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Abstract

Lipids constitute a significant group of biological metabolites and the building blocks of all cell 

membranes. The abundance and stoichiometries of different lipid species are known to vary across 

the lifespan and metabolic state, yet the functional effects of these changes have been challenging 

to understand. Here we review the potentially powerful intersection of lipid metabolism, which 

determines membrane composition and aging. We first introduce several key lipid classes that are 

associated with aging and aging-related disease, where they are found in organisms, and how they 

act on membrane structure and function. Instead of neutral lipids, which have primary roles in 

energy storage and homeostasis, we review known functions for polar lipids that control the 

physicochemical properties of cell membranes. We then focus on aging processes in the central 

nervous system (CNS), which is enriched in lipids and is highly dependent on membrane structure 

for function. Recent studies that show how lipids act not just as biomarkers of aging and 

associated changes in the CNS, but as direct mediators of these processes. As a model system, we 

explore how fatty acid composition in the retina impact aging and aging-related disease. We 

propose that the biophysical effects of membrane structure on fundamental eukaryotic processes - 

mitochondrial respiration and autophagy - provide avenues by which lipid dysregulation can 

accelerate aging processes. Finally, we lay out ways in which an increased understanding of lipid 

membrane biology can be applied to studies of aging and lifespan.
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1. Introduction

One of the main challenges in understanding aging is connecting age-related physiological 

phenotypes to cellular level functions and the molecular players that drive them. In the 

central nervous system, aging is associated with a host of conditions (e.g., dementia, loss of 

vision) that are found across animals and age-related neurodegenerative diseases (e.g., 

Alzheimer’s, Parkinson’s) in humans. Lipids are an especially important and understudied 

class of biomolecules in the CNS, both because of their abundance and their central role in 

dictating membrane structure and function. Lipids constitute about half of the dry weight of 

the human brain (Sastry, 1985), despite it containing very few storage (neutral) fats. The 

mass of lipids in the CNS reflects an abundance of bilayer membranes in this tissue, a fact 

that is obvious from volumetric electron microscopy of brain regions across a wide range of 

metazoans (Briggman and Bock, 2012). Structure and biophysical properties of membranes 

throughout the body is dictated by the composition of lipid building blocks - including both 

their chemical structures and stoichiometries. Because the lipidome widely changes during 

the lifespan, cell membranes and their distinctive properties age as well.

In the brain and CNS, aging is characterized by a progressive deterioration of cognitive 

functions, a gradual loss of tissue mass, and increased susceptibility to neurodegenerative 

disease (Yankner et al., 2008). These effects limit the functional lifespan of this tissue and 

therefore the whole body. The primary drivers of aging are currently thought to be the 

accumulation of damaging products of metabolism, e.g. reactive oxygen species (ROS), and 

changes to genetic and epigenetic molecular programs. Both types of perturbations can act 

directly on lipid species or their metabolic processes and therefore can change membrane 

structure in aging tissue. Because lipids also play crucial roles in central metabolism, as 

described in section 6.1, they can also act directly to initiate these processes. Lipid 

composition has a multifaceted dependence on diet and disease and could thus provide an 

additional conduit between these conditions and aging processes in cells.

There is a long history of work seeking to identify correlations between the composition of 

different lipid components and the progression of aging across many tissues. The advent of 

commercial gas chromatography systems in the 1960s first allowed for robust analyses of 

fatty acid compositions in brain phospholipids (Fillerup and Mead, 1967). The subsequent 

rise of membrane biophysics as a field led to the development of hypotheses on lipid-

induced changes in membrane structure as a causative agents of aging-related aging 

phenotypes (Schroeder, 1984). One particularly influential proposal was that changes in 

plasma membrane permeability act to increase intracellular potassium concentrations (Zs-

Nagy, 1979), which would then mediate the efficiency of mRNA translation (Semsei et al., 

1982). In the 90s, improved lipidomics techniques led to studies identifying a bulk loss of 

lipid mass as a hallmark of the aging brain (Svennerholm et al., 1994, 1991). During this 

time, alleles of APOE, encoding a protein involved in the transport of cholesterol from 

astrocytes to neurons, were identified as the strongest genetic risk factors for Alzheimer’s 

disease (reviewed in (Roses, 2006)) bringing attention to lipid transporters as potential 

modulators of neurodegeneration. Subsequent work characterized the large changes in brain 

lipid composition associated with Alzheimer’s (SoOderberg et al., 1992) and other 

degenerative nervous disorders, such as Parkinson’s (Ikenaka et al., 2019).
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Studies during the formative years of aging research succeeded in identifying correlations 

between lipid composition and aging-related processes in the brain. However, they were also 

quite limited, both in terms of the specificity of where these compositional changes 

occurred, and how they related to testable molecular functions in cells. More recently, the 

field has taken two directions that partially addressed these shortcomings. In mammalian 

systems, a research focus has been on how lipid peroxidation is tied to aging, potentially 

through its destructive effects on membrane structure as well as through other pathways 

