
Positron Emission Tomography Imaging of the Endocannabinoid 
System: Opportunities and Challenges in Radiotracer 
Development

Lu Houa,†, Jian Rongb,†, Ahmed Haiderb,†, Daisuke Ogasawarac, Cassis Varlowd, Michael A. 
Schafrothc, Linjing Mue, Jiefeng Gana, Hao Xua, Christopher J. Fowlerf, Ming-Rong Zhangg, 
Neil Vasdevb,d, Simon Ametameye, Benjamin F. Cravattc, Lu Wanga,b,*, Steven H. Liangb,*

aCenter of Cyclotron and PET Radiopharmaceuticals, Department of Nuclear Medicine and 
PET/CT-MRI Center, The First Affiliated Hospital of Jinan University, 613 West Huangpu Road, 
Tianhe District, Guangzhou 510630, China bDivision of Nuclear Medicine and Molecular Imaging, 
Massachusetts General Hospital & Department of Radiology, Harvard Medical School, Boston, 
MA, 02114, USA cThe Skaggs Institute for Chemical Biology and Department of Chemical 
Physiology, The Scripps Research Institute, SR107 10550 North Torrey Pines Road, La Jolla, 
California 92037, United States dAzrieli Centre for Neuro-Radiochemistry, Brain Health Imaging 
Centre, Centre for Addiction and Mental Health & Department of Psychiatry/Institute of Medical 
Science, University of Toronto, 250 College St., Toronto, M5T 1R8, ON., Canada eCenter for 
Radiopharmaceutical Sciences ETH, PSI and USZ, Institute of Pharmaceutical Sciences, ETH 
Zurich, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland fDepartment of Pharmacology and 
Clinical Neuroscience, Umeå University, SE-901 87 Umeå, Sweden gDepartment of 
Radiopharmaceuticals Development, National Institute of Radiological Sciences, National 
Institutes for Quantum and Radiological Science and Technology, 4-9-1 Anagawa, Inage-ku, 
Chiba 263-8555, Japan

Abstract

The endocannabinoid system (ECS) is involved in a wide range of biological functions and is 

comprised of cannabinoid receptors and enzymes responsible for endocannabinoid synthesis and 

degradation. Over the past two decades, significant advances towards developing drugs and 

positron emission tomography (PET) tracers targeting different components of the ECS have been 

made. Herein, we summarized the recent development of PET tracers for imaging cannabinoid 

receptors 1 (CB1R) and 2 (CB2R) as well as the key enzymes monoacylglycerol lipase (MAGL) 

and fatty acid amide hydrolase (FAAH), particularly focusing on PET neuroimaging applications. 

State-of-the-art PET tracers for the ECS will be reviewed including their chemical design, 

pharmacological properties, radiolabeling, as well as preclinical and human PET imaging. In 

addition, this review addresses the current challenges for ECS PET biomarker development and 
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highlights the important role of PET ligands to study disease pathophysiology as well as to 

facilitate drug discovery.

Graphical Abstract

1. INTRODUCTION

The endocannabinoid system (ECS) constitutes a lipid-based signaling system in the human 

central nervous system (CNS), which includes primarily two cannabinoid receptors (CB1R 

and CB2R), their endogenous ligands, and enzymes responsible for ligand synthesis and 

degradation. In the brain, 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine 

(AEA), the most well-known endogenous ligands for cannabinoid receptors, are produced 

by the postsynaptic membrane as “on-demand” to stimulate adjacent CB1 receptors. Scheme 

1 depicts a general model for the ECS signaling in the CNS. This model, whereby post-

synaptic endocannabinoid synthesis in response to a presynaptic signal acts presynaptically 

to depress the release of the presynaptic neurotransmitter, has been suggested to provide a 

protective negative feedback mechanism against over-activity of the presynaptic nerves.1 

Peripheral roles of the endocannabinoid system in the regulation of processes as diverse as 

gut function and bone turnover are also well-described.2 These endogenous cannabinoids are 

mainly synthesized by membrane phospholipids on the postsynaptic membrane.3 Several 

catabolic pathways responsible for the termination of endocannabinoid signaling have been 

described.4 Among all hydrolytic enzymes, fatty acid amide hydrolase (FAAH) is the main 

metabolic enzyme of AEA, while in the brain monoacylglycerol lipase (MAGL) is primary 

metabolic enzyme of 2-AG.4–6 Nonetheless, other serine hydrolases α/β hydrolase domain-6 

(ABHD6) and α/β hydrolase domain-12 (ABHD12) may be more important for 

endocannabinoid metabolism in microglial cells.7 Additional catabolic pathways, such as 

oxidation catalyzed by cyclooxygenase-2 and by some members of the cytochrome P450 

(CYP) family of enzymes have also been reported and yield biologically active products,4, 8 

but are outside the scope of the present article.

The ECS regulates important physiological processes such as pain, emotion, stress, exercise, 

and cognition functions.2, 9, 10 Accordingly, cannabinoid receptors have become promising 

targets for the management of numerous pathologies including, but not limited to, chronic 

pain, epilepsy, anxiety, depression, Alzheimer disease (AD), Parkinson’s syndrome (PD), 

Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS), drug dependence, 
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osteoporosis and liver, kidney, intestine, cardiovascular dysfunction (CVD).11–15,16 

Cannabinoids, particularly phytocannabinoid preparations, also have a wide off-label use in 

the treatment of chronic pain, despite modest evidence of efficacy in rigorous randomized 

clinical trials and a high incidence of unwanted effects.17

Positron emission tomography (PET) is a non-invasive and highly sensitive molecular 

imaging technique that allows in vivo quantification of biochemical and pharmacological 

processes under healthy and diseased conditions.18 Using radioactive PET tracers, in vivo 
imaging can be achieved at the molecular level to obtain quantitative information on target 

engagement and the degree of receptor occupancy at a given drug dose. PET scanning 

equipment and PET probes are just like the relationship between pistol and bullet. The bullet 

can accurately target in vivo biomarkers and provide real-time information on tracer 

accumulation in the area of interest, which plays a crucial role in precision medicine and 

quantitative pharmacokinetic research.19, 20 Such information is invaluable and harbours 

enormous potential to accelerate drug development,21, 22 especially in Phase 0 clinical trials.
23–26 Over the past decades, while many PET probes targeting endogenous cannabinoid 

receptors (CB1R and CB2R) and hydrolases (FAAH and MAGL) have substantially 

advanced our understanding of the ECS,27 the vast majority of reported reviews are confined 

to one specific ECS component such as CB1R28 or CB2R.29, 30 The last review of CNS PET 

did not cover the radiotracers targeting cannabinoid receptors and MAGL.31 In contrast, this 

review provides a comprehensive summary of PET-based ECS imaging, thereby covering 

CB1R-, CB2R-, FAAH- and MAGL-targeted probes, as well as presenting challenges in 

drug discovery, radioligand development, and medical imaging applications. For each ECS 

component, representative PET probes will be introduced with their pharmacological 

properties, radiolabeling techniques, and PET imaging in rodents/nonhuman primates 

(NHPs)/human subjects.

2. RECEPTOR TARGETING PET TRACERS

Both CB1R and CB2R are members of the G-protein-coupled receptor (GPCR) superfamily 

containing seven transmembrane structures.32 CB1R density is high in the human brain, 

especially in the substantia nigra, globus pallidus, putamen, hippocampus and cerebellum.
33–35 CB1R is also abundantly expressed in peripheral nerves and tissues, though, in a 

region-specific manner.36 For example, in the gastrointestinal system, CB1R can regulate 

intestinal peristalsis and the secretion of gastric acid and neurotransmitter, which in turn 

affect appetite and digestion.37 In the cardiovascular system, CB1R is significantly 

upregulated under pathological conditions and promotes disease progression.38, 39 CB1R 

expression has also been detected in adipose tissue, bone, skin, as well as several cancer 

cells.36, 40

Although CB2R and CB1R share 44% structural homology, their distribution patterns in the 

mammalian system are fundamentally different.41 Indeed, CB2R is predominantly found in 

peripheral organs harboring large numbers of immune cells such as the spleen and tonsils. 

Further, moderate expression can be found in the cardiovascular system, bone marrow and 

reproductive organs.41, 4243 Recently, the crystal structures of CB1R and CB2R have been 

revealed.44, 45 Hua et al.46 uncovered the structures of the inactivated, intermediate and 
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activated states of CB1R and CB2R, respectively, which provides more accurate molecule 

models and theoretical supports for drug and ligand discovery.

Due to the diverse regulatory effects by chronic therapeutic exposure, and the presence of 

genetic splice variants, cannabinoid receptors have unique pharmacological and 

physiological effects and have been considered as an attractive drug target for over 20 years. 

