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Abstract

Recent functional magnetic resonance imaging (fMRI) studies have demonstrated that moment-to-

moment variability in the blood oxygen level-dependent (BOLD) signal is related to age 

differences, cognition, and symptomatic Alzheimer disease (AD). However, no studies have 

examined BOLD variability in the context of preclinical AD. We tested relationships between 

resting-state BOLD variability and biomarkers of amyloidosis, tauopathy, and neurodegeneration 

in a large (N=321), well-characterized sample of cognitively normal adults (age=39–93), using 

multivariate machine learning techniques. Further, we controlled for cardiovascular health factors, 

which may contaminate resting-state BOLD variability estimates. BOLD variability, particularly 

in the default mode network, was related to CSF amyloid-β42, but was not related to CSF 

phosphorylated tau-181. Further, BOLD variability estimates were also related to markers of 

neurodegeneration, including CSF neurofilament light protein, hippocampal volume, and a cortical 

thickness composite. Notably, relationships with hippocampal volume and cortical thickness 

survived correction for cardiovascular health and also contributed to age-related differences in 

BOLD variability. Thus, BOLD variability may be sensitive to preclinical pathology, including 

amyloidosis and neurodegeneration in AD-sensitive areas.
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1. INTRODUCTION

Accumulating evidence suggests that Alzheimer disease (AD) is marked by a preclinical 

period of amyloid (A) deposition, hyperphosphorylated tau (T) aggregation, and 

neurodegeneration (N) in the years leading up to cognitive impairment and clinical diagnosis 

of dementia (Bateman et al., 2012; Hardy and Higgins, 1992; Jack et al., 2016, 2013). Since 

it is hypothesized that there is little reversible neuronal damage during this period, the 

identification of early AD biomarkers in the absence of clinical diagnosis is a critical step 

for improving early detection and prediction of AD. Functional magnetic resonance imaging 

(fMRI) has been used to non-invasively probe differences in task-related neural activity and 

functional connectivity of brain networks in both the preclinical and clinical stages of AD 

(for review, see Sheline and Raichle, 2013; Sperling et al., 2010). In addition to these 

methods, which are respectively based on mean levels of task-related change or spontaneous 

correlation in the blood oxygen-level dependent (BOLD) signal, more recent fMRI methods 

have considered moment-to-moment BOLD variability as a potential signal that might be 

distinct from task activation and functional connectivity approaches (for review, see Garrett 

et al., 2013; Grady and Garrett, 2014).

Initial studies of BOLD variability focused on relationships with healthy age differences and 

cognition. These studies have reported that BOLD variability throughout a wide range of 

grey matter areas is negatively related to age (e.g., Garrett et al., 2010, 2011; Hu et al., 2014; 

Nomi et al., 2017) and positively related to task performance (e.g., Burzynska et al., 2015; 

Garrett et al., 2011; Grady and Garrett, 2018). However, there are some mixed reports of 

region-specific positive relationships with age and negative relationships with some task 

measures, even within the same studies reporting broad patterns in the opposite direction 

(e.g., Burzynska et al., 2015; Garrett et al., 2011, 2010; Nomi et al., 2017). A variety of 

theoretical accounts for these relationships have been proposed, although the specific 

mechanism is still unclear. For instance, greater BOLD variability might optimize flexible 

responses in situations of environmental uncertainty (Deco et al., 2011; Grady and Garrett, 

2018) or might afford efficient communication within and between networks (Burzynska et 

al., 2015). In the present report, we explore the clinical utility of BOLD variability as a 

potential signal sensitive to preclinical AD pathology.

Previous studies have examined BOLD variability in the context of early cognitive decline 

by comparing cognitively normal controls to patient populations with mild cognitive 

impairment (MCI) or very mild to moderate dementia (Clinical Dementia Rating, CDR 0.5–

2). Most of these studies have characterized frequency-specific BOLD fluctuations using the 

absolute or fractional amplitude of low-frequency fluctuation (ALFF or fALFF). Although 

not a direct measure of variability per se, both ALFF and standard deviation (SD) 

approaches capture the degree of fluctuation in BOLD signal over time. Interestingly, there 

have been consistent reports that fluctuation power in the precuneus and posterior cingulate 

is lower in cognitively impaired individuals (Han et al., 2011; Liu et al., 2014; Zhao et al., 

2015). Notably, these regions are associated with early amyloid deposition (Mintun et al., 

2006) and dysfunction in early AD (Lustig et al., 2003; Sperling et al., 2009). However, 

there have been inconsistent findings in other regions, including mixed reports of AD-related 

increases and decreases in BOLD variability within medial temporal, prefrontal, parietal, 
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and temporal regions (Han et al., 2012, 2011; Liu et al., 2014; Xi et al., 2012; Zhao et al., 

2015). A recent study reported AD-related increases in BOLD SD also in superior frontal, 

precentral, and putamen regions (Scarapicchia et al., 2018). These studies suggest that 

BOLD fluctuations might be sensitive to early clinical stages of AD; however, the direction 

and anatomical specificity of these relationships remains unclear, perhaps in part due to 

small samples (average N = 23 per group, range = 16 to 34).

Although there is growing interest in BOLD variability in early clinical stages of AD, it has 

been understudied in the context of preclinical AD. This area might yield important findings 

for assessing the clinical utility of BOLD variability, as well as potential mechanisms. 

Specifically, if BOLD variability is indeed sensitive to clinically-relevant biomarkers, it 

might serve as a non-invasive, reliable signal of dysfunction in the preclinical stage. 

Moreover, although previous age relationships with BOLD variability have been interpreted 

to reflect healthy aging processes, it is possible that preclinical AD processes contribute to 

these “healthy” age relationships, as has been shown in functional connectivity (Brier et al., 

2014) and neuropsychological measures (Sliwinski et al., 1996). By first characterizing 

relationships between BOLD variability and preclinical AD biomarkers, we can begin to 

disentangle the influences of healthy aging and early pathological processes. Two recent 

studies (Good et al., 2020; Zhang et al., 2020) have demonstrated relationships between 

BOLD variability and structural estimates in the medial temporal lobe (possibly reflecting 

AD-related neurodegeneration), but no studies have examined relationships with amyloid or 

tau pathology.