(Spiteller, 2002). This mirrored to the emergence of oxidative stress as a specific molecular 

perturbation associated with aging. In this case, the lipids are a secondary player, relaying 

the chemical signals of oxidative stress to other suspected targets (Cadenas and Davies, 

2000; Pacifici and Davies, 1991). A second direction has been driven by vertebrate and 

invertebrate model organism lifespan studies, where surprising connections between storage 

lipid homeostasis and aging have been uncovered (Papsdorf and Brunet, 2019).

In this perspective, we seek to re-introduce cellular membranes as functional agents in 

driving aging-related phenotypes. This effort is motivated by 1) cellular and biophysical 

experiments in simple systems that have linked membrane composition to the regulation of 

key molecular functions and 2) clinical and genetic studies in complex systems (e.g. the 

mammalian retina) on how defects in lipid metabolism drive aging-related processes. We 

take a broad view of aging that encompasses both phenotypes in natural aging and those in 

age-associated diseases. At the same time, we focus on a single tissue type - the CNS - as a 

system where the effects of membrane lipids can be largely isolated from those of neutral 

lipids involved in energy storage and homeostasis. We introduce an even more specific 

model system, the mammalian retina, that features distinctive lipid composition, membrane 

requirements, and aging associated phenotypes.

2. Overview of membrane lipids relevant to aging processes

Organisms can feature hundreds or thousands of distinctive lipid components in 

homeostatically-maintained levels. Lipids are quite modular in structure and synthesis, so 

this complexity results from a combinatorial diversity of several key lipid classes and 

modifications. Different lipid components are not equally mixed within cells or tissues but 

are instead specifically enriched in specific organelles and compartments. Even single 

membranes can feature a dramatically different lipidome across its inner and outer leaflet 

(Lorent et al., 2019).

The distribution of lipid species is driven by their biosynthesis, transport through cell 

trafficking and membrane contact sites, remodeling, and translocation between leaflets 

through lipid flippases and floppases. Given the challenges in understanding this complexity, 

we will briefly review the key bulk lipid structures that have been associated with aging 

processes (Figure 1).

The fundamental membrane lipid in all cells are phospholipids with two fatty chains. In 

glycerophospholipids, these chains are straight chain fatty acids connected by ester linkages 

(acyl chains) to a glycerol-3-phosphate backbone. The phosphate is then esterified to a set of 

headgroup modifications that define the lipid class (e.g. choline, PC; ethanolamine, PE; 
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glycerol, PG). These lipid classes are enriched in different cellular compartments and even 

sub-regions of a single membrane. For example, in the plasma membrane (PM) serine lipids 

(PS) are localized to the inner leaflet, while. PG can be converted into cardiolipin, a four-

chain phospholipid that composes > 20% of the inner mitochondrial membrane.

In addition to glycerophospholipids, two other double-chained lipids are highly abundant in 

mammals. Plasmalogens are a class of phospholipids with ether or vinyl ether linkages at the 

sn-1 position. They most commonly have ethanolamine or choline headgroups and are 

enriched in PUFAs at the sn-2 position. Sphingolipids feature a mostly saturated N-acyl 

linked fatty acid connected to a long-chain sphingosine base, that is either saturated or 

contains a trans double bond. Sphingolipids are major components of plasma membranes, 

where they accumulate in the outer leaflet (Lorent et al., 2019). Commonly featuring choline 

as a headgroup (in sphingomyelin), sphingolipids can also display complex, sugar-

containing polar groups, such as in gangliosides. Sphingolipid metabolites, notably 

sphingosine and ceramide, are also potent signalling molecules.

The fatty chain composition of these lipid classes is key to their effects on membrane 

structure. If acyl chains of phospholipids are fully saturated, they tightly pack with eachother 

in the bilayer, which can be progressively reduced by the incorporation of cis double bonds 

(unsaturations). Unsaturations are added sequentially, with monounsaturated fatty acids 

(MUFA) being highly abundant across the body. Polyunsaturated fatty acids (PUFAs), with 

2–6 double bonds, are also abundant but have tissue-specific patterns. PUFAs fluidize 

membranes, a concept discussed below, but are also highly prone to peroxidation by ROS. 

