acceleration factor.
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Fig. 1. 
The proposed joint model based deep learning (J-MoDL) architecture and the training 

process. Each iteration consists of a CNN block DΦ and a data-consistency block QΘ. This 

architecture facilitates the decoupling of the image priors and the sampling pattern, thus 

allowing efficient optimization of the parameters Φ and Θ.
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Fig. 2. 
A visual comparison of the J-UNET and the J-MoDL approaches on a test slice. The joint 

learning using J-MoDL preserves the fine details as pointed by arrows in the zoomed area.
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Fig. 3. 
A visual comparison of the MoDL and the J-MoDL approachs shows that the joint 

optimization preserves the fine structures as shown by arrows.
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Fig. 4. 
The fixed mask used during testing and the learned mask using the J-MoDL approach. The 

learned phase encoding locations are continuous-valued that were discretized for display 

purposes.
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Table 1.

The average PSNR (dB) and SSIM values obtained over the test data of two subjects with total of 80 slices 

using different optimization strategies.

PSNR SSIM

Optimization UNET MoDL UNET MoDL

Φ alone 30.00 33.42 0.84 0.85

Θ Alone 25.40 35.03 0.71 0.89

Θ, Φ Joint 30.61 35.69 0.87 0.90
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