CB1R plays an important role in normal physiology (cognition, appetite, memory),47 and is 

closely related to several neuropsychiatric48 and metabolic diseases.49, 50 CB1R agonists 

and inverse agonists have been extensively developed, but are accompanied by side effects 

impairing cognitive function and the ECS reward system.51, 52 A well-known example is 

rimonabant (SR141716A), a potent and selective CB1R inverse agonist developed by 

Sanofi-Synthelabo.53 It was found to improve lipid and glucose metabolism and became one 

of the most promising weight-loss drugs. However, rimonabant was later linked to rare but 

severe cases of depression and suicide, resulting in its withdrawal from the market in 

2008.54 Currently approved drugs by the FDA include tetrahydrocannabinol, cannabidiol, 

and their analogs or compositions, such as Marinol® (dronabinol),55, 56 Cesamet® 

(nabilone)57, Sativex® (nabiximols)58, and Epidiolex® (cannabidiol) 59. CB1 negative 

allosteric modulators, dronabinol, and nabilone are mainly used to treat nausea, vomiting, 

and weight loss when traditional treatments are ineffective, and for the treatment of 

spasticity and pain in MS as combination therapy (nabiximols). Cannabidiol is used to treat 

epilepsy associated with Lennox-Gastaut Syndrome (LGS) and Dravet Syndrome (DS). In 

order to avoid CNS side effects, drugs that act on peripheral CB1R alone have been 

developed and demonstrated promising results. NEO1940 (ART27.13), a peripheral CB1R 

and CB2R agonist for the treatment of cancer-related anorexia and weight loss, has entered a 

phase II clinical trial.60 CRB-4001(JD-5037) is a peripheral CB1R inverse agonist in a phase 

I clinical trial, which was intended for the treatment of non-alcoholic steatohepatitis.61, 62 

CB2R regulation is disrupted in peripheral inflammation, neurological diseases, cancer, and 

atherosclerosis.63, 64 Of note, CB2R activation is associated with anti‐inflammatory and 

protective effects in the CNS and periphery.65 In several neurodegenerative disease models 

such as AD or PD, treatment with selective CB2R agonists are effective in attenuating pro-

inflammatory cytokine release and migratory activity of immune system cells.66, 67 Thus the 

effects of CB2R agonists may offer a new therapeutic approach for the treatment of 

neurodegenerative disorders, taking advantage of the notion that CB2R activation does not 

elicit the psychoactive side effects frequently observed with brain penetrating CB1R 

agonists.68, 69

CB2 agonist JBT-101 (Lenabasum) is currently in a phase III clinical trial for treating 

diffuse skin systemic sclerosis and dermatomyositis, and phase II clinical trial for treating 

cystic fibrosis, systemic sclerosis and systemic lupus erythematosus.61 CB2 agonist APD371 

(Olorinab) entered phase II trials for the treatment of gastrointestinal pain.70 As mentioned 

above, the development of PET radiotracers for cannabinoid receptors facilitates our 

understanding of the ECS under normal physiological and disease states and has played an 

important role in the design and evaluation promising drugs that target the receptors. Several 

research groups have made substantial efforts towards the development of CB1R or CB2R 

PET radioligands, highlighted applications in CNS diseases.
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Given the diversity of ECS-targeted drug discovery, the clinical availability of suitable PET 

probes is crucial to guide drug development as well as to identify and validate novel disease 

areas, where the ECS can be exploited as a pharmacological target. As such, several research 

groups have made substantial efforts towards the development of CB1R or CB2R PET 

radioligands.

2.1 PET Tracers for Imaging CB1R

Endogenous CB1R ligands have moderate affinity and are highly lipophilic, so they are not 

suitable for PET or SPECT (Single Photon Emission Computed Tomography) tracer 

development. By reducing their lipophilicity and retaining their high affinity, researchers 

synthesized a series of compounds for imaging CB1R in the CNS. Based on selective CB1 

antagonists, PET tracers have been widely developed and selected structures are shown in 

Figure 1. A summary of the relevant parameters for selected CB1R specific PET tracers is 

presented in Table 1.

Initially, a series of PET tracers ([18F]1-[11C]4) based on rimonabant were developed for 

CB1R imaging and preliminary biological evaluations were carried out. However, these 

tracers had either high lipophilicity (logD > 4), resulting in nonspecific binding, or poor 

brain permeability that is not suitable for CNS imaging.71–73 To improve the binding affinity 

of rimonabant (Ki hCB1R = 46.2 nM, cLogD = 6.0), Fan et al. synthesized OMAR/

JHU5528 (Ki hCB1R = 11 ± 7 nM, cLogD = 4.3) and its analogs by introducing cyano 

groups. OMAR is a CB1R antagonist, demonstrating higher specificity than earlier CB1R 

antagonists with less lipophilic and significantly increased Bmax/Ki ratio to 91, indicating 

great potential for successful in vivo imaging.74, 75 Further PET evaluations in mouse and 

baboons demonstrated that [11C]OMAR ([11C]5) readily entered the brain, specifically and 

selectively visualizing cerebral CB1 receptors. In the biodistribution experiment, the 

radioactive accumulation reached its maximum value (6.6 %ID/g in the striatum) at 15 min; 

radioactivity in the baboon brain reached its peak at about 10 min and the ratio of CB1-rich 

regions to CB1-poor regions was up to 2.5 and the highest binding potential (BP) value was 

1.3 in the putamen.76 Wong et al.77, 78 presented the first human studies by using [11C]5, 

which successfully displayed the distribution of CB1R in the healthy controls and SZ 

patients. Maximum standard uptake value (SUVmax) in controls reached 1.4–2.1 at about 20 

min post-injection and average volume of distributions (VT) ranged from 1.0–1.7. Compared 

with control subjects, regional total VTs of [11C]5 were higher in SZ patients, especially in 

the pons (0.93 vs 0.72, P < 0.05). Another study comparing the availability of CB1R 

between male SZ patients and healthy controls highlighted that CB1R availability of male 

SZ patients was moderately and globally reduced, and the use of antipsychotics and tobacco 

increased CB1R availability in patients79. In vitro studies have shown that the ECS plays a 

vital role in alcohol dependence.80–82 Neumeister et al. used [11C]5 to carry out the first in 
vivo experiment to demonstrate this correlation. VT in alcohol-dependent patients 

administered [11C]5 was approximately 20% (P = 0.023) higher than that of healthy 

controls.83

Compound [11C]5 was not only used to image CB1R in the CNS, but was also successfully 

employed to assess peripheral cardiovascular CB1R expression. Valenta et al. demonstrated 
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that the retention rate of [11C]5 in the myocardium of obese mice was significantly higher 

than that of normal-weight mice.84, 85 These results may provide a theoretical basis for 

further clinical testing of CB1R targeted molecular imaging in cardiac metabolic diseases. 

However, due to the moderate lipophilicity of [11C]5, it tends to accumulate in the liver, 

which may hamper accurate quantitative assessment.86

Similarly, based on the structure of SR141716, Yasuno et al. reported the synthesis of 

[11C]MePPEP ([11C]6) (Ki hCB1R = 0.11 nM, Kb = 0.57 nM, LogD7.4 = 4.8, Kb represents 

an in vitor efficacy constant that is calculated using the following equation: Kb = IC50/[1 + 

[Agonist]/EC50], which is derived from Cheng-Prusoff relationship.87) by the reaction of the 

O-desmethyl precursor with [11C]CH3I. Compared to PET imaging of [11C]5 in baboon 

brain, the uptake kinetics of the two tracers were similar, but the peak uptake of [11C]6 was 

higher and SUVmax almost reached 6.0 within 10–20 minutes post injection.88 Subsequently, 

Donohue et al. synthesized [11C]6 and its four analogs [11F]FMePPEP ([11C]7, Kb = 0.22 

nM, Log D7.4 = 5.7), [18F]FEPEP ([18F]8, Kb = 0.42 nM, Log D7.4 = 5.8), [18F]FMPEP 

([18F]9, Kb = 0.19 nM, Log D7.4 = 5.7) and [18F]FMPEP-d2 ([18F]10, Ki hCB1R = 0.11 nM, 

LogD = 4.24),89 and demonstrated that [11C]6-7 and [18F]8-9 crossed the blood-brain barrier 

adequately and exhibited high specificity to CB1R in rat brain tissues. Terry et al. further 

evaluated these four imaging agents ([11C]7, [18F]8–10) in monkeys and SUVmax in the 

brain were 3.3 by 30 min, 2–3.5 at 15 min, 5–6.5 at 20 min, 4.5–6.5 by 20 min, respectively. 

And then they advanced the most promising agent [18F]10 to humans.90 [18F]10 uptake in 

the human brain was similar to [11C]6, and the peak SUV in the putamen ranged from 3.0 to 

4.0, however, the retest variability of [11C]6 in plasma was relatively large (58%), as 

compared to [18F]10 (16%), and [18F]10 had a good retest variability of VT (14%), which 

had previously been reported by Terry et al.91 In subsequent studies, [11C]6 was used as a 

CB1R imaging agent to study the anxiogenic effects of cannabis in humans, which proved 

that this effect was closely related to the activation of CB1Rs on the amygdala.92 [18F]10 has 

been used to demonstrate a reversible downregulation of CB1Rs in chronic cannabis 

smokers,93, 94 and in alcohol-dependent patients,95 [18F]10 demonstrated reduced CB1R 

binding that did not recover after 2–4 weeks of abstinence. It is worth noting that in CB1R 

imaging of alcohol-dependent patients with [18F]10, the results are opposite to the [11C]5 
imaging study aforementioned. Differences in experimental design or patient selection may 

have contributed to these divergent findings. In addition, [18F]10 has been used to study 

mental illnesses. Borgan et al. designed a cross-sectional, case-controlled study in patients 

with first-episode psychosis, demonstrating that CB1 receptors are viable therapeutic targets 

in psychosis.96 Besides CNS-targeted CB1R imaging, [18F]10 has been used to 

quantitatively monitor the density of CB1R in brown adipose tissue (BAT). Eriksson et al. 

and Lahesmaa et al. confirmed that [18F]10 showed specicific binding to BAT in rodents and 

humans, respectively.97, 98

Using taranabant as a lead compound, Merck research laboratories synthesized 

[18F]MK-9470 ([18F]11, IC50(human) CB1R = 0.7 nM, IC50(human) CB2R = 44 nM), a new 

potent CB1R inverse agonist, with a high affinity for CB1R.99 In vivo brain imaging and 

autoradiography distribution studies in rhesus monkeys have demonstrated reversible 

binding to CB1R with reasonable binding specificity. The occupancy of CB1R in the human 
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brain has low Test-retest (TRT) variability (ca. 7%), as determined by the area under curve 

(AUC) of the respective time-activity curve. However, in vivo radioactive distribution of 

CB1R is inconsistent with ex vivo findings in the postmortem research, an inconsistency 

which was suggested to be related to the different properties (agonists and inverse agonists) 

of radioligands.100 Subsequently, Van et al. analyzed the distribution of [18F]11 in 50 

healthy individuals.101 In women, as the age increased, radiotracer-receptor binding 

increased in the basal ganglia, the lateral iliac crest, and the limbic system, especially in the 

hippocampus. Men do not have these age-related characteristic changes, but men show 

higher [18F]11 binding in the limbic system and cortical-thalamic-cortical loop cluster.