Certain PUFAs, most notably arachidonic acid (AA), can also be converted into a variety of 

lipid signaling lipids, including eicosanoids, docosanoids and elovanoids. These soluble 

metabolites bind to cellular receptors, initiating key physiological processes ranging from 

inflammation to fertility (Bazan, 2018; Mouchlis and Dennis, 2019).

The base PUFAs linoleic acid (LA, C18:2) and alpha-linolenic acid (ALA, C18:3) cannot be 

synthesized de novo in humans, and thus are essential fatty acids in the diet. However, they 

can be further elongated and desaturated to longer PUFAs in the liver (Rapoport et al., 2007) 

and other tissues (Bazan, 2018). Longer species of PUFAs can also be incorporated from the 

diet, when available. Overall PUFA levels are therefore dictated by a combination of diet, 

metabolism, and degradation. These pathways are further discussed within the context of 

retina physiology in section 5.

A typical arrangement for glycerophospholipids is one saturated chain (e.g. palmitic acid, 

C16:0) at the sn-1 position, with a MUFA or PUFA at the sn-2 position. In contrast, 

sphingolipids generally feature fully saturated chains that contribute to their packing effects 

on membranes. Packing is also mediated by cholesterol, an abundant lipid derived from 

isoprenoids. Cholesterol intercalates between acyl chains in the bilayer, increasing their 

packing and ordering, but also preventing their crystallization into a gel-like state. Like 

sphingolipids, cholesterol is enriched in the plasma membrane and rigid cellular 

compartment (e.g. lysosomes), while being excluded from more dynamic membrane 

structures in the mitochondria or endoplasmic reticulum.

Skowronska-Krawczyk and Budin Page 4

Exp Gerontol. Author manuscript; available in PMC 2021 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Although not the focus of this review, it is important to note that two major lipid classes 

(glycerophospholipids and cholesterol) can be modified via esterification into neutral lipids, 

which lose their amphillicity. The resulting products, triacylglycerides and sterol esters, 

accumulate in lipid droplets, serving as energy storage for the cells. The homeostasis of 

neutral lipids has been implicated in a number of lifespan phenotypes in model organisms, 

which have recently been reviewed elsewhere (Johnson and Stolzing, 2019).

3. How lipids control membrane structure and properties

One clear function for differences in lipid composition is to optimize the biophysical 

properties of membranes for different cellular functions (Figure 2). Because changes in lipid 

composition during the lifespan are expected to directly alter these properties, they can play 

key roles in aging-related processes. At first approximation, membranes can be modeled as 

thin sheets of a fluid with a given viscosity (Saffman and Delbrück, 1975) or, inversely, 

fluidity. Viscosity determines the rate at which lipids or membrane proteins diffuse within a 

membrane, as well as the permeability coefficient of small molecules across it. Because 

viscosity is overall much higher in membranes than in solution, it is thought to be an 

important parameter in determining the rate of membrane-associated reactions 

(Lauffenburger and Linderman, 1996). Viscosity is determined by the packing of lipids in 

the bilayer, with membranes enriched in saturated lipids and cholesterol being especially 

viscous. In contrast, unsaturated and polyunsaturated phospholipids disorder and fluidize 

membranes. Headgroup composition can also affect packing: PE lipids increase membrane 

ordering compared to other phospholipids (e.g. PC), which can be an important function for 

this lipid class in sterol-deficient cell types (Dawaliby et al., 2016).

In addition to viscosity, lipid packing controls the lateral pressure profiles of membranes. 

This concept describes the combination of attractive (generally in the hydrophobic core) and 

repulsive (in the head groups) forces that have to be balanced in the bilayer structure. Lateral 

pressure profiles vary depending on lipid composition and act on any transmembrane protein 

that is inserted within the membrane. In principle, they can thus directly control the 

equilibrium between different protein conformations (Cantor, 1997). In practice, it has been 

a challenge to measure this parameter experimentally, especially in cell membranes, and 

predict how it translates to protein structure.

Complex membranes that feature mixtures of different lipid components are not necessarily 

homogeneous, but rather can separate into distinct domains. Such lateral heterogeneity can 

be promoted by the affinity of specific lipids for one another (e.g. sterols and sphingolipids) 

and allow for distinctive membrane microenvironment within a single continuous bilayer. 