The present study aims to examine relationships between BOLD variability and established 

biomarkers of preclinical AD pathology in a large, well-characterized sample of cognitively 

normal (CDR 0) older adults. Specifically, we will evaluate relationships with three 

categories of AD biomarkers: amyloidosis (A: cerebrospinal fluid [CSF] amyloid β 42 and 

amyloid PET), tauopathy (T: CSF phosphorylated tau-181), and neurodegeneration (N: CSF 

total tau, CSF neurofilament light protein, hippocampal volume, and a cortical thickness 

signature) (AT(N); Jack et al., 2016). Importantly, we will maximally control for head 

motion and global signal artifacts, since there is evidence that individual differences in these 

properties contribute to BOLD variability (Millar et al., 2020). In addition, we will examine 

any observed relationships after controlling for a cardiovascular health composite (CVH) 

and white matter hyperintensity burden (WMH), which have recently been shown to 

contribute to age relationships with BOLD variability (Millar et al., 2020; Tsvetanov et al., 

2015, 2019). Hence, we will evaluate the sensitivity of BOLD variability to biomarkers 

above and beyond potential contaminating factors. Further, we will apply a network-based 

ROI approach to assess anatomical specificity of relationships with BOLD variability. 

Specifically, if BOLD variability indeed reflects a meaningful signal, one should expect that 

relationships with biomarkers should follow an anatomical structure at the level of networks, 

particularly those that are sensitive to preclinical AD pathology (cf., Sheline and Raichle, 

2013). Finally, we will apply multivariate machine learning techniques to generate 

continuous predictions for untrained cases. These methods can evaluate the extent to which 

imaging measures offer predictive sensitivity to clinically-relevant processes (for review, see 

Cole and Franke, 2017; Nielsen et al., 2020). In sum, this study is designed to evaluate the 

potential clinical utility of BOLD variability as a sensitive signal related to biomarkers of 
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preclinical AD and begin to disentangle the influences of healthy age differences and early 

pathological processes on BOLD variability.

2. METHODS AND MATERIALS

2.1 Participants

As described previously (Millar et al., 2020), 323 older adult participants were selected from 

a larger longitudinal cohort at the Charles and Joanne Knight Alzheimer Disease Research 

Center (ADRC) at Washington University in St. Louis. The sample was selected on the basis 

of being cognitively normal as assessed by the clinical dementia rating scale (CDR 0; 

Morris, 1993), absence of severe psychiatric conditions, availability of at least one 

biomarker measure (see below), and a usable resting-state fMRI scan as defined by low 

mean head motion (FD < .20, see Millar et al., 2020). Table 1 provides the demographics of 

the sample. All procedures were approved by the Human Research Protection Office at 

Washington University in St. Louis. All participants provided informed consent prior to all 

procedures.

2.2 Cardiovascular Health Measures

Following previous methods (Millar et al., 2020; Tsvetanov et al., 2019), we calculated a 

composite of cardiovascular health (CVH). CVH measures included resting pulse, systolic 

blood pressure, and body mass index (BMI), and white matter hyperintensity (WMH) lesion 

volume. WMH volumes were assessed with a fluid-attenuated inversion recovery (FLAIR) 

sequence, after segmentation using the Lesion Segmentation Tool (LST; Schmidt et al., 

2012) for SPM 8. However, as reported in a mostly overlapping sample (Millar et al., 2020), 

correlations among the four measures were fairly small (rs = −.08 to .16). Moreover, WMH 

volume alone was strongly related to both age (r = .53, p < .001) and BOLD variability (r = 

−.21, p < .001), in contrast to other CVH measures. Hence, we used a CVH composite 

(including WMH) and the singular estimate of WMH. Importantly, the low correlations with 

CVH measures suggest that WMH might capture specific variance that is not broadly related 

to CVH.

2.3 CSF Biomarkers

Cerebrospinal fluid (CSF) was collected via lumbar puncture using methods described 

previously (Fagan et al., 2007). After overnight fasting, 20- to 30-mL samples of CSF were 

collected, then aliquoted (500 μL) in polypropylene tubes, and stored at −80°C. CSF 

amyloid β peptide 42 (Aβ42), phosphorylated tau-181 (pTau), and total tau (tTau) were 

measured with Elecsys immunoassays (Roche Diagnostics, Basel, Switzerland) (Schindler et 

al., 2018). A single lot of assays for each analyte was used to avoid lot-to-lot variability. 

Aβ42, pTau, and tTau are well established biomarkers in the AT(N) framework (Jack et al., 

2016). Using previously reported cutoffs (Schindler et al., 2018), 33.6% of the sample was 

identified with positive amyloid pathology, 39.6% with positive pTau, and 26.8% with 

positive tTau, suggesting that these individuals are in a preclinical stage of AD and are at 

increased risk for cognitive decline (Jack et al., 2018). We tested whether BOLD SD was 

sensitive to continuous variance in these biomarkers within the cognitively normal sample 

(CDR = 0, MMSE > 25, see Table 1).
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CSF neurofilament light (NfL) was measured with an ELISA immunoassay (Uman 

Diagnostics, Umeå, Sweden). NfL is an emerging biomarker of axonal damage, which has 

been shown to be modestly elevated in clinical-stage AD and predictive of cognitive decline 

in AD samples, but is also elevated in a wide range of neurodegenerative diseases (for 

review, see Gordon, 2020). Thus, NfL may reflect a non-specific marker of 

neurodegeneration.

2.4 PIB-PET Imaging

Amyloid burden was imaged with positron emission tomography (PET) using a [11C]-

Pittsburgh Compound B (PIB) tracer (Mintun et al., 2006). Regions of interest were 

segmented automatically using FreeSurfer 5.3 (Fischl, 2012). Regional standard uptake 

ratios (SUVRs) were modeled from the 30- to 60-minute post-injection window, using the 

cerebellum as a reference region. Global amyloid burden was defined as the mean of SUVRs 

from regions associated with elevated PIB retention in early-stages of AD (Mintun et al., 

2006), including bilateral precuneus, prefrontal cortex, gyrus rectus, and lateral temporal 

regions (Su et al., 2013).