Compound [18F]11 has been used in imaging studies of various neurological diseases: 

Anorexia nervosa patients demonstrated increased [18F]11 uptake (24.5%, P = 0.0003) in the 

brain compared to healthy controls; 102 a study investigating [18F]11 in female with episodic 

migraine showed that there was an increased interictal binding (average gray matter 

difference+16%, P = 0.009), indicating a low level of competing endogenous cannabinoids 

in this area;103 in patients with epilepsy of temporal lobe due to hippocampal sclerosis, 

[18F]11 uptake increased in the ipsilateral temporal lobe.104 In the premanifest phase of the 

HD, the PBA-HD (Problem Behavior Assessment for HD) scores inversely correlated with 

CB1R binding in prefrontal regions and cingulate cortex.105 Imaging studies of [18F]11 
performed in the brains of PD patients showed that the reduced availability of CB1R is 

associated with various cognitive impairments106. Although the CB1R inverse agonist PET 

tracers highlighted above have been used in clinical research to study receptor availability in 

several neurological disorders, rimonabant and taranabant development was discontinued in 

2008 due to neurological side effects.107

Donohue et al. developed a new selective CB1 receptor antagonist, [11C]SD5024 ([11C]12, 

Ki hCB1R = 0.47 nM, LogD7.4 = 3.79), which demonstrated high specific binding in the 

cynomolgus monkey brain.108 The brain uptake reached a peak SUV of 2.0 at 24 min and 

declined to 1.5 at 90 min. Tsujikawa et al. evaluated this radioligand in vitro and in vivo and 

compared it with the following ligands: [11C]6 (Ki hCB1R = 0.11 nM, LogD7.4 = 4.77), 

[11C]5 (Ki hCB1R = 2.05 nM), [18F]11 (Ki hCB1R = 0.10 nM) and [18F]10 (Ki hCB1R = 

0.11 nM, LogD7.4 = 4.24).109 [11C]12 demonstrated optimal lipophilicity and precise 

measurement accuracy in terms of intersubject variability (22%) for VT. It is worth noting 

that Hjorth et al.110 employed [11C]12 in NHP imaging to obtain the pharmacokinetic 

profile, calculate the occupancy rate and explore the optimal dose of three novel selective 

CB1R antagonists developed by AstraZeneca (AZ).111 Compound [11C]13, a similar 

structure to [11C]12, was reported by Donohue et al. in an abstract, and it showed high 

specificity in the monkey brain,112 however, no further studies have been reported.

WIN 55212–2 is a cannabinoid receptor agonist that belongs to the aminoalkylindoles (AAI) 

family. This type of compounds has been radiolabeled for PET or SPECT imaging, but 

exhibited poor brain permeability and specificity.113 An important example of this 

compound class is [18F]14.114 Following these studies, Allen et al. synthesized a new array 

of aryl sulfonyl-substituted indoles as CB1R inverse agonists.115 Finnema et al. and 

Donohue et al. radiolabeled PipISB (Kb = 1.5 nM, cLogD = 5.1) with 18F and 11C, to afford 

[11C]15 and [18F]16, respectively, and further evaluated them in rhesus and cynomolgus 

Hou et al. Page 7

J Med Chem. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



monkeys. [11C]15 and [18F]16 crossed the blood–brain barrier (BBB) and exhibited CB1R 

specific and displaceable binding in monkeys.116, 117

Based on the previous research118, Yamasaki et al.119 modified 1-(4-chlorophenyl)-3-{3-[6-

(pyrrolidin-1-yl)pyridin-2-yl]phenyl}urea (PSNCBAM-1) to synthesize compound [11C]17 
(KD = 15.3 μM, LogD = 3.76) and conducted PET imaging where this radiotracer 

demonstrated high specificity in the mouse BAT (2.8 %ID/mL). Zanato et al.120 labeled a 

fluorinated cannabis analog HU-210F with 18F ([18F]18 (Ki hCB1R = 0.98 nM, Ki hCB2R = 

3.83 nM) as a potential imaging agent, but further biological evaluation has not been carried 

out. The latest CB1R imaging probe [18F]19, was reported by Chang et al.121 by modifying 

DBPR211; however, the uptake of this tracer in the mouse brain was low (< 1%).

2.2 PET Tracers for Imaging CB2R

Although CB2R expression is limited in the healthy CNS, there is a consensus that CB2R is 

upregulated on activated microglial cells upon neuroinflammation.63, 122 Thus, the CB2 

receptor is regarded as an exceptionally promising target to exploit for neuroinflammation 

manifested in AD, PD and ALS.123 Despite strenuous efforts by several research groups 

worldwide, CB2R-targeted PET radioligand development has only moderately progressed in 

recent years. Reported probes have mainly been hampered by nonspecific binding due to 

high lipophilicity, metabolic instability, inappropriate pharmacokinetics and lack of 

selectivity over CB1R or other CNS targets. The search for suitable CB2R PET radioligands 

is further hampered by the lack of reliable information on CB2R Bmax values in the CNS as 

well as the lack of a highly selective CB2R antibody to confirm autoradiographic findings by 

histological assessment. Nonetheless, some promising examples with potential for clinical 

translation have emerged and will be discussed in this chapter. The structural scaffolds for 

CB2R PET ligands include oxoquinoline, pyridine, thiazole, triazine and oxadiazole 

derivatives (Figure 2). A summary of the relevant parameters for selected CB2R specific 

PET tracers is presented in Table 2.

Oxoquinoline derivatives have been exploited for their suitability as CB2R PET 

radioligands. As such, the most extensively studied candidate in this class of compounds, 

[11C]NE40 ([11C]20), was successfully synthesized via O-methylation of the respective 

phenolic precursor using either [11C]CH3I or [11C]methyl triflate.124,125 With a binding 

affinity (Ki CB2R) of 9.6 nM and a selectivity factor of ~ 100 over CB1R, [11C]20 proved to 

be specific for CB2R in the rodent spleen, while concurrently exhibiting a fast washout from 

the CB2R-deficient healthy brain.125 Moreover, preclinical evaluation of [11C]20 revealed 

specific and reversible binding to human CB2R (hCB2R) in a rat model with local hCB2R 

overexpression in the right striatum.126 In the same study, the authors reported a high brain 

uptake (SUVmax = 1.5 at 90 s) in rhesus monkeys, confirming that the tracer is able to 

penetrate the brain in non-human primates. In a subsequent clinical study, [11C]20 did not 

detect the anticipated CB2R upregulation in the brain of AD patients, thus raising concerns 

about the suitability of the tracer for CB2R imaging in AD.127 Particularly, given the high 

abundancy of CB1R in the human brain, a selectivity factor of ~ 100 might have been 

insufficient to avoid off-target binding of [11C]20 to CB1R. Along this line, no relationship 

was found between regional or global amyloid load and [11C]20 uptakes.127
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Slavilk et al.128 used anisidine and diethyl 2-(ethoxymethylene)malonate to synthesize a 

series of novel 4-oxoquinoline derivatives based on the structure of KD2 (Ki CB2R = 1.7 

nM, logD7.4 = 3.3)129. RS-016 (21) emerged as most suitable candidate, exhibiting an 

improved affinity (Ki = 0.7 nM) and lipophilicity (LogD7.4 = 2. 8).130 Dynamic brain PET 

scans of [11C]RS-016 ([11C]21) in a murine neuroinflammation model induced by 

lipopolysaccharide (LPS) application showed higher CB2R expression level in different 

brain regions including the cortex, hippocampus, and cerebellum. Further, [11C]21 was used 

to visualize the CB2R in human and mouse atherosclerotic lesions.130 To overcome the 

limitation of the short half-life of carbon-11, Slavik et al.131 developed a radiofluorinated 

analog of [11C]21, codenamed [18F]RS-126 ([18F]22). Although the in vitro results with 

[18F]22 were encouraging, no CB2R expression was detected in the brain of LPS-treated 

mice. The latter was attributed to the low specific activity of [18F]22. In addition, [18F]22 
was rapidly metabolized in mice. Haider et al.132 improved the synthesis strategy to obtain 

higher radiochemical yields (RCYs) and molar activities of [18F]22. In the transgenic R6 /2 

mouse model for HD, [18F]22 was not sensitive to the CB2R overexpression, although 

CB2R mRNA upregulation was detected by qPCR in the same tissue. Further, due to high 

nonspecific neuronal tissue binding, [18F]22 did not show specific CB2R binding in human 

ALS spinal cord sections. In sharp contrast, the newly developed hydroxylated derivative, 

[11C]RS-028 ([11C]23), exhibited a significantly reduced lipophilicity, thus leading to less 

nonspecific binding and allowing the detection of CB2R upregulation in postmortem human 

ALS spinal cord tissue. Notably, the spleen uptake of [11C]23 was relatively low compared 

to its predecessors and was accompanied by a rapid washout in vivo, potentially owing to 

enzymatic degradation. To investigate the influence of the O-alkyl chain length and oxygen 

position on metabolic stability, [18F]AH-040 and [18F]AH-043 ([18F]24 and [18F]25) were 

synthesized. Although these probes showed improved stability to liver enzymes, their 

selectivity over CB1R was substantially reduced, impeding their further development.132

Among the reported structural scaffolds of CB2R PET radioligands, 2,5,6-trisubstituted 

pyridines (Figure 2) have been thoroughly assessed and currently constitute the most 

promising candidates for clinical translation. Indeed, initial studies with [11C]RSR-056 

([11C]26, Ki hCB2R = 2.5 nM, logD7.4 = 1.94) revealed significantly increased brain uptake 

following LPS-induced neuroinflammation in mice. Nonetheless, it should be noted that 

only part of the increased [11C]26 accumulation in the brain was attributed to CB2R-

specificity, as evidenced by the weak signal reduction under blockade conditions.133 The 

latter can be, at least in part, explained by inflammation-induced damage to the blood-brain 

barrier, which would ultimately result in an increased tracer delivery to the brain, 

independent of CB2R.134 Due to the short physical half-life of carbon-11, which confines 

the use of [11C]26 to facilities with an on-site cyclotron, the authors synthesized a series of 

fluorinated derivatives via structural modifications at positions 2 and 5 of the pyridine core. 