Foundational work in synthetic vesicle systems has shown that membrane domains can be 

modeled as 2D phase separations, where a more highly packed and viscous region coexisting 

alongside (Veatch and Keller, 2003). Coexisting domains have the capability to sort and 

retain specific membrane proteins based on the transmembrane domains or lipid 

modifications (e.g. palmitoylation) (Lorent and Levental, 2015). Thus, they could aid in the 

function of membrane-based signaling and assembly processes by enhancing the co-

localization. Domains could also serve as platforms for additional (liquid-liquid) phase 

separations in neighboring cytoplasm (Snead and Gladfelter, 2019). Despite these wide 
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ranging possibilities, it is still not clear to the extent that in vivo membrane domains follow 

these models, although lateral heterogeneity at the sub-micron scale has now been well 

documented (Honigmann et al., 2014).

In many cellular compartments, membranes need to be highly curved for their function. 

Examples include synaptic vesicle trafficking in neurons or the assembly of high surface 

area platforms in the photoreceptor discs and the inner mitochondria. Lipids influence the 

bendability of membranes in two ways. First, lipids with mismatched headgroup and acyl 

chain areas (“cone-shaped”) can impart a spontaneous curvature that induces membrane 

deformation. An example is lysophospholipids, which only have one acyl chain but maintain 

headgroup size (Fuller and Rand, 2001). Secondly, lipid composition mediates the bending 

modulus of membranes, which determines the energy required to further deform them. 

Greater lipid unsaturation generally decreases bending energies (Marsh, 2006), while 

cholesterol has been proposed to have an additional role in relaxing bending energy due to 

its rapid flip-flop across the bilayer (Bruckner et al., 2009).

4. Lipids in the healthy and aging brain

Membrane structure and properties are especially important in the brain, where information 

processing depends on a series of membrane functions. These include synaptic vesicle 

trafficking, neurotransmitter release and reception, signaling by membrane-bound networks, 

ion channel activation and activity, and action potential propagation. All of these processes 

are known to depend on the dynamic and mechanical properties of their host membranes. 

Thus, it is not surprising that the brain and CNS has a unique composition of lipids, which 

likely servess to optimize these membrane-associated functions. The lipidome of the human 

brain has been extensively reviewed elsewhere (Naudí et al., 2015), but we will highlight 

some important features with relevance to physiology and aging.

The defining lipidomic feature of the brain is its very high content of n-3 and n-6 PUFAs 

that are elongated from essential fatty acids LA and ALA (Figure 3). In particular, 

docosahexaenoic acid (DHA, C22:6) and AA (C20:4) constitute ~20% of the fatty acids in 

the brain, with DHA being most abundant (Naudí et al., 2015, 2012). This composition 

differs between gray matter, white matter and myelin (O’Brien and Sampson, 1965) further 

adding complexity to our understanding of the role of fatty acids in brain biology. It is 

important to note that only a small fraction of fatty acids are present as free fatty acids and 

long-lived triglycerides are also largely absent from the CNS. Fatty acid profiles are 

therefore indicative of phospholipid acyl chain composition. In phospholipids, PUFAs are 

generally incorporated in the sn-2 position alongside satatured chains (e.g. palmitic acid, 

C16:) at the sn-1 position. This acyl chain asymmetry has been proposed to optimize the 

bendability of membranes, which is especially important for synaptic vesicle trafficking in 

the CNS (Manni et al., 2018). This biophysical effect could explain why saturated fatty acids 

are also highly abundant and functional in the brain (Hopiavuori et al., 2018).

Age-related changes in both total lipid abundance and region-dependent composition have 

long been observed (Ledesma et al., 2012). PUFA content has generally been observed to 

drop during aging in a number of systems (Bourre, 2009; Naudí et al., 2015). In particular, 
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DHA and AA have been shown to decrease in the hippocampus of aged rats. The exact 

mechanism of this effect is unknown, however it has been suggested to be caused by the 

altered fatty acid metabolism, including the levels of the enzymes involved in lipid 

biogenesis (McNamara et al., 2008; Terracina et al., 1992a, 1992b), lower rate of transport 

of PUFAs from the blood in older animals (de la Torre and Mussivand, 1993; McNamara et 

al., 2008), and enzymatic and non-enzymatic peroxidation of PUFA pools.

Several epidemiological studies have shown negative correlation of the n-3 PUFA 

(especially DHA) levels in plasma with reduced cognitive decline and potential protective 

role of DHA on AD progression (Ajith, 2018; Cole et al., 2009). Therefore, based on 

epidemiological and research data, multiple clinical trials have been conducted with n-3 fatty 

acids, notably DHA, for the prevention or treatment of age-related cognitive decline. 

Interestingly, studies suggest that DHA or fish oil can slow early stages of progression, but 

these effects may be APOE-genotype specific or affected by the time of administration; 

larger trials may therefore be required to demonstrate efficacy (Barberger-Gateau et al., 

2011; Clemons et al., 2006; Cole and Frautschy, 2010; Yassine and Schneider, 2017).