2.5 Scanning Protocol and Preprocessing

MRI data were obtained using two separate Siemens Trio 3T scanners equipped with a 

standard 12-channel head coil. One-way analyses of variance (ANOVAs) revealed that there 

were significant differences between participants across scanners in measures of CSF Aβ42 

(F = 4.090, p = .007) and NfL (F = 5.142, p = .026), but not in pTau (F = 1.333, p = .264), 

PIB SUVR (F = 0.145, p = .865), hippocampal volume (F = 0.047, p = .986), or AD cortical 

signature (F = 1.300, p = .275). In order to examine the possibility that biomarker 

relationships with BOLD variability might be confounded by differences in the scanners, we 

replicated the results with each biomarker after controlling for scanner as a factor of non-

interest. Overall, the relationships were consistent after controlling for scanner differences 

(see Supplementary Results).

Structural and functional scans were acquired using methods described previously (Brier et 

al., 2012; Millar et al., 2020; Wisch et al., 2020). Structural scans were acquired with a 

sagittal T1-weighted magnetization-prepared rapid gradient echo sequence (MPRAGE; TR 

= 2400 ms, TE = 3.16 ms, flip angle = 8°, field of view = 256 mm, 1-mm isotropic voxels), 

as well as an oblique T2-weighted fast spin echo sequence (FSE; TR = 3200 ms, TE = 455 

ms, 256 × 256 acquisition matrix, 1-mm isotropic voxels). Functional scans were acquired 

with an interleaved whole-brain echo planar imaging sequence (EPI; TR = 2200 ms, TE = 27 

ms, flip angle = 90°, field of view = 256 mm, 4-mm isotropic voxels). Participants 

completed two consecutive 6-minute runs (164 volumes each) of functional imaging, during 

which they were instructed to stay awake and fixate on a visual crosshair.

Both resting state runs were processed together, using conventional methods (Brier et al., 

2012; Shulman et al., 2010), as well as conservative nuisance rejection including global 

signal regression and frame-wise motion censoring (Fox et al., 2009). See the 

Supplementary Methods for detailed description of these procedures. Motion-related 

differences in the number of censored frames might confound BOLD variability estimates. 
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Thus, we analyzed BOLD variability within a subset of 120 randomly-selected usable 

frames from either run for each participant. Two participants with fewer than 120 usable 

frames were excluded (final N = 321).

2.6 Structural MRI Measures

T1-weighted images were subjected to volumetric segmentation with FreeSurfer 5.3 (Fischl, 

2012). Regional volumetric estimates were corrected for intra-cranial volume using 

regression normalization (Buckner et al., 2004). Bilateral volumetric estimates were 

summed across hemispheres, while thickness estimates were averaged across hemispheres. 

An AD cortical signature composite was defined as the mean of thickness estimates from 

entorhinal cortex, fusiform gyrus, inferior, middle, and superior temporal gyri, superior and 

inferior parietal lobules, posterior cingulate gyrus, and precuneus. Thinning in these regions 

has been associated with estimates of tau in CSF and PET (Wang et al., 2016, 2015). Thus, 

the cortical signature may reflect neurodegeneration that is characteristic of, but not 

necessarily specific to, AD-related pathology. To assess the specificity of structural 

relationships, we also examined thickness in control regions sensitive to age-related thinning 

and/or minimally sensitive to AD: superior frontal, precentral, and rostral anterior cingulate 

gyri (Bakkour et al., 2013; Fjell et al., 2009).

2.7 Calculation of BOLD Variability

As described previously (Millar et al., 2020), final BOLD data were averaged across voxels 

within 298 grey matter ROIs (Power et al., 2011; see Seitzman et al., 2020 for a figure), 

including 243 10-mm cortical spheres, 28 8-mm subcortical spheres, and 27 8-mm spheres 

in the cerebellum. Importantly, each ROI has been assigned to one of 14 networks, 

including: somatomotor (SM), lateral somatomotor (SML), cingulo-opercular (CO), auditory 

(AUD), default mode (DMN), parietal memory (PMN), visual (VIS), fronto-parietal (FPN), 

salience (SAL), subcortical (SUB), ventral attention (VAN), dorsal attention (DAN), and 

cerebellum (CER) networks, as well as ROIs that were unassigned to a network (N/A). In 

each ROI, we calculated SD of BOLD signal over the 120 selected usable frames. Of course, 

because the BOLD variability approach is based on the SD within an ROI rather than 

correlations between ROIs, as in functional connectivity, we considered variability within 

ROIs or networks as our primary fMRI measure of interest.

2.8 Support Vector Regression

Support vector regression (SVR) is a supervised machine learning technique in which a 

model is trained to identify multivariate relationships. We used this approach to generate 

continuous predictions about label values (i.e., AT(N) biomarkers) from models trained on 

multivariate feature sets (i.e., BOLD SDs in the 298 ROIs). SVR analyses were conducted 

using the e1071 package in R (Meyer et al., 2017). We performed epsilon-insensitive SVR, 

as described previously (Dosenbach et al., 2010; Millar et al., 2020; Nielsen et al., 2019). 

Briefly, SVR fits a regression line in multivariate space between the feature set and the label 

values. A tube of width epsilon is defined around the regression line. Data points outside this 

tube are penalized, while points inside the tube are not. The penalty factor C determines the 

trade-off between training error and model complexity. All SVR analyses were performed 

with epsilon = 0.00001 and C = infinity, based on previous reports predicting age from 
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functional connectivity (Dosenbach et al., 2010; Nielsen et al., 2019) and BOLD variability 

(Millar et al., 2020).

Importantly, the SVR model is trained on a subset of cases, allowing for the assessment of 

model prediction in an unseen testing set. Specifically, we evaluated predictive accuracy 

using 10-fold cross-validation. For each fold, a non-overlapping set of 10% of the sample 

served as the testing set. The remaining 90% served as the training set. Thus, across the 10 

folds, the SVR model predicted a label value for each participant. We quantified predictive 

accuracy as R2 between the model-predicted and the true label values for each participant. 