These efforts led to the development of the radiofluorinated analog [18F]27,135 with a 

prolonged half-life of 109.8 min, a binding affinity of 6 nM and a selectivity factor of ~ 600 

over CB1R. [18F]27 proved to be CB2R-specific by in vitro autoradiography experiments of 

the rodent spleen. Further, CB2R receptor upregulation in postmortem spinal cord tissues of 

ALS patients was confirmed with [18F]27. Notwithstanding the promising in vitro results 

obtained with [18F]27, in vivo specificity for the CB2R-rich rodent spleen was only modest. 
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To overcome this limitation, the authors studied the influence of structural modifications at 

position 6 of the pyridine core, which ultimately led to the discovery of [18F]RoSMA-18 

([18F]28), a ligand with subnanomolar affinity (Ki hCB2R = 0.7 nM) and a remarkable 

selectivity factor of > 12,000.136 [18F]28 revealed exceptional specificities for the CB2R-

positive rodent spleen by in vitro autoradiography (71 ± 2%) and ex vivo biodistribution (86 

± 2%), which was superior to any previously reported CB2R-targeted PET probe. Indeed, 

the outstanding specificity was further elegantly corroborated in the CB2R knockout mouse 

spleen. [18F]28 was sensitive in detecting CB2R upregulation in postmortem human ALS 

spinal cord tissue by in vitro autoradiography. Further, PET experiments confirmed the 

specific and reversible CB2R binding of [18F]28 in the CB2-positive rat spleen. The authors 

found only intact [18F]28 in the rat brain following intravenous tracer injection. Nonetheless, 

in vivo defluorination was noted by substantial skull uptake, which was circumvented by 

replacing the hydrogen atoms in the fluoropropyl side chain with deuterium atoms to afford 

[18F]RoSMA-18-d6 ([18F]29), in which case no radioactivity accumulation in the skull was 

observed. [18F]29 is currently considered a promising candidate for clinical translation.136

A-836339 is a highly potent and selective CB2R agonist (Ki CB2R = 0.7 nM, Ki CB1R = 

270 nM), which is based on a thiazole core structure137. Horti et al. radiolabeled 

[11C]A-836339 ([11C]30) via its desmethyl precursor and performed PET imaging in LPS-

treated CD1 mice, APP/PS1 transgenic mice (mouse model for AD) as well as wild-type 

control animals.137 Whole body time-activity curves (TACs) for the control mice revealed a 

fast tracer washout from the brain, while CB2R specific binding was observed in the spleen. 

In LPS-treated mice, [11C]30 uptake was significantly increased in the brain (SUVmax = 

2.3), as compared to the control group (SUVmax = 0.5), after five days of LPS treatment. 

Similarly, higher brain uptake was found in transgenic APP/PS1 strains compared to wild-

type littermates, and the regional distribution was consistent with the distribution of Aβ 
amyloid plaques. AM630 blocking showed 29%−36% specific binding in the cerebellum, 

brainstem, and cortex. Attempts to develop a radiofluorinated analog of [11C]30 led to an 

improved CB2R affinity with Ki of 0.4 nM for CB2R and 380 nM for CB1R. Nonetheless, 

the rapid metabolism of this 18F analog following intravenous injection as well as the 

presence of radiometabolites in the brain hampered further evaluation.138 Savonenko et al. 

further investigated the utility of [11C]30 as a PET biomarker for neuroinflammation in AD 

mice.139 The authors found an increased tracer uptake in AD mice, which was blocked by 

the commercially available CB2R inverse agonist AM630. In sharp contrast, Pottier et al. did 

not detect CB2R upregulation with [11C]30 PET in two distinct rat models of cerebral 

ischemia.140

Triazine scaffolds have been evaluated for CB2R-targeted PET imaging by Hortala et al.141. 

The authors reported on the development of [18F]31, demonstrating brain penetration in 

rhesus macaques and baboons. Baboon pretreatment with LPS led to VT increase of about 

30%, confirming previous observations with other CB2R PET probes in mice. In another 

study by Yrjola et al., the best performing triazine derivative, [18F]32 (EC50 = 0.60 nM), was 

found to suffer from rapid metabolism and elimination, rendering its pharmacokinetic 

properties unsuitable for in vivo PET.142
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MA2 and MA3 are the analogs of highly potent CB2 agonist N-arylamide oxadiazole.143 

Tissue distribution of [11C]33 and [18F]34 demonstrated high brain uptake at 2 min post 

injection. Notably, [18F]34 was found to specifically accumulate in brain regions with 

overexpression of the human CB2R in rats; however, no specific binding of [18F] 34 to the 

CB2 receptor was observed in PET scans in nonhuman primates.144

3. HYDROLASE TARGETING PET TRACERS

It is known that drugs that act as direct agonists or antagonists on the endocannabinoid 

receptors can cause drug dependence or addiction.145 Hence, as an alternative approach to 

achieve therapeutic effects, drugs/tool compounds that inhibit the hydrolases that metabolize 

AEA and 2-AG have been developed. The two main hydrolases involved in the hydrolytic 

metabolism of these endocannabinoids are FAAH and MAGL. FAAH is a 60kDa integral 

membrane hydrolytic enzyme that is highly expressed in the mammalian brain along with 

liver and kidney, which is responsible for terminating the endogenous cannabinoid signaling 

of AEA by hydrolysis of the amide bond.146, 147 MAGL, is a 33kDa serine hydrolase with 

high expression in the brain, BAT, adrenal glands, liver and kidneys, and acts as a critical 

degradative enzyme responsible for ca. 85% of 2-AG metabolism in the brain, generating 

glycerol and arachidonic acid (AA).148–151 As shown in Scheme 2, systemic or local 

inhibition of FAAH or MAGL increase levels of AEA or 2-AG, while concurrently 

decreasing arachidonic acid level, respectively. These changes also affect endocannabinoid 

signaling and suppresses eicosanoid production. Increasing levels of AEA exert effects of 

anti-anxiety, anti-depression, and treating addiction and withdrawal symptoms.152, 153 

Similarly, increasing the level of 2-AG in the brain has effects of anti-anxiolytic, anti-

depression, anti-emetic, anti-inflammation and neuroprotection.154, 155 Moreover, inhibition 

of MAGL (genetically/pharmacologically) has therapeutic implications for some metabolic 

diseases.156, 157 Numerous studies have demonstrated that FAAH and MAGL are potential 

therapeutic targets for a variety of human pathologies including pain, depression, 

(neuro)inflammatory diseases and cancer.149, 155, 158–160 For several of these indications 

proof-of-concept studies have been performed in several animal models with the respective 

knockout animals.8, 157, 161 It is worthy of note that Scheme 2 only captures main features of 

FAAH and MAGL in the ECS since both FAAH and MAGL can metabolize other related 

lipids: in the case of FAAH, blockade of its hydrolysis activity for N-palmitoylethanolamine 

is an interesting pharmacological approach, given the anti-inflammatory effects of this 

endogenous lipid.162 In the case of MAGL, it has shown that that it promotes cancer cell 

growth by providing long chain fatty acids from their corresponding monoacylglycerols,
163, 164 and to provide arachidonic acid for prostaglandin synthesis in neuroinflammation.155

Currently, a variety of FAAH and MAGL inhibitors have been developed, characterized in 

animal models of disease and assessed at various stages of clinical trials.165–167 Initial 

clinical studies with FAAH inhibitors PF-04457845,168 V158866169 and JNJ-42165279170 

indicated that the compounds were well-tolerated (vide infra for a discussion with respect to 

FAAH inhibitor BIA10–2474171), although PF-04457845 was not efficacious in a study of 

osteoarthritic pain. Recently, Fazio et al. reviewed newly developed single- and dual-target 

FAAH inhibitors in the literature, and proposed that multi-target inhibition may be a 

promising strategy for the development of new effective inhibitors. Future drug design and 
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medicinal chemistry could also take advantage of the recently disclosed human FAAH 

crystal structure.172 Among MAGL inhibitors, ABX-1431 has entered clinical phase II 

studies for neurological disorders. In this context, PET ligand development towards FAAH 

and MAGL has also made considerable progress for target engagement studies in drug 

discovery and studying pathophysiological changes during disease states.