The most abundant polar group of the brain phospholipids is ethanolamine (PE), which is 

also most affected by age (Bourre, 2009). We now know that a major portion of brain PE are 

in the form of PUFA-enriched plasmalogens, whose biosynthetic pathway has only recently 

been fully elucidated (Gallego-García et al., 2019). In the context of aging, specific 

plasmalogens have been shown to be markers of neurodegeneration (Su et al., 2019). There 

are clinical trials testing the ability of dietary plasmalogen supplementation to improve 

progression of mild Alzheimer’s disease (Fujino et al., 2017). Functionally, plasmalogens 

have proposed to promote membrane fusion and act as molecular sinks for ROS species 

(Frooqui and Horrocks, 2001).

However, the primary function of plasmalogen enrichment is still a mystery and is an 

emerging area of research with strong relevance to aging.

Sphingolipids play key roles in both neurons and as structural components of myelin. 

Gangliosides, glycosphingolipids with sialic acid-containing headgroups, are especially 

abundant on the surface of neurons (Ledeen, 1985) and has been proposed to induce 

membrane domain formation (Yuan et al., 2002) and promote membrane bending (Dasgupta 

et al., 2018). Sphingomyelin, which features a simple choline headgroup, is a primary 

component of myelin, for which it is named. It has been also noted that ceramide is 

accumulated in aging striatum and hippocampus (Jazvinšćak Jembrek et al., 2015; Naudí et 

al., 2015)

In both neurons and myelin, sphingolipids associate with cholesterol to enhance to increase 

bilayer order, induce domain formation, and increase the insulation properties of 

membranes. Cholesterol is also enriched in synaptic vesicles, which underlie neuronal 

function, and exosomes, which can participate in the transmission of neurodegenerative 

diseases (Kalani et al., 2014). In rodents, the cholesterol content of synaptosomal 

membranes increases with age in a diet independent manner, which corresponds with an 

increase in membrane viscosity (Choi and Yu, 1995; Nagy et al., 1983). These studies, 
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carried out with a combination of lipid analysis and spectroscopic viscosity probes, suggest 

a model in which aging membrane increase their viscosity due to dysregulation of lipid 

metabolism. Follow up work showed how dietary restriction and exercise, both of which 

prolong lifespan, reduce membrane viscosity in older animals (Kim et al., 1996).

In the brain, cholesterol is transported between cells through protein transporters and 

binding factors, including apolipoproteins. ApoD, ApoE and ApoJ are the most abundantly 

expressed apolipoproteins in CNS, with distinct spatio-temporal pattern of expression that 

could indicate specific roles in brain (Elliott et al., 2010). Several neurological disorders 

have been linked to polymorphism in this molecules. For example, the ε4 allele of APOE is 

the strongest genetic risk factor for Alzheimer’s disease. Recent work has shown that APOE 

is important for clearing myelin debris, which is highly enriched in cholesterol, and that this 

capability is reduced during aging in mice (Cantuti-Castelvetri et al., 2018). Strikingly, 

inhibition of cholesterol biosynthesis in cell culture and animal models reduces 

accumulation of β-amyloid peptides (Fassbender et al., 2001). Several clinical trials have 

thus tested if low cholesterol diets or cholesterol-lowering drugs (statins) could improve 

progression of the disease, but these have led to conflicting results (Schultz et al., 2018). 

One potential explanation is that statins act to lower circulating cholesterol carried by 

lipoprotein, but not necessarily existing cellular pools in the brain. Despite these efforts and 

the obvious genetic evidence, the functional connection between cholesterol content/

transport and Alzheimer’s progression is still largely unexplored.

5. Age-related retinal disorders: diseases of the lipidome?

The retina is a thin layer of neurons that lines the back of the eye and is the site of visual 

transduction in vertebrates. In embryonic development, the retina and the optic nerve 

outgrow from the developing brain; the retina is therefore part of the CNS. The lipid 

composition in the retina is highly unique and plays a critical role in its function and related 

diseases. The retina is particularly enriched in PUFAs, with DHA accounting for 

approximately 50% of the total fatty acids in the photoreceptor outer disc membranes 

(Fliesler and Anderson, 1983). This feature results in a highly fluid disc membranes that 

permit efficient conformational changes and signaling dynamics for rhodopsin and its 

associated G-protein during phototransduction (Oates and Watts, 2011). Interestingly, the 

photoreceptor plasma membrane contains only ~5% DHA (Boesze-Battaglia and Schimmel, 

1997), further underlying the specialization of the lipid membranes in outer segment.