We tested the predictive accuracy of SVR models trained on the full feature set of BOLD SD 

values from all 298 ROIs. Specifically, we tested the performance of these models to predict 

AT(N) biomarkers.

2.9 Assessment of Network Specificity of Relationships

As described previously (Millar et al., 2020), network specificity of relationships with 

BOLD SD was assessed in two ways. First, univariate network-level relationships were 

tested using a bootstrap approach. Specifically, we randomly generated 10,000 samples by 

resampling the dataset with replacement. In each bootstrap sample, we calculated the 

Pearson correlation coefficients between the biomarker and BOLD SD in each ROI, 

uncorrected for multiple comparisons. We then averaged the correlation coefficients across 

ROIs within each network. Across bootstrap samples, we then calculated the empirical 95% 

confidence interval for each network-level correlation.

Second, we assessed the multivariate predictive accuracy of networks using network-specific 

feature selection. Each network-specific SVR model predicted biomarker labels from a 

limited feature set of regions restricted to a single network and was evaluated using 10-fold 

cross validation. Since larger networks should perform better simply due to a greater number 

of features, which might capture a related signal by chance, we compared SVR performance 

for network-specific feature sets to a bootstrapped distribution of 10,000 randomly selected 
feature sets (i.e., random regions from any network), matched in the number of features. 

Hence, this distribution is an appropriate null model to test whether signals are localized to 
specific networks or instead broadly distributed throughout the brain (Nielsen et al., 2020).

3. RESULTS

3.1 Relationships with Amyloid Biomarkers

3.1.1. CSF Aβ42.—As shown in Fig. 1A, there were positive trends in most networks 

such that reduced CSF Aβ42, indicative of preclinical amyloidosis, was related to lower 

BOLD SD. However, these trends did not reach statistical significance in any network. 

Interestingly, as shown in Fig. 1B, SVR models successfully predicted CSF Aβ42 from the 

full feature set of BOLD SD in all 298 ROIs (R2 = .028, p = .007). Hence, there may be a 

multivariate pattern in BOLD SD that captures a small, but significant portion of variance in 

CSF Aβ42. We evaluated this multivariate relationship in specific networks using network-

driven feature selection. As shown in Fig. 2A, BOLD SD within the DMN was particularly 

successful in predicting CSF Aβ42 (R2 = .047). This level of performance might be 
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expected, since the DMN includes a large number of individual features and may capture 

amyloid-related signal by chance. Hence, we compared SVR performance from the DMN to 

a bootstrapped distribution of 10,000 randomly selected feature sets of equal set size from 

any network. SVR performance from the DMN significantly outperformed this bootstrapped 

distribution (empirical p = .025). Hence, although the multivariate relationship between 

BOLD SD and CSF Aβ42 is relatively small, it may be specific to networks associated with 

early amyloid deposition (Mintun et al., 2006).

3.1.2. PIB-PET.—Next, we examined relationships between BOLD SD and PIB-PET 

estimates of amyloid deposition. As shown in Fig. 1C, PIB SUVR was not related to BOLD 

SD in any network. Moreover, as shown in Fig. 1D, SVR models were not able to predict 

PIB SUVR from BOLD SD (R2 < .001, p = .892). Thus, the relationship between amyloid 

and BOLD SD observed in the CSF does not replicate using a PET imaging marker of 

amyloid deposition.

3.2 Relationships with Tau Biomarkers

3.2.1. pTau.—As shown in Fig. 1E, pTau was not related to BOLD SD in any network. 

Moreover, as shown in Fig. 1F, SVR models were not able to predict pTau (R2 = .004, p 
= .310) (tTau SVR R2 = .006, p = .217). Although CSF pTau and tTau are hypothesized to 

reflect distinct processes of tauopathy and neurodegeneration (Jack et al., 2016), they are 

highly correlated in AD samples (r = .98, p < .001 in the present sample). Unsurprisingly, 

relationships with BOLD SD were consistent for both pTau and tTau. Hence, we only report 

findings for pTau in Fig. 1.

Since we evaluated biomarker relationships continuously within a cognitively normal 

sample, it is possible that disease heterogeneity might contribute to the null relationships 

with tau pathology. Specifically, we did not exclude Aβ42-negative participants with 

elevated pTau, which might reflect suspected non-Alzheimer pathophysiology (SNAP; Vos 

et al., 2013). Thus, we examined relationships with pTau within specific subsamples, 

including Aβ42-positive (likely preclinical AD), Aβ42-negative (likely SNAP), and 

apolipoprotein (APOE) ε4-positive (increased genetic risk of AD) participants. However, the 

lack of relation between BOLD SD and CSF pTau was consistent within each subsample 

(see Supplementary Results).

3.3 Relationships with Biomarkers of Neurodegeneration

3.3.1. NfL.—As shown in Fig. 3A, there were marginal negative relationships between 

NfL and BOLD SD in somatomotor, auditory, visual, frontoparietal, and dorsal attention 

networks. Further, as shown in Fig. 3B, SVR models marginally predicted NfL from BOLD 

SD (R2 = .040, p = .044). Again, we evaluated the network specificity of this multivariate 

relationship using network-driven feature selection. As shown in Fig. 2B, BOLD SD in the 

lateral somatomotor network was particularly successful in predicting NfL (R2 = .082). SVR 

performance from these features significantly outperformed randomly selected regions (p 
= .01).
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3.3.2. Hippocampal volume.—As shown in Fig. 3C, there were significant positive 

relationships between hippocampal volume (HCV) and BOLD SD in all networks. This 

relationship was strongest in the subcortical network. Further, as shown in Fig. 3D, SVR 

models successfully predicted HCV (R2 = .231, p < .001). Again, we evaluated the network 

specificity of this relationship using network-driven feature selection. As shown in Fig. 2C, 

BOLD SD in the subcortical network was particularly successful in predicting HCV (R2 

= .196). SVR performance from these features significantly outperformed randomly selected 

regions (empirical p = .003). Hence, although HCV is related to BOLD SD in a broad range 

of networks beyond the hippocampus, there appear to be particularly strong relationships in 

subcortical areas.