3.1 FAAH Inhibitor based PET Tracers

A major clinical trial incident occurred in January 2016,173 which led to the death of one of 

the participants during the study with a FAAH inhibitor codenamed BIA 10–2474. 

Following the incident, there has been a solid body of evidence that the drug exhibited off-

target effect.174–177 The tragic results of this trial emphasized that it is especially important 

to fully understand the pharmacological effects, metabolism and pharmacokinetic-

pharmacodynamic (PK-PD) relationship of drugs in the body before conducting clinical 

trials. Using PET probes are uniquely well suited for in vivo drug evaluation to assess target 

engagement and correlate therapeutic dose-target occupancy relationship accurately in 

humans via a phase 0 study. Currently, several PET tracers for imaging FAAH have been 

disclosed and can be classified into two categories, namely irreversible and reversible 

tracers, based on different binding kinetics, as shown in Figure 3. We also summarize the 

pharmacological and imaging properties of FAAH PET tracers in Table 3.

3.1.1 Irreversible FAAH Radiotracers—URB597 (IC50 = 4.6 nM, cLogD = 3.6) is a 

classic FAAH inhibitor based on O-aryl carbamate scaffold with potentially useful activity 

in an animal model of anxiety.178–181 A 11C-labeled URB597 analogue, biphenyl-3-yl 

[11C]-4-methoxyphenylcarbamate ([11C]35) was the first radiolabeled FAAH inhibitor for 

PET imaging studies in rodents.182 Although the LogD value (2.27) was suitable for brain 

penetration, a continuous washout was observed after rapid peak brain uptake, which 

indicated no covalent binding to FAAH.182 However, it represented a reasonable starting 

point for the design of radiolabeled FAAH inhibitors.

CURB (IC50 = 30 nM, LogD7.4 = 2.8), also named URB694, is an active and selective 

irreversible inhibitor of FAAH with improved brain penetration and plasma stability, as 

compared to URB597.183 As such, [11C]CURB ([11C]36) was the first reported successful 

irreversible PET tracer to image FAAH.184, 185 [11C]36 displayed similar ex vivo 
biodistribution to FAAH in the rat brain, with higher brain uptake in the cortex and lower 

signal in the hypothalamus. The radioactivity peaked at 5 min (SUVmax = 1.6–2.4) and no 

significant washout was observed, consistent with the suggested irreversible binding 

mechanism. High dose pretreatment using URB597 showed high specificity of binding. A 

polar metabolite was detected in blood, which has little effect on the imaging results as it is 

not blood-brain barrier permeable.185 Based on these promising preclinical studies, [11C]36 
became the first PET tracer for mapping FAAH activity in the human brain.186 By 

performing 90-minute PET scans with arterial blood sampling on six healthy volunteers, λk3 

was identified as the optimal parameter for quantifying FAAH binding and SUV reached its 

peak (4.3±0.8) 30 min post-injection. For the kinetic modeling of irreversible inhibitors, λk3 

can be calculated by the equation K1 / k2 * k3 and constitutes a key parameter of kinetic 

modeling for two-tissue compartment models. Of note, λ is the ratio between the two rate 
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constants, K1 and k2, and represents the equilibrium distribution volume of the ligand in the 

plasma and the organ of interest – in this case the brain. Moreover, k3 describes the influx of 

[11C]36 from the free and nonspecific compartment to the specifically bound compartment.
187 Recently, [11C]36 has been applied in neuroimaging application of several neurological 

disorders, particularly in addictive diseases, such as cannabis addiction,188, 189 alcohol use 

disorders,190 psychiatric191 and borderline personality disorder,192 which further proves that 

FAAH could be a promising therapeutic target for a variety of CNS diseases.

Moreover, a series of [11C-carbonyl]-radiolabeled O-aryl carbamates were synthesized 

([11C]37-[11C]42) and evaluated as radiotracers for imaging FAAH with PET by Wilson et 

al.193 All six radiotracers showed moderate to excellent brain uptake, good regional 

distribution (cortex > hypothalamus) and excellent specificity (80–95% blocking via 

pretreatments with URB597) for FAAH in the rat brain. Brain kinetics showed that 

[11C]dihydrooxazole carbamates ([11C]40–42) had much higher uptake (3.0–4.5 SUV in the 

cortex at 2 min) than [11C]biphenyl carbamates ([11C]36–39, 0.8–2.7 SUV in the cortex at 2 

min).

2-Methylpyridin-3-yl-4-(5-(2-fluorophenyl)-4H-1,2,4-triazol-3-yl)piperidine-1-carboxylate 

(MFTC) is a high-affinity, selective FAAH ligand (IC50 = 0.34 nM for human FAAH)194 

with moderate lipophilicity (cLogD = 3.6). In vitro studies demonstrated a similar binding 

affinity for FAAH as URB597 and CURB.185 [11C]MFTC ([11C])43) was successfully 

synthesized using bis(2-methylpyridin-3-yl)-[11C]carbonate as a new radioactive 

intermediate.195 PET studies of this ligand in rat brain demonstrated high uptake (SUVmax 

~1.5 in the cerebellar nucleeus), and the distribution of radioactivity corresponded to FAAH 

expression. The accumulation of [11C]43 in the brain was successfully blocked by 

pretreatment with nonradioactive MFTC and URB597. Furthermore, PET imaging in 

monkeys brain demonstrated heterogeneous distribution and radioactivity accumulation was 

highest in the occipital cortex (SUVmax= 2.0); however, [11C]43 did not show high specific 

binding in the striatum, which was in contrast to [11C]36 and [11C]MK-3168 (a reversible 

inhibitor of FAAH, vide infra). In addition, NHP PET imaging showed that the tracer was 

gradually washed out in all regions and no plateau was reached during the 90 min scan 

period, suggesting that total binding in the monkey brain might be affected by nonspecific 

binding to some extent.

18F-Labeled PET tracers based on the dihydrooxazole scaffold have also been developed. 

[18F]DOPP ([18F]44) was synthesized via a multi-step automated synthesis, as a potent, 

selective FAAH ligand with an IC50 value of 0.82 nM for rat FAAH and a logD value of 

2.33. In vitro assays showed that DOPP inhibited FAAH in a time-dependent manner. Ex 
vivo biodistribution studies demonstrated excellent brain uptake (> 4 SUV) and a 

distribution pattern consistent with FAAH patterns in the rat brain. Autoradiography of 

[18F]44 in the rat brain also showed high bound activity in FAAH rich regions. In addition, 

heterogeneous binding of [18F]44 was displaced by pretreatment with the FAAH inhibitors 

CURB or PF-04457845, indicating that the radiotracer bound specifically to FAAH in vitro.
196 PET/magnetic resonance imaging (MRI) studies in baboons demonstrated that [18F]44 
rapidly crossed the blood-brain barrier with SUVpeak of 2.1 and that the kinetic modeling 

parameter λk3 was appropirate for FAAH quantification.197 As a proof-of-concept, [18F]44 
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was employed to evaluate the potency of BIA 10–2472 in vivo in the brain, which may be 

useful to provide a rational approach to dose selection in clinical trials and avoid severe 

adverse events.198

Another 18F-labeled FAAH radiotracer, [18F]FCHC ([18F]45, IC50 = 1.2 nM), was also 

evaluated in rodents.199 Similar to previous results,193 ([18F]45 demonstrated high brain 

penetration (SUVpeak = 4.6), excellent specificity and appropriate biodistribution in rodents, 

warranting further evaluation in higher species.

Two urea-based irreversible tracers [11C]PF-04457845 ([11C]46, IC50 = 3.2 nM, LogD7.4 = 

3.48) and [18F]PF-9811 ([18F]47, IC50 = 16 nM, LogP = 3.14) have been developed. The 

compounds interacted with FAAH in an analogous irreversible mechanism like other 

carbamate-based inhibitors.200Due to its high brain penetration, high selectivity and safety 

profile in humans,201 PF-04457845 was chosen as a promising candidate to be labeled with 
11C via the [11C]CO2 fixation strategy.200, 202 Ex vivo biodistribution of [11C]PF-04457845 

([11C]46) in the rat brain was consistent with the known expression of FAAH and the highest 

uptake (4.4 SUV) was observed in the cortex. In addition, pretreatment with URB597 

resulted in a 71–81% reduction of bound activity in all areas of the brain, demonstrating 

high specificity for FAAH.203 [18F]PF-9811 ([18F]47) was designed based on the scaffold of 

PF-04457845, in which the trifluoromethyl group was replaced by a fluoroethoxy 

functionality to facilitate the incorporation of a fluorine-18 radiolabel.204 Biodistribution 

experiments in rats showed good heterogeneous brain uptake, with high SUVs in the cortex, 

hippocampus and cerebellum (ca. 0.8 SUV at 90 min), and specific to nonspecific binding 

ratios of 2.3 to 2.6. Pretreatment experiments proved irreversible binding in the brain. After 

90 minutes, the radioactivity of all brain regions decreased to 37%−73%, but the signal in 

the blood increased by a factor of 12. The authors claimed that this may have been related to 

irreversible binding in the brain and peripheral organs.

Dahl et al.205, 206 introduced a new and efficient fully automated [11C]CO2-fixation 

apparatus, and used this method to synthesize two FAAH radiotracers [11C]JNJ1661010 

([11C]48, IC50 = 12 nM) and [11C]49, with significant increased non-isolated RCY. This 

method can help to produce various 11C-carbonyl compounds in a highly efficient manner to 

facilitate rapid screening of potential FAAH PET ligands in vivo.