Very long chain (VLC) PUFAs (≥C22) are especially suited to build highly curved 

membranes in photoreceptor outer segment discs. The role of VLC-PUFAs in retina biology 

has been underlined by the discovery of human mutations in the ELOVL4 gene, which 

encodes for a key enzyme in the synthesis of VLC-PUFAs. The dominant negative mutation 

in this gene is associated with Stargardt-like macular dystrophy (STGD3) which shares 

pathological features with dry age-related macular degeneration (AMD) including macular 

deposits (Bernstein et al., 2001)(Edwards et al., 2001)(Zhang et al., 2001) but instead occurs 

in young patients (Agbaga et al., 2008) (Harkewicz et al., 2012). Further studies of VLC-

PUFAs in human eyes have reinforced the relationship with VLC-PUFAs and AMD. For 

example, levels of DHA and other VLC-PUFAs, as well as the ratio of n-3/n-6 VLC-PUFAs, 
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is decreased in the retina and retinal pigment epithelium (RPE)-choroid of human AMD 

eyes compared to age-matched controls (Liu et al., 2010).

Cholesterol is another lipid present ubiquitously in the retina, especially in the plasma 

membrane of photoreceptors. It is also present in the disc membranes but its content there is 

correlated with the position of the disc. Photoreceptor disc membranes are synthesized at the 

base; therefore, older discs are pushed towards the apex of the photoreceptor over several 

days. The cholesterol content decreases from the base of the outer segment to the apical pit 

as cholesterol relocates to the plasma membrane over the lifetime of the disc (reviewed in 

(Albert et al., 2016). This particularity in cholesterol distribution has profound consequences 

on the visual cycle (Figure 4). It has been shown that the cholesterol interacts directly and 

stabilizes rhodopsin (Albert et al., 1996), while DHA has been implicated in rhodopsin 

regeneration (Bush et al., 1991). Interestingly, the content of DHA and other PUFAs 

increases towards the apical side of the outer segment (Albert et al., 1998). Thus, the local 

composition of lipid membranes allows photoreceptors to limit rhodopsin activity to the 

apical discs.

Several studies have focused on analyzing age-related changes in lipid composition in the 

retina. For example, the accumulation of cholesterol and neutral lipids has been observed in 

the Bruch’s membrane, which separates the RPE from the choroid (Curcio et al., 2011). This 

increase is accompanied with lower levels of n-3 VLC-PUFAs and an altered ratio of n-3/n-6 

PUFAs in aging retina (Liu et al., 2010). Beyond these correlations, very little is known 

about the molecular mechanism of age-related changes in regulation of lipid synthesis or 

metabolism.

In recent work, we reported that Elongation Of Very Long Chain Fatty Acids-Like 2 

(ELOVL2), an enzyme involved in elongation of PUFAs, regulates age-associated functional 

and anatomical aging in vivo, with direct relevance to age-related eye diseases. We found 

that an age-related decrease in Elovl2 expression is associated with increased DNA 

methylation of its promoter in the mouse retina. Mice carrying a point mutation (C234W) 

that disrupts ELOVL2-specific enzymatic activity have lower levels of LC-PUFAs including 

DHA and n-3 precursor of VLC-PUFAs (C24:6). Mutant mice display electrophysiological 

characteristics of premature visual decline, as well as early appearance of autofluorescent 

deposits, well-established markers of aging in the mouse retina. Finally, we found deposits 

underneath the RPE in Elovl2 mutant mice, containing components of the complement 

system and lipid metabolism. Importantly, methylation of the regulatory region of the 

ELOVL2 gene is one of the most robust biomarkers of human age. Therefore our studies 

may represent the first example of the DNA methylation clock having direct functional 

consequences in age-related tissue function, as well as the first molecular link between age-

related change in gene expression and membrane function (Chen et al., n.d.).

Multiple epidemiologic studies have suggested that diets rich in n-3 LC-PUFAs are 

associated with lower rates of age-related macular degeneration, with low dietary intake of 

n-3 LC-PUFAs associated with higher risk of developing the disease (van Leeuwen et al., 