3.3.3. AD Signature.—As shown in Fig. 3E, there were marginal to significant positive 

relationships between the AD signature cortical thickness composite and BOLD SD in a 

range of sensory, motor, and association networks. Further, as shown in Fig. 3F, SVR models 

successfully predicted AD signature cortical thickness (R2 = .159, p < .001). Similar to 

HCV, BOLD SD in the subcortical network was particularly successful in predicting the AD 

signature (R2 = .144, see Fig. 2D). SVR performance from these features significantly 

outperformed randomly selected regions (empirical p < .001), as did lateral somatomotor 

features (R2 = .024, empirical p = .004). Notably, these networks were also particularly 

sensitive to other neurodegenerative measures included in the present report: respectively, 

HCV and NfL.

3.3.4. Control Regions.—In addition to the AD-sensitive regions, we also tested 

relationships with estimates of thickness in regions sensitive to age-related cortical thinning 

and/or minimally sensitive to AD. To summarize, we found that BOLD SD was somewhat 

sensitive to thickness in these regions, but in comparison to the HCV and AD signature 

relationships, the correlations were much smaller and the SVR models exhibited reduced 

predictive accuracy. See the Supplementary Results for full details.

3.4 CVH- and WMH-Related Influences on Biomarker Relationships

Other studies have previously demonstrated that vascular factors might contribute to age 

differences in BOLD SD (Tsvetanov et al., 2015, 2019). Thus, it is possible that 

relationships with CSF and structural biomarkers might also be sensitive to vascular 

mechanisms. To examine this possibility, we attempted to replicate SVR prediction of CSF 

Aβ42, NfL, HCV, and AD cortical thickness signature using residual values of BOLD SD 

after regressing out either the CVH composite or WMH burden. This method has been 

shown to attenuate SVR prediction of age and cognition from BOLD SD (Millar et al., 

2020).

As shown in Table 2, only the relationship with CSF Aβ42 was attenuated after controlling 

for CVH. Multivariate relationships with NfL, HCV, and the AD signature cortical thickness 

estimates remained marginally to highly significant with largely comparable, but somewhat 

reduced, predictive accuracy. In contrast, BOLD SD relationships with all biomarkers were 

drastically reduced after controlling for WMH. However, even after controlling for WMH, 
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BOLD SD still captured a significant portion of variance in both HCV and the AD cortical 

thickness signature, although, as noted, the predictive accuracy was much smaller.

It is somewhat surprising that controlling for CVH and WMH produced such different 

patterns in the relationships with biomarkers of neurodegeneration, especially considering 

that WMH is included in the CVH composite. One possible explanation is that WMH may 

capture a distinct source of variance from general cardiovascular health. Indeed, as noted, 

we observed only weak relationships among the CVH composite measures. Specifically, 

WMH may reflect progressive small vessel disease associated with cardiovascular health 

across the lifespan (Pantoni, 2010; Schmidt et al., 1999), whereas the other CVH composite 

factors (i.e., pulse, blood pressure, BMI) may be more sensitive to current fluctuations in 

CVH and modulated by medication and lifestyle factors. It is possible that cumulative injury, 

captured by WMH, may be particularly important in explaining relationships between 

BOLD variability and neurodegeneration. In this light, WMH may be sensitive to co-

occurring neurodegeneration, as opposed to CVH per se. Moreover, it is also possible that 

WMH may also be sensitive to distinct pathological processes, including, for instance, 

traumatic brain injury (Marquez De La Plata et al., 2007) or multiple sclerosis (Filippi et al., 

2011). Thus, the other estimates of CVH may add a distinct, unrelated signal to the 

composite. However, it is also worth noting that overall WMH levels were relatively low in 

this sample, due to screening of the cohort. Hence, it is possible that different patterns might 

be observed in a sample with greater WMH burden.

3.5 Biomarker-Related Influences on Age Relationships

Finally, after characterizing relationships between BOLD SD and biomarkers of amyloid 

deposition and neurodegeneration, we examined whether these biomarkers might contribute 

to age-related variance in BOLD SD. To that end, we attempted to replicate relationships 

between age and BOLD SD using residual BOLD SD values after regressing out one of the 

related biomarkers. Importantly, we compared these results to analyses controlling for 

WMH, which as discussed, has been shown to attenuate age relationships with BOLD SD.

As shown in Fig. 4A, in the original BOLD SD values, we replicated the general pattern of 

significant negative relationships with age. SVR models successfully predicted age from 

these original BOLD SD values (R2 = .239, p < .001). After controlling for WMH, we 

replicated non-significant negative trend-level relationships between age and BOLD SD, as 

shown in Fig. 4B. SVR prediction of age was not successful when BOLD SD was corrected 

for WMH (R2 < .001, p = .754), consistent with previous results (Millar et al., 2020).

In contrast, after controlling for CSF Aβ42, significant negative relationships with age were 

observed in most of the same networks as the original analyses, as shown in Fig. 4C. SVR 

prediction of age was highly successful after correcting for CSF Aβ42 (R2 = .172, p < .001), 

suggesting that age- and amyloid-related influences on BOLD SD might be distinct. After 

controlling for NfL, negative trend-level relationships with age were preserved in many 

networks, although these relationships were no longer significant, as shown in Fig. 4D. This 

change may be the result of the relatively small sample size of participants with NfL (N = 

102). Thus, relationships between age and BOLD SD might be less stable in this subsample. 
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However, SVR prediction of age was highly successful after correcting for NfL (R2 = .140, p 
< .001).

Turning to the structural biomarkers, after controlling for HCV, negative relationships with 

age were largely eliminated. Rather, as shown in Fig. 4E, only positive trends were observed 

in cerebellum and unassigned regions. After controlling for the AD cortical thickness 

signature, negative trend-level relationships with age were observed, but were not significant 

in most networks, as shown in Fig. 4F. SVR prediction of age was not successful after 

correcting for HCV (R2 < .001, p = .748) or the AD cortical thickness signature (R2 < .001, 

p = .969). Thus, age relationships with resting-state BOLD SD might be sensitive to a 

mechanism related to grey matter structure in AD-sensitive regions.