3.1.2 Reversible FAAH Radiotracers—Based on the binding mechanism, tissue 

uptake of irreversible PET tracers is frequently governed by perfusion, which is why they are 

described as flow limited tracers. As such, a flow limited PET tracer with irreversible 

binding mechanism may reveal information that is substantially confounded by organ 

perfusion, rather than reflecting the density/activity of the biological target. Indeed, kinetic 

parameter from in vivo PET quantifications, including K1, k2, k3, VT and BPND can be 

affected by the binding mechanism of a given tracer.207, 208 Examples of irreversible PET 

tracers that were shown to be spared from significant flow limiting effects include 

[11C]CURB184 and [18F]DOPP.197 Thus, recent research has focused on the development of 

reversible binding PET tracers for FAAH in order to obtain a comprehensive quantitative 

assessment of FAAH distribution, concentration, and availability in the brain. Currently, a 

Hou et al. Page 14

J Med Chem. Author manuscript; available in PMC 2022 January 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



limited number of reversible FAAH inhibitor PET probes have been disclosed based on 

pyrazole or α-ketoheterocyclic scaffolds.

A systematical evaluation of a library of FAAH inhibitors based on a pyrazole scaffold was 

conducted at Merck. Attributed to excellent potency (IC50(human) = 1.0 ± 0.6 nM) and 

selectivity, reasonable lipophilicity (LogD = 3.3), and amenability for radiolabeling, 

[11C]MK-3168 ([11C]50) was prepared as the first reported reversible PET tracer for 

imaging FAAH. In vivo PET imaging studies were performed under baseline and blocking 

conditions in rhesus monkeys, demonstrating consistent regional heterogeneous distribution 

(accumulation in the frontal cortex / striatum / hippocampus regions), good brain uptake 

(SUV > 1) and high specific binding (total/ nonspecific signal ~ 2:1).209 According to an 

abstract, the two tissue compartment model well simulated the [11C]50 TAC in monkey and 

human, and values of binding potential (BPND) and VT were 0.4–1 and 3–4 in the monkey 

respectively and the VT value in the human between 14 and 20. 210 [11C]50 has been applied 

to determine the optimal dose for FAAH inhibitior JNJ-42165279 in the human brain.211

FAAH inhibitors based on an α-ketoheterocyclic scaffold were comprehensively studied by 

Boger and co-workers.212, 213 These inhibitors exhibited reversible binding towards FAAH 

and other serine hydrolases. Based on the structure of OL-135 (a potent and selective FAAH 

inhibitor, Ki = 4.7 nM),214 Wang et al. designed two positron-emitting analogs, 18F- and 
11C-labeled MPPO ([11C]51 represents the 11C-analog), with communal pyridinyl oxazole 

ring.215 PET imaging of 18F-analog showed rapid defluorination and high bone uptake in 
vivo, and failed to show sufficient brain permeability. MPPO, which exhibited an excellent 

potency (IC50 = 10 nM, Ki = 5.8 nM) to FAAH and selectivity over other enzymes,214 was 

selected as a candidate as it was amenable for 11C-labeling. The ex vivo biodistribution 

studies in mice indicated that the distribution of [11C]51 was consistent with the distribution 

of FAAH. However, only moderate brain uptake (0.8 SUV) was observed. PET imaging 

studies showed low-to-moderate specific binding to FAAH. Subsequent PET imaging in P-

glycoprotein (PgP) / breast cancer resistance protein (Bcrp) knockout mice indicated that 

this tracer was not likely a substrate for Pgp/Bcrp. It should be noted here that [11C]51 
showed a steady washout in the brain, indicating α-ketoheterocyclic scaffold indeed 

provided a roadmap for further investigation of reversible FAAH radiotracers.

Recently, Chen et al.216 discovered an improved FAAH inhibitor with a novel heterocyclic 

scaffold and the corresponding PET tracer [11C]FAAH-1906 ([11C]52, IC50(mice) = 11 nM, 

LogD = 2.9) was further studied. Ex vivo biodistribution studies demonstrated that [11C]52 
possessed high brain penetration (9.2 %ID/g), reversible binding kinetics and moderate 

specificity. Further development of this tracer and close analogs is underway to validate this 

class of compounds in higher species.

3.2 MAGL Inhibitor based PET Tracers

MAGL is responsible for about 85% of 2-AG hydrolysis in the brain,5, 217, 218 and 

significant efforts have been contributed to drug discovery for MAGL inhibitors. So far, 

most MAGL inhibitors are irreversible based on carbamate and urea-bearing scaffolds, 

involving the formation of a covalent bond between the Ser122 of MAGL and the carbonyl 

group of the inhibitor. Recently, a limited number of reversible MAGL inhibitors were 
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disclosed with high binding affinity, and advanced to potential PET tracers for imaging 

quantification ([11C]61-64, Figure 4). We also summarize the pharmacological and imaging 

properties of MAGL PET tracers in Table 4.

3.2.1 Irreversible MAGL Radiotracers—The first reported MAGL PET probe was 

described by Hicks et al. in 2014219, where carbamate based inhibitors ([11C]JW642, 

[11C]KML29) and two urea based inhibitor ([11C]ML30, [11C]JJKK-0048) were 

synthesized. However, all these inhibitors showed poor brain penetration and were not 

suitable to advance further PET imaging studies.

SAR127303 is a highly potent and selective carbamate-based inhibitor of MAGL developed 

by Sanofi, and the values of IC50 in mouse and human MAGL are 3.8 and 29 nM, 

respectively. SAR127303 has shown therapeutic effect on relieving inflammatory pain and 

epilepsy symptoms in mice.220 In 2016, Wang et al.221 labeled [11C]SAR127303 ([11C]53) 

with [11C]CO2 as a novel MAGL imaging agent in rodents. PET imaging of [11C]53 in rats 

showed 48% reduction during blocking conditions. Independently, Wang et al. 222 screened 

MAGL inhibitors from a series of sulfonamido-based carbamates and urea-based 

compounds. Among them, the most potent SAR127303 (IC50 = 39.3 nM) and TZPU (IC50 = 

35.9 nM) were labeled with [11C]COCl2 to afford [11C]53 and [11C]TZPU ([11C]54). 

[11C]53 showed a high level of brain permeability (1.5 SUV for rats and ca.1 SUV for NHP) 

and heterogeneous regional brain distribution which was consistent with the distribution of 

MAGL in the brain. The uptake of radioactivity was almost four times higher than [11C]54 
in the rat brain.222 To further assess PET quantification of [11C]53 in the rat brain, Yamasaki 

et al.187 successfully used an irreversible two-tissue compartment model (2-TCMi, k4 = 0) to 

quantify the concentration distribution of MAGL in different brain regions. Among the 

kinetic parameters (k3, Ki, and λk3) they have obtained, the correlation between Ki value 

and in vitro binding of [11C]53 was the highest.187

In 2017, Ahamed et al.223 reported on a novel MAGL PET tracer, [11C]MA-PB-1 ([11C]55), 

which was modified from JW642 by replacing the phenoxy group with a methoxy group. 

The initial uptake of [11C]55 in mouse and rat brain was comparable with that of [11C]53. 

However, significant washout was observed after reaching peak uptake in the rat brain, and 

the radioactivity remained stable after 1h. One explanation could be species differences 

postulated by the authors. Self-blocking experiments and chasing studies with MJN110 (a 

structurally distinct MAGL inhibitor) confirmed [11C]55 as a specific irreversible MAGL 

tracer. In rhesus monkey PET imaging of [11C]55, initial high brain uptake reached (~4.2 

SUV) at 2.5 min and a steady state (2.5 SUV) reached after 20 min. This result further 

underlined the irreversible binding characteristics of [11C]55.

In the same year, Butler et al. disclosed a series of MAGL inhibitors bearing an azetidine 

scaffold to reduce the lipophilicity and increase the binding specificity.224 Subsequently, 

Cheng et al. further developed an array of azetidinyl carbamate-based MAGL inhibitors. 

Among them, the most promising MAGL-0519 was labeled with [11C]COCl2 or [11C]CH3I 

at two different positions and evaluated in rodents and rhesus monkeys.225 In rodent PET 

imaging, [11C]MAGL-0519 ([11C]56) had a high binding specificity and selectivity as well 

as a heterogeneous distribution with high brain uptake (SUVmax is up to 1.5), which was 
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consistent with the distribution of MAGL. An unexpected clearance of [11C]56 in rat brain 

may be caused by the metabolism of the linkage between carbonyl group of the tracer and 

the serine residue of MAGL in vivo. In PET imaging studies with rhesus monkey, [11C]56 
also had a heterogeneous distribution with peak brain uptake greater than 1.5 SUV as well as 

an unexpected clearance.

In 2019, Chen et al226 developed a novel array of reversible and irreversible MAGL 

inhibitors with a “tail switching” strategy on a piperazinyl azetidine scaffold.227–229 Among 

them, three promising MAGL inhibitors were labeled and evaluated in rodents, including the 

irreversible inhibitor [11C]MAGL-2–11 ([11C]57, IC50 = 0.88 nM, LogD = 1.9) and two 

reversible inhibitors [18F]MAGL-4–11 ([18F]61, IC50 = 11.7 nM, LogD = 2.7) and 

[11C]PAD ([11C]62, IC50 = 2.7 nM, LogD = 3.4). [11C]57 showed good brain permeability 

with a maximum brain SUV of 2.26 at 3.5 min post injection and no significant washout was 

observed during PET scan. The distribution of [11C]57 in the rat brain was heterogeneous 

and consistent with MAGL distribution. However, BBB permeability of two reversible 

tracers ([11C]PAD ([11C]62) and [18F]MAGL-4–11 ([18F]61)) was poor (0.3–0.4 SUVmax), 

which may be related to Pgp and Bcrp efflux. This hypothesis was validated in an 

experiment with Pgp/Bcrp knockout mice. Further studied in higher species are underway to 

verify if species difference exists for brain penetration.