2018) (Chong et al., 2008). In addition, two large early studies demonstrated that high 

plasma levels of n-3 LC PUFAs were correlated with decreased risk of AMD (Christen et al., 
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2011) (Merle et al., 2013) Interestingly, in the Age-Related Eye Disease Study (AREDS), a 

large prospective study investigating factors of progression to advanced AMD, subjects with 

the highest self-reported intake of foods rich in n-3 LC-PUFAS were 30% less likely to 

develop central GA and 50% less likely to develop AMD than subjects with the lowest self-

reported intake (SanGiovanni et al., 2009). Later, the impact of more defined n-3 LC PUFAs 

supplementation was investigated by two large prospective studies. The AREDS2 study and 

the nutritional AMD study (NAT-2) examined the effect of n-3 PUFA supplementation to 

prevent progression to advanced AMD or wet AMD. Surprisingly, in both studies, there was 

no significant difference between oral supplementation of PUFAs and placebo in progression 

to wet AMD (AREDS2 Research Group et al., 2012; Souied et al., 2013) suggesting that 

other fatty acids or other molecules present in foods rich in n-3 LC-PUFAS may have a 

preventive role in AMD progression. Future molecular studies focused on specific role of 

enzymes involved in lipid metabolism will help to understand the results of the clinical 

findings.

In sum, multiple lines of evidence suggest the important role of lipids in retina function and 

the role of membrane composition and structure on the tissue homeostasis. Thanks to the 

particular retina structure and lack of myelination (which interferes with lipidomic analysis 

of many types of neuronal membranes), aging studies can be performed on multiple levels: 

tissue, cells, molecular machinery, and membrane structure. This integrated approach has 

yielded surprising roles for membrane lipids in age-related eye diseases and suggests novel 

avenues for therapeutics.

6. Aging membranes: what are the underlying molecular mechanisms?

Although still speculative, we hypothesize that there are several direct mechanisms by which 

changes in lipid composition can promote aging-related processes. We lay these possibilities 

out not as definitive answers to the phenomenon described above, but avenues for which 

future mechanistic studies could explore.

6.1 The potential of aging mitochondrial membranes to drive CNS deterioration

One hypothesis is that functions for lipid composition in the electron transport chain (ETC) 

that are only beginning to be understood could play key roles in reducing energy availability 

and increasing ROS production during aging. The brain is one of the most metabolically 

active organs in the human body, as neuronal function depends on energy intensive 

biochemical machinery at multiple points. As neurons differentiate, they increasingly rely on 

oxidative phosphorylation for chemical energy (ATP) (Zheng et al., 2016), a process that 

occurs via the ETC in the inner mitochondrial membrane (IMM). The ETC is the primary 

site for ROS production, a potential driver of aging. Any inhibition to ETC functions leads 

to the accumulation of NADH at the beginning of the ETC, which reduces ETC flux (and 

therefore ATP production) while generating superoxide anion at complex I (Murphy, 2009). 

ROS species can further damage mitochondrial lipids, proteints, or the mitochondrial 

genome (which encodes for several ETC complexes), further reducing ETC function. This 

dynamic can thus lead to a vicious cycle that progressively reduces metabolic functions and 

increases cellular damage during aging.
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We have recently found that membrane viscosity, as controlled by lipid unsaturation, can 

have a key role in dictating the rate of ETC flux (Budin et al., 2018). In these experiments, 

simple model systems (bacteria, yeast) in which unsaturated lipid biosynthesis could be 

tightly controlled were used to screen for the physiological consequences of increasing 

membrane viscosity. We found that this parameter tightly controlled respiratory flux. One 

possibility is this was due to the intrinsic effects that membrane viscosity have on 

membrane-bound reaction networks. In the ETC, ubiquinone is used as a mobile carrier of 

electrons between complex I or II and complex III. To carry out this function, ubiquinone - 

itself a lipid - must diffuse along the membrane, a process that is controlled by membrane 

viscosity. Modeling of diffusion in the ETC of E. coli showed that measured differences in 

ubiquinone diffusion rates could wholly explain the lipid control of respiration in this 

system. As predicted, highly viscous membranes led to the accumulation of fermentation 

products, indicating a build up of NADH, and expression of oxidative stress response genes. 

By this mechanism, changes in IMM lipid composition can inhibit ATP production and drive 

ROS formation (Figure 5).

A diffusion-based model for lipid ETC control harkens back to foundational work by 

Charles Hackenbrock and colleagues showing that the mammalian ETC is i) freely mobile in 

the IMM, ii) is affected by the average distances between membrane protein complexes, and 

iii) features kinetics consistent with diffusion control (Gupte et al., 1984; Hackenbrock et al., 

1986). Since Hackenbrock’s work, in which he posited that membrane diffusion generally 

controls ETC activity, several new discoveries have modified our view of mammalian ETCs. 

Most notably, strong biochemical and structural evidence now supports the association of 

several ETC complexes (e.g. I, III, and IV) into supercomplexes, whose assembly promotes 

respiratory activity (Lapuente-Brun et al., 2013). The function of these assemblies is still not 

understood (Milenkovic et al., 2017), but one logical hypothesis is that they reduce the 

effective distance for electron carriers (ubiquinone and cytochrome c) to diffuse, even in the 

absence of any substrate channeling.