4. DISCUSSION

The present study aimed to evaluate relationships between resting-state BOLD variability 

and established biomarkers of early pathological processes associated with AD. To review 

the noteworthy results, we found small, but significant relationships between BOLD 

variability and CSF measures of Aβ42 and NfL, but no relationships with tTau or pTau. 

Further, we found stronger relationships with structural MRI measures of HCV and the AD 

signature cortical thickness, but no relationships with PIB-PET imaging of amyloid 

deposition. Importantly, relationships with the structural biomarkers survived correction for 

a CVH composite and WMH burden, although the predictive accuracy was reduced. Finally, 

we demonstrated that inverse age relationships with BOLD variability were reduced or 

eliminated after controlling for structural biomarkers, but not after controlling for CSF 

Aβ42. We now discuss each of these findings, focusing on their implications for the 

interpretation of resting-state BOLD variability and potential for application as a clinically-

relevant biomarker.

4.1 Relationships with Amyloid Deposition

The most novel aspect of this study was the evaluation of relationships between resting-state 

BOLD variability and biomarkers of AD-related pathology in cognitively normal 

individuals. As preclinical AD pathology begins in the brain, some of the earliest observable 

changes include a reduction of CSF Aβ42 and increased uptake on PET amyloid imaging 

(Bateman et al., 2012). We observed trend-level relationships between CSF Aβ42 and 

BOLD variability across a wide range of networks, suggesting that early pathological 

reductions in CSF Aβ42 may be associated with reduced BOLD variability. Importantly, 

multivariate SVR models successfully predicted CSF Aβ42 from BOLD variability, 

particularly within the DMN, which includes regions associated with early amyloid 

deposition (Buckner et al., 2005). Hence, network-specific estimates of BOLD variability in 

the DMN might capture significant, but small, portions of variance in early amyloid 

pathology. This finding is consistent with previous reports that BOLD variability in specific 

DMN regions (i.e., precuneus and posterior cingulate) is reduced in MCI and early 

symptomatic AD samples (Han et al., 2011; Liu et al., 2014; Zhao et al., 2015). Here we 

extend upon these results to include novel relationships with preclinical amyloidosis. 

Moreover, this finding is also in line with previous reports that both task-related over-
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activation (Sperling et al., 2009) and reduced functional connectivity (Hedden et al., 2009; 

Wang et al., 2013) within the DMN are also associated with preclinical amyloidosis.

Interestingly, relationships between BOLD variability and CSF Aβ42 did not survive 

correction for a CVH composite or WMH burden. Similar corrections have been shown to 

reduce or eliminate age relationships with BOLD variability (Millar et al., 2020; Tsvetanov 

et al., 2015, 2019). Hence, the influence of amyloid on BOLD variability may be sensitive to 

mechanisms related to CVH or WMH burden. For instance, amyloid pathology might lead to 

microhemorrhages as observed in cerebral amyloid angiopathy (Pantoni, 2010; Vinters, 

1987).

Although the CSF Aβ42 results suggest that resting-state BOLD variability may be sensitive 

to early amyloid pathology, we did not observe relationships with PIB-PET imaging of 

amyloid deposition. One limitation of these analyses is that the continuous estimates of PIB 

SUVR are highly skewed, potentially hindering statistical tests. Hence, we supplemented the 

reported analyses with additional approaches, including a log-transform of the SUVR 

values, as well as dichotomous SVR prediction of individuals above or below a threshold of 

PIB positivity. However, these methods did not increase sensitivity. Another potential 

explanation for the inconsistency is relative differences in statistical power for the two 

measures, due to differences in sample size. Indeed, there were fewer participants with PIB 

imaging than there were with CSF Aβ42 (Ns = 181 vs. 250). Alternatively, it is has been 

noted that changes in CSF amyloid might be observed earlier in the disease progression than 

changes in PET binding (Vlassenko et al., 2016). Thus, CSF Aβ42 might capture distinct 

aspects of amyloid pathology that are more strongly related to BOLD variability than PET 

measures. Further work is necessary to evaluate the consistency of BOLD variability 

relationships with CSF and PET measures of amyloid.

4.2 Relationships with Tauopathy

In contrast to CSF Aβ42, we did not observe relationships between resting-state BOLD 

variability and CSF pTau. This pattern was consistent within Aβ42-positive, Aβ42-negative, 

and APOE ε4-positive subsamples in which pTau variance might be driven by distinct 

disease processes (see Supplementary Results). Moreover, this finding is consistent with 

recent demonstrations that measures of amyloidosis, but not tauopathy, are related to 

reduced global intra-network functional connectivity using fMRI (Wisch et al., 2020), as 

well as disruption of hubs within multiplex functional networks using MEG (Yu et al., 

2017). Thus, functional estimates of variability and connectivity might be sensitive to early 

(amyloid), but not intermediate (tau), stages of preclinical AD pathology (Jack et al., 2016).

Although we failed to detect relationships with CSF pTau, we did not examine relationships 

between BOLD variability and regional tau accumulation as imaged using tau PET. These 

measures were available in the cohort, but there was excessive temporal delay between the 

tau PET scans and the resting-state fMRI sessions evaluated in the current study. Tau PET 

might be more sensitive to BOLD variability and should be investigated in future studies.
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4.3 Relationships with Neurodegeneration

The strongest relationships with resting-state BOLD variability were observed in measures 

of grey matter volume and cortical thickness. Specifically, BOLD variability in a wide range 

of networks was sensitive to HCV and an AD signature cortical thickness composite. 