In the same year, Mori et al.230 reported a novel irreversible MAGL inhibitor [11C]58 based 

on azetidine scaffold with a hexafluoroisopropyl (HFIP) alcohol leaving group. [11C]58 has 

a high MAGL potency (IC50 = 0.4 nM) and a suitable lipophilicity (cLogD=3.29). [11C]58 
was labeled with [11C]COCl2 and evaluated in rodents. [11C]58 exhibited a good brain 

permeability with a maximum brain uptake of 1.5 SUV and specific and irreversible binding 

to MAGL.

Recently, an azabicyclo[3.1.0]hexane scaffold-based irreversible MAGL inhibitor, 

PF-06809247 with a unique trifluoromethyl glycol leaving group was labeled with 

carbon-11 to assess its potential as a MAGL radioligand both in vitro and in vivo.231 

[11C]PF-06809247 ([11C]59) exhibited good MAGL potency (IC50 = 13 nM, cLogD = 2.7), 

high permeability and high specific binding in the frontal cortex, hippocampus, and 

cerebellum in the brain. In NHP PET imaging, [11C]59 showed high brain uptake with 

SUVmax ca. 3.5. Although its target occupancy and pharmacokinetics in NHP have not yet 

been published, [11C]59 has entered clinical trials.232 This will provide the basis for the 

development of MAGL targeting therapeutics and further understanding of MAGL 

pathophysiological changes in vivo.

In parallel, Chen et al.233 reported another azabicyclo[3.1.0]hexane scaffold-based MAGL 

PET tracer [18F]PF06795071 ([18F]60). PF06795071 is a promising MAGL inhibitor 

developed by McAllister et al. with excellent MAGL potency (IC50 = 3 nM) and excellent 

serine hydrolase selectivity.234 [18F]60 was 18F-labeled via spirocyclic iodonium ylide 

(SCIDY) strategy235–238 and further evaluated in rodents. By in vitro autoradiography, 

[18F]60 exhibited excellent binding specificity and heterogeneous regional brain uptake in 

rodent brain, consistent with MAGL distribution. In addition, [18F]60 readily crossed the 

BBB (SUVmax = 1.8 at 2.5 min) and exhibited heterogeneous regional brain uptake in rat 
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PET imaging. PET evaluation in NHP is underway to verify its translation potential for 

human use.

3.2.2 Reversible MAGL Radiotracers—A limited number of reversible MAGL 

radiotracers have been reported as shown in Figure 4. [18F]61 and [11C]62 with limited brain 

penetration have already been mentioned above, which could be attributed to species 

difference.226 Subsequently, Chen et al.239 developed a novel reversible MAGL PET probe, 

[18F]FEPAD ([18F]63), based on the structure of [11C]62. [18F]63 showed excellent MAGL 

potency (IC50 = 23.8 nM) and target selectivity (> 100 fold) among any other major serine 

hydrolases. As a proof-of-concept, [18F]63 was used to differentiate brown and white 

adipose tissue in the lipid network. Indeed, [18F]63 had much higher uptake in BAT (peak 

value 21.4 %ID/g) than white adipose tissue (WAT, 3.5 %ID/g). Recently Hattori et al.240 

developed a novel MAGL PET tracer [18F]T-401 ([18F]64, IC50(human) = 4.0 nM, LogD = 

1.86) based on the piperazinyl pyrrolidine-2-one scaffold reported by Takeda 

pharmaceuticals. [18F]64 exhibited the highest uptake in the frontal cortex, followed by the 

striatum, and these results were consistent with the distribution of MAGL. The rhesus 

monkey PET imaging with [18F]64 exhibited reversible binding characteristics, and brain 

uptake of [18F]64 peaked immediately (SUVmax > 1.5) post injection, and subsequently 

decreased to 30–40% of the maximum at the end of 120 min scan.

4. PERSPECTIVES AND CONCLUSIONS

4.1 Opportunities in developing ECS PET tracers based on allosteric modulation

CB1R ligand development has proven challenging due to severe psychoactive adverse events 

observed with the majority of orthosteric CB1R ligands. The latter has prompted the focus 

towards allosteric CB1R modulators, providing an enhanced subtype-selectivity and 

reducing receptor downregulation as well as inter-receptor promiscuity – two detrimental 

effects observed with classical orthosteric CB1R ligands.241 Both CB1R and CB2R contain 

several allosteric binding sites.242, 243 Over the past few years, a number of synthetic or 

natural compounds were characterized as CB1R allosteric modulators.244–247 A detailed 

review on the pharmacological properties and therapeutic potential of these allosteric 

modulators has recently been reported by Khurana et al.248 Similarly, by computational 

modeling and molecular dynamics simulation, Dainese et al.249demonstrated that FAAH 

function can be fine-tuned by allosteric modulation. This discovery provided new concepts 

for the regulation of FAAH activity and the synthesis of allosteric FAAH inhibitors. Notably, 

the contemporary focus on allosteric modulators of the ECS has implications not only for 

therapeutic strategies but also for the development of ECS-targeted PET radioligands. Given 

that PET probes are crucial to facilitate drug development via target validation experiments, 

receptor occupancy and proper dose-finding studies, it is not surprising that there is a 

growing interest in radioligands that bind to allosteric sites of CB1R and CB2R. Indeed, 

allosteric binding sites are yet to be exploited in future tracer development programs and 

harbor a huge potential to improve our understanding of the ECS and to facilitate drug 

discovery on allosteric modulation.
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4.2 Opportunities in developing PET tracers for important yet understudied biological 
targets within ECS

Other serine hydrolases, in addition to FAAH and MAGL, are involved in the biosynthesis 

and metabolism of endocannabinoids and other lipids. For some of these serine hydrolases, 

covalent and/or reversible inhibitors have been reported, which could potentially provide a 

starting point for developing PET tracers. For example, ABHD12 and ABHD6 have been 

shown to contribute to total brain 2-AG hydrolysis activity and may make more specialized 

contributions to this process, especially in cell types with low MAGL expression. In this 

regard, ABHD6 and ABHD12 both show distinct cellular and subcellular expression 

patterns compared to MAGL and may regulate different 2-AG pools.7, 250 Development of 

PET tracers for ABHD6 and ABHD12 may facilitate an understanding of the potentially 

distinct roles played by these enzymes in 2-AG metabolism and signaling. There are several 

highly selective inhibitors available for ABHD6 and ABHD12 such as KT182, an orally 

active irreversible ABHD6 inhibitor251, and DO264 – an orally active reversible ABHD12 

inhibitor.252

The integral membrane serine hydrolases diacylglycerol lipase α (DAGLα) and DAGLβ 
have been identified as DAG lipases involved in the biosynthesis of 2-AG.253 Different 

isoform-selective and non-selective DAGL inhibitors have been reported, including KT109 

(DAGLβ isoform-selective, non-CNS active),254 and DO34 and DH376 (DAGLα/β dual, 

CNS active).255 Beyond serine hydrolases, other lipases of interest include NAPE-PLD, 

which converts NAPEs into NAEs and is involved in the biosynthesis of AEA. Recently, a 

CNS-active NAPE-PLD inhibitor, LEI-401, has been reported and characterized in mice.256

Development of PET-tracers based on inhibitors of key enzymes involved in eCB 

metabolism is an important step in the development and characterization of new drug 

candidates for ECS-related diseases.

5. Summary

During the past decades, a variety of CB1R radioligands have been synthesized and 

evaluated. Several tracers have been transitioned into clinical research studies, of which 

[11C]5 and [18F]10 have gained promising results in mental disorders, such as schizophrenia 

and addiction disorder. PET radioligands for CB2R have shown promise in 

neuroinflammatory animal models and postmortem human tissues of ALS patients. It should 

be noted that CB2R tracer development has been plagued by the lack of a suitable antibody/

ligand, which would allow the validation of autoradiographic findings and determination of 

CB2R Bmax in the CNS. Now that the crystal structure of CB2R has been resolved, it is 

envisioned that computational modeling may aid the development of a selective antibody/

ligand, thereby facilitating appropriate validation of PET probes in the pipeline.45 Since a 

major clinical trial tragedy in 2016, few attempts have been made to develop new FAAH 

radiotracers, which represents a current unmet clinical need. Conversely, the development of 

PET probes for MAGL has recently received growing attention with a plethora of 

structurally distinct radiolabeled MAGL inhibitors evaluated in vivo. Reversible inhibitor 

PET probes for MAGL, albeit in the nascent stage, will continue to be of interest in the 

future.
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Overall, the development of PET radioligands for ECS targets is a very energetic research 

field, which will lay the foundation for the research of diseases and the drugs related to the 

ECS. Nonetheless, only a few PET tracers displayed suitable lipophilicity and specificity 

from in vivo studies. Apart from improving the physical properties of the target compound, 

there are two primary areas of improvement needed. First of all, 18F-labeled tracers should 

be more actively developed because of its longer half-life than 11C, which potentially allows 

for longer scan times, diverse radiolabeling procedures, and remote regional distribution. 

The second important improvement is to develop and apply radiotracers with diverse binding 

characters (reversible and irreversible binding) to obtain comprehensive biological 

knowledge for quantification of the receptor in human subjects.257 Moreover, tracer 

validation requires continuous improvement of animal models, particularly regarding 

neuroinflammatory models that would accurately reflect alterations in the human ECS. 