Supercomplex assembly is thought to require cardiolipin molecules (Zhang et al., 2005), 

which have been observed in close association with supercomplex interfaces in structural 

studies (Rathore et al., 2019). The disruption of cardiolipin biosynthesis or its remodeling 

with PUFA chains leads to reduction in metabolic activity and increase in reactive oxygen 

species that drive aging processes (Paradies et al., 2010). If mitochondrial dysfunction is a 

driver of aging, it is likely to be most pronounced in the CNS due to the energy demands for 

neuronal function and dependence on oxidative phosphorylation. The retina is perhaps an 

even more extreme example; it is the highest oxygen-consuming organ in the human body 

(Wong-Riley, 2010). Reduced mitochondrial activity and increased damage could thus 

explain why this particular tissue is sensitive to age-related deterioration and disease. 

Notably, oxidative stress is one of the major mechanism affecting survival of retinal ganglion 

cells in glaucoma, another blinding age-related eye disease (Chrysostomou et al., 2013; 

Edwards et al., n.d.; Kong et al., 2009).
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6.2 Autophagic membranes: a link between lipid supply and cell damage response

When cells become stressed, e.g. due to oxidative damage, a host of response pathways are 

employed. Lipids have a fundamental role in the formation of the compartments central to 

these processes: endosomes, exosomes, lysosomes, droplets, and autophagosomes, to name a 

few. The availability of lipids and their composition can regulate compartment size, 

abundance, and membrane properties, all of which affect function. Autophagy, a conserved 

lysosomal degradation pathway essential for cellular homeostasis and adaptation to stress, 

can be particularly affected by the availability of lipids (de la Ballina et al., 2019). Since 

autophagy facilitates survival through clearance of damaged molecules and mobilization of 

storages of nutrients, it is not surprising that many studies show it as a critical regulator of 

lifespan in many model organisms (reviewed in (Hansen et al., 2018)).

The process of autophagy relies on availability of membranes starting from the formation of 

the phagophore, a cup-shaped double membrane structure that engulfs the cytoplasmic 

material to be processed. The mature autophagosome fuses with the lysosome, another 

membranous vesicle rich in enzymes that will degrade the autophagosome content. Each 

step of this process depends on the autophagy (ATG) related proteins. Interestingly, some 

ATG proteins are i) lipid sensing and binding (e.g. vesicle carrying transmembrane protein 

ATG9), ii) contributing to the direct phospholipid transfer from the ER to the phagophore at 

contact sites (e.g. ATG2), and iii) membrane-curvature sensing (e.g. ATG3), reviewed in 

(Osawa et al., 2019). Moreover, members of the LC3/GABARAP protein family, which are 

key molecules in the autophagosome biogenesis and substrate selection, are modified by 

lipids for their activation. Their interaction with cargo receptors is dependent on their 

conjugation to phosphatidylethanolamine (PE) during autophagosome formation (Bento et 

al., 2016; de la Ballina et al., 2019)

The general mechanism of autophagy depends on lipid availability and an impairment of 

specific cargo turnover via selective autophagy has been shown to have an impact on aging 

and age-related diseases. Interestingly, one specific cargo class that undergo selective 

autophagy are lipids themselves. In this process (lipophagy) the lipid storage vesicles (lipid 

droplets) are degraded to be used as an energy source in the stressed conditions, especially 

upon acute starvation. This process can be used in the cell to bring the lipids to rebuild the 

organelles membranes when needed. However, the effectiveness of this process per se is 

highly dependent on membranes availability and can be affected by the age-related changes 

in the cell (Hansen et al., 2018; Singh and Cuervo, 2012). Like for many conserved cellular 

processes, functional research on autophagy is greatly aided by work in simple model 

systems. In yeast, micro-lipophagy directs droplets to ordered membrane domains on the 

yeast lysosome (vacuole) (Seo et al., 2017), a process that is one of the best examples of 

functional membrane phase separation in cells (Toulmay and Prinz, 2013). In the brain, 

neurons have few lipid droplets, but this process can still be important for glial cells that 

support them (such as astrocytes) under stress conditions (Ioannou et al., 2019).

Another example of the process of selective autophagy is the degradation of damaged 

mitochondria (mitophagy). The accumulation of fragmented mitochondria is one of the 

hallmarks of aging, likely as a result of the damaging processes described above. Although 

several mechanisms contribute to this process, the decline in mitophagy is believed to be one 
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of the major factors participating in the process of accumulation of