Although HCV and AD signature areas are associated with neurodegeneration in early AD, 

it is unclear whether BOLD variability captures AD-specific pathology in these 

relationships. In the absence of large, consistent relationships with amyloid deposition, 

BOLD SD might instead capture non-specific neurodegeneration that may arise through 

distinct pathological mechanisms. However, relationships with AD-related structural 

measures were relatively strong compared to control regions that are not typically as 

sensitive to AD (see Supplementary Results), suggesting that BOLD SD may be particularly 

sensitive to neurodegeneration in areas that are characteristic of, but not specific to, AD-

related pathology. Thus, BOLD variability might be sensitive to two stages of pathological 

progression – early amyloidosis and later neurodegeneration – which resemble recent 

demonstrations in functional connectivity (Wisch et al., 2020).

The present results are consistent with a recent demonstration that greater low-frequency 

BOLD SD in the precuneus was associated with greater HCV in a sample of 96 AD, 96 

aMCI, and 48 cognitively normal participants (Zhang et al., 2020). However, another study 

in a smaller sample of 20 cognitively normal and 20 “at-risk” participants (defined as low 

performance on the Montreal cognitive assessment) demonstrated relationships in the 

opposite direction, such that BOLD SD in medial temporal areas was associated with 

smaller medial temporal volumes (Good et al., 2020). The present results instead suggest 

that HCV might be positively related to BOLD SD throughout a wide range of networks in a 

large (N = 318) cognitively normal sample. Inconsistencies between these findings may be 

the consequence of differences in clinical staging of the samples, sample size, or processing 

of the functional and structural estimates.

The AD-sensitive structural measures demonstrated particularly strong relationships with 

BOLD variability in the subcortical network. Although subcortical areas are not typically 

implicated in early sporadic AD pathology, other studies have reported unique findings 

regarding BOLD variability in these areas. For instance, Garrett and colleagues (2018) found 

that BOLD variability in the thalamus demonstrated a particularly strong relationship with 

network integration (defined as resting-state PCA dimensionality). Moreover, aging studies 

have reported mixed findings of age-related increases (Garrett et al., 2011, 2010; Guitart-

Masip et al., 2016) and decreases (Millar et al., 2020; Nomi et al., 2017) in subcortical 

BOLD variability. Together, these findings suggest that subcortical areas might serve a 

unique role in age- and AD-related differences in BOLD SD, possibly related to 

characteristics of network organization and structural atrophy. These relationships should be 

further examined in future studies.

It is also noteworthy that BOLD variability relationships with HCV and AD signature 

cortical thickness were reduced, yet remained significant, after controlling for CVH and 

WMH burden. Hence, BOLD variability may be sensitive to a neurodegeneration 

component, even after controlling for influences related to CVH and/or small vessel disease 

pathology. However, evidence from CSF biomarkers only partly supports this interpretation. 
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Specifically, BOLD variability was marginally sensitive to NfL, a marker of non-specific 

axonal neurodegeneration. However, relationships between NfL and BOLD SD did not 

survive correction for CVH and WMH, suggesting that they might be mediated by these 

factors.

4.4 Heathy Aging vs. Early Pathological Influences on BOLD Variability

One aim of the present study was to evaluate whether early pathological processes might 

contribute to age differences in resting-state BOLD variability. Notably, we replicated 

negative relationships with age after correcting for CSF Aβ42 and NfL, both of which were 

marginally related to BOLD variability in the current sample. Hence, age relationships with 

BOLD variability are not likely driven by amyloid deposition or axonal neurodegeneration 

mechanisms.

However, age relationships with BOLD variability were eliminated or drastically reduced 

after correcting for HCV or AD signature cortical thickness. Hence, age-related differences 

in BOLD variability may be driven in part by grey matter neurodegeneration. These findings 

stand in contrast to a recent report from Tsvetanov and colleauges (2019), in which age 

relationships with BOLD variability were totally eliminated after controlling for 

cardiovascular health and cerebral blood flow, but not after controlling for grey matter 

volume. Notably, Tsvetanov and colleauges (2019) corrected estimates of BOLD variability 

for grey matter volume within each overlapping voxel or independent component. In 

contrast, in the present report, we corrected estimates of BOLD variability in all ROIs for 

specific structural estimates of only HCV or AD signature cortical thickness, and thus the 

interpretation of structural-functional relationships is slightly different. Hence, the present 

results suggest that age-related differences in BOLD variability throughout the brain may be 

sensitive to neurodegenerative processes in these AD-sensitive regions, which were not 

examined by Tsvetanov and colleauges (2019).

4.5 Limitations & Future Directions

Although we present novel relationships between BOLD variability and CSF biomarkers of 

Aβ42 and NfL, our interpretations of these relationships are limited by their relatively small 

effect sizes. This may be in part due to our conservative control of motion and global signal 

artifacts in our analytic approach. The relatively small magnitude of these effects is also 

likely a consequence of testing these relationships in cognitively normal individuals, which 

of course is critical to the aim of testing relationships with preclinical pathology. Hence, 

these relationships should be replicated in an independent sample.

Additionally, as noted, MRI data were collected on two separate Siemens Trio 3T scanners 

and thus, there may be scanner-related differences in both functional and structural 

measures. Although we replicated the main biomarker results in residualized estimates after 

regressing out scanner differences (see Supplementary Results), future studies should 

replicate these effects with large samples collected on the same scanner or applying more 

advanced methods to harmonize data across scanners (Fortin et al., 2018; Yu et al., 2018).

Also, as noted, our findings regarding the influence of CVH and WMH may be limited 

based on selection of the sample. Overall levels of WMH were relatively low in comparison 
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to the general aging population, due to screening of the cohort. Thus, these results should be 

replicated in a sample with greater vascular risk.

Finally, our analyses were limited to cross-sectional relationships among BOLD SD, the 

AT(N) biomarkers, cardiovascular measures, and age. Thus, although we observed 

reductions in sensitivity of BOLD SD after correcting for cardiovascular or structural 

measures, we cannot assume that they reflect causal contributions to the biomarker and age 

relationships, as they may be driven by accounting for shared variance among the measures.