Finally, advances in novel radiochemical technology,238 including [11C]CO2 fixation202 and 

SCIDY235, 237, 258 for radiofluorination, will enable the discovery and access to novel, 

innovative PET tracers and may ultimately improve the current standard of diagnostic and 

therapeutic options for patients.
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ABBREVIATION USED

AA arachidonic acid

AAI aminoalkylindoles

ABHD6 α/β hydrolase domain-6

ABHD12 α/β hydrolase domain-12

AD Alzheimer disease

ALS amyotrophic lateral sclerosis

AEA N-arachidonoylethanolamine

BAT brown adipose tissue

BBB blood-brain barrier

BP binding potential

CB1R cannabinoid receptors 1

CB2R cannabinoid receptors 2

CNS central nervous system

CVD cardiovascular dysfunction

CYP cytochrome P450

DS Dravet Syndrome

ECS endocannabinoid system

FAAH fatty acid amide hydrolase

GPCR G-protein coupled receptor
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HD Huntington’s disease

LGS Lennox-Gastaut Syndrome

MAGL monoacylglycerol lipase

MRI magnetic resonance imaging

NHP nonhuman primate

PD Parkinson’s syndrome

PBA-HD Problem Behavior Assessment for Huntington’s disease

PET positron emission tomography

PgP/Bcrp P-glycoprotein/breast cancer resistance protein

PK-PD pharmacokinetic-pharmacodynamic

RCYs radiochemical yields

SCIDY spirocyclic iodonium ylide

SPECT Single Photon Emission Computed Tomography

SUV standard uptake value

TRT Test–retest

VT volume of distribution

2-AG 2-arachidonoylglycerol
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Figure 1. 
Representative chemical structures for CB1R-specific PET tracers
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Figure 2. 
Representative chemical structures for CB2R-specific PET tracers
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Figure 3. 
Representative chemical structures for FAAH-specific PET tracers
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Figure 4. 
Representative chemical structures of MAGL-specific PET tracers
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Scheme 1. 
A general model for the ECS signaling in the nervous system
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Scheme 2. 
Pharmacological properties of FAAH and MALG inhibitors
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Table 1.

Radiolabeling and PET imaging application of CB1R specific tracers

Radioligand (RCYs)
PET imaging study

subject brain uptake

[11c]5

(16±5%
a
)

Rodents:obesity (myocardial 
imaging) NHP

Human: SZ; obesity (myocardial 
imaging); alcohol dependence

Mouse: 6.6 %ID/g (striatum, 15 min) Baboon: BP: 1.3 (putamen) Human: 
VT: 1.35±0.35 Human: SUVmax = 1.75±0.35 (putamen) Human: VT: 

0.72±0.07 (putamen)

[11C]6 (2.5%±1.1 %
b
) Rodents, NHP Human: SZ

Monkey: VT: 24.3 (mL/m3, striatum) Human: VT: 29.1±17.4 (putamen) 
Human: SUVmax= 3.5±0.5 (putamen)

[11C]7 (16.5%
b
) Rodents, NHP

Rat: high BBB permeability, high specificity to CB1R Monkey: SUVmax = 
3.3 (30 min)

[18F]8 (7.92±2.16%
b
) Rodents, NHP

Rat: high BBB permeability, high specificly to CB1R Monkey: SUVmax = 
2.75±0.75 (15 min)

[18F]9 (5.92%±1.34%
b
) Rodents, NHP

Rat: high BBB permeability, high specificity to CB1IR Monkey: SUVmax = 
5.75±0.75 (20 min)

[18F]10 (7.93±2.48%
b
)

Rodents: AD; BAT NHP
Human: chronic cannabis smokers; 
alcohol-dependent; SZ; Psychosis

Mouse: 1.5 %ID/mL (BAT) Monkey: SUVmax = 5.5±1.0 (20 min) Monkey: 
VT 35.4 (mL/m3, striatum) Human: SUVmax = 3.5±0.5 (putamen) Human: 

VT 24.3±7.2 (putamen)

[18F]11 (-)

Rodents: HD; PD NHP
Human: anorexia and bulimia 
nervosa; episodic migraine; 

epilepsy; HD

Rat, Monkey: high BBB permeability, high specificity to CB1R Human: 
SUVmax = 15±0.2 (putamen) Human: VT 25.1±13.3 (putamen)

[11C]12 (50%
a
) Rodents, NHP, Human

Monkey: VT: 2.36 (mL/m3, striatum) Human: SUVmax = 2.35±0.65 
(putamen) Human: VT: 3.15±0.70 (putamen)

[11C]15 (7.35±4.25%
b
) NHP Monkey: SUVmax = 2.2±0.5 (120 min)

[18F]16 (3.55±2.05%
b
) NHP Monkey: SUVmax = 1.8 (240 min)

[11C]7 (17±8%) Rodents: BAT Mouse: 2.8 %ID/mL (BAT)

a
non-decay corrected RCYs

b
decay corrected RCYs

The data of PET imaging are listed only in the control group.
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Table 2.

Radiolabeling and PET imaging application of CB2R specific tracers

Radioligand (RCYs)
PET imaging study

subject brain uptake

[11C]20 (32±11%, 40±12%) Rodents, NHP Human: AD
Mouse: SUVmax =1.2 (2 min)

Rat: SUVmax =1.4 (1.5 min) Monkey: SUVmax = 1.5 (1.5 min) 
Human:low CB2R availability in AD patients

[11C]21 (33%
a
)

Rodents: neuroinflammation, atherosclerosis
Human: ALS (spinal card tissues), 

atherosclerosis (specimen )
Rat: high BBB permeability specificly to CB2R

[18F]22 ( ~6%
a
 12.0±2.7%

a
)

Rodents: HD
Human: ALS (spinal cord tissues)

Rat: not sensitive to the CB2R overexpression Human: no 
specificly to CB2R

[11C]23 (41.7±8.7%
a
) Human: ALS (spinal cord tissues) Human: specificly to CB2R

[11C]26 (-) Rodents: neuroinflammation Rat: specificly to CB2R

[18F]27 (11±4%
a
)

Rodents
Human: ALS (spinal cord tissues)

Rat: SUVmax = 2.7±0.3 (2 min. Spleen) Human: specificly to 
CB2R

[11C]30 (26±2%
b
)

Rodents: neuroinflammation, AD, cerebral 
ischemia Mice:sensitive to the CB2R overexpression in the AD mice

[18F]31 (0.95±0.65%) NHP: neuroinflammation Monkey: SUVmax =0.85±0.15 (brain)

a
non-decay corrected RCYs

b
decay corrected RCYs
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Table 3.

Radiolabeling and PET imaging application of FAAH specific tracers

Radioligand (RCYs)
PET imaging study

subject brain uptake

[11C]36 (4%
a
)

Rodents, Human: cannabis 
addiction, alcohol use disorders, 

psychiatric, borderline personality 
disorder

Rat: SUVmax = 2±0.4 Human: SUVmax = 4.3±0.8 (putamen)

[11C]43 (20±4.6%
b
) Rodents, NHP Rat: SUVmax ~ 1.5 (cerebellar nucleus) Monkey: SUVmax = 2.0 (occipital cortex)

[11C]44 (19.5±2.5%
b
) Rodents, NHP Rat: SUVmax = 4.55±0.57 (cortex) Baboon: SUVmax=2.1 (whole brain,55 min)

[11C]45 (15±5%
b
) Rodents Rat: SUVmax = 7.8±0.1 (cortex,40 min)

[11C]46 (4.5±1.3%) Rodents Rat: SUVmax = 2.8±1.6

[11C]47 (10.7±4.4%
b
) Rodents SUV ~ 0.8 (cortex, 90 min)

[11C]50 (-) NHP, Human Monkey: BP: 0.7±0.3, VT: 3.5±0.5 Monkey: SUVmax >1 Human: VT: 17±3

[18F]51 (13%
a
)

Rodents Mice: SUVmax =0.87 (cerebellar nuclei, 1.5 min)

[18F]52 (17±6%
b
) Rodents 9.2 %ID/g

a
non-decay corrected RCYs

b
decay corrected RCYs

The data of PET imaging are listed only in the control group.
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Table 4.

Radiolabeling and PET imaging application of MAGL specific tracers

Radioligand (RCYs)
PET imaging study

subject brain uptake

[11C]53 (4.5±1.5%
a
, 20%

b
) Rodents, NHP

Rat: SUVmax= 1.75 (cerebral cortex and striatum)
Monkey: SUVmax= 0.93 (occipital cortex)

[11C]54 (19%
b
) Rodents Rat: SUVmax = 0.43 (cerebellum)

[11C]55 (40%) Rodents, NHP Mice, Rat: high BBB permeability, specificity to MAGL Monkey: SUVmax ~4.2, 2.5 min

[11C]56 (11%) Rodents, NHP
Rat: SUVmax >1.5

Monkey: SUVmax =1.7 (occipital cortex)

[11C]57 (2.5±0.4%
b
) Rodents Rat: SUVmax = 2.26 (3.5 min)

[11C]58 (15.0±6.8%
b
) Rodents Rat: SUVmax >1.5

[11C]59 (25%) Rodents, NHP Rat: high BBB permeability, specificity to MAGL Monkey: SUVmax ~3.5 (40 min)

[18F]60 (8%
a
) Rodents Mice: SUVmax = 1.75 (2.5 min)

[18F]63(13.0%) Rodents, BAT BAT: 21.4 %ID/g

[18F]64(21,7±3.0%
b
) Rodents, NHP Mice: 1.0±0.1% ID/g (biod,1 min) Monkey: SUVmax >1.5

a
non-decay corrected RCYs

b
decay corrected RCYs
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