4.6 Conclusions

Resting-state BOLD variability is potentially a clinically-informative signal, but it is 

currently understudied in the area of preclinical AD. The present study provides novel 

insights into the sensitivity of resting-state BOLD variability to preclinical pathological 

processes, as well as healthy age differences. Specifically, reductions in BOLD variability 

within the DMN may reflect subtle preclinical dysfunction as a consequence of amyloid 

deposition in these areas, in line with previously noted differences in task activation and 

functional connectivity. Additionally, reduced BOLD variability, particularly in subcortical 

regions, may also be sensitive to non-specific neurodegenerative processes in AD-sensitive 

regions, including hippocampus and the AD signature regions. This neurodegeneration-

related change may largely contribute to observed age relationships with BOLD variability, 

in addition to possible cardiovascular and WMH-related factors. Hence, differences in 

resting-state BOLD variability may reflect a combined influence of cardiovascular and 

neuronal factors.
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Figure 1. 
Relationships between BOLD SD and biomarkers of amyloid and tau: CSF Aβ42 (A & B), 

PIB SUVR (C & D), and CSF pTau (E & F). Boxplots (A, C, & E) display the bootstrapped 

distribution of network average Pearson correlation values between BOLD SD and the 

biomarkers. Solid black lines denote the median of the distribution. Dotted whisker lines 

denote the spread of datapoints up to 1.5 times beyond the width of the IQR. Datapoints 

beyond the whiskers denote possible outliers. Solid red lines denote the empirical 95% 

confidence interval of the bootstrapped samples. Scatterplots (B, D, & F) display SVR 

prediction results for the biomarkers. Label values predicted by the model are plotted as a 

function of the true value. Aβ42 = amyloid β peptide 42, PIB = [11C]-Pittsburgh Compound 

B, SUVR = standard uptake ratio, pTau = phosphorylated tau-181, SVR = support vector 

regression
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Figure 2. 
Performance of SVR models predicting Aβ42 (A), NfL (B), hippocampal volume (C), and 

AD signature (D) across a range of feature sets (from 5 to 295). Colored diamonds denote 

anatomical feature selection schemes, in which features included only ROIs from a specific 

network. Each network-specific model was compared to 10,000 simulated models using 

randomly selected feature sets from any functional network. For simplicity, only 25 of the 

simulated models are plotted for each feature set size (black dots). E. Color key for network 

identities. Aβ42 = amyloid β peptide 42, NfL = neurofilament light, AD signature = 

Alzheimer disease signature region cortical thickness composite
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Figure 3. 
Relationships between BOLD SD and biomarkers of neurodegeneration: CSF NfL (A & B), 

hippocampal volume (C & D), and AD signature (E & F). Boxplots (A, C, & E) display the 

distribution and empirical 95% confidence interval (red lines) of bootstrapped distributions 

of network average Pearson correlations. Scatterplots (B, D, & F) display biomarker 

measures predicted by SVR model as a function of true score. NfL = neurofilament light, 

AD signature = Alzheimer disease signature region cortical thickness composite
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Figure 4. 
Boxplots of the distribution and 95% confidence interval (red lines) of bootstrapped 

distributions of network average Pearson correlations between BOLD SD and age. 

Relationships are shown for uncorrected BOLD SD (A), as well as after controlling for 

WMH (B), Aβ42 (C), NfL (D), HCV (E), and AD signature (F). WMH = white matter 

hyperintensity volume, Aβ42 = amyloid β peptide 42, NfL = neurofilament light, HCV = 

hippocampal volume, AD signature = Alzheimer disease signature region cortical thickness 

composite
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Table 1.

Demographic and summary measures of the sample.

Measure (units) N Mean (SD) Range

Demographic Age (years) 321 66.76 (9.28) 39 – 93

Sex (N female / N male) 321 194 / 127 NA

Education (years) 321 16.01 (2.56) 10 – 20

Race (N white / N black / N Asian) 321 299 / 20 / 2 NA

Mean Head Motion (mm FD) 321 0.14 (0.04) 0.05 – 0.2

MMSE (score) 265 29.16 (1.1) 26 – 30

CSF Biomarkers Aβ42 (pg/mL) 250 1389.54 (604.38) 307.6 – 3385

pTau (pg/mL) 250 19.75 (9.93) 8 – 70.08

tTau (pg/mL) 250 216.94 (92.77) 80 – 609.3

NfL (pg/mL) 102 1518.82 (781.47) 391.75 – 4124.7

Imaging Biomarkers PIB PET (mean cortical SUVR) 181 1.23 (0.53) 0.86 – 3.77

Adjusted hippocampal volume (mm3) 318 7815.49 (951.86) 4861.98 – 10123.83

Cardiovascular Pulse (BPM) 314 67.96 (9.74) 41 – 108

Systolic Blood Pressure (mmHg) 319 125.44 (15.87) 88 – 168

BMI (kg/m2) 319 26.51 (4.74) 14.09 – 47.37

WMH volume (mm3) 231 13117.19 (16300.84) 48.45 – 86112.11

FD = framewise displacement, MMSE = Mini Mental State Examination, Aβ42 = CSF Amyloid β peptide 42, pTau = CSF phosphorylated tau-181, 
tTau = CSF total tau, NfL = CSF neurofilament light, PIB PET = [11C]-Pittsburgh Compound B Positron Emission Tomography, SUVR = standard 
uptake ratio, BPM = beats per minute, BMI = body mass index, WMH = white matter hyperintensities.
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Table 2.

Performance of SVR models (R2 statistic) predicting biomarker measures.

Biomarker SVR R2 (Original) SVR R2 (Partial CVH) SVR R2 (Partial WMH)

Aβ42 .028** .008 .001

NfL .040* .040^ .011

HCV .231*** .195*** .080***

AD Signature .159*** .089*** .022*

Performance is presented for original models, as well as after statistically controlling for cardiovascular health composite (CVH) and white matter 
hyperintensity (WMH) values in BOLD SD estimates. Aβ42 = CSF Amyloid β peptide 42, NfL = CSF neurofilament light, HCV = adjusted 
hippocampal volume, AD Signature = Alzheimer Disease cortical thickness signature

^
p < .10;

*
p < .05;

**
p < .01;

***
p < .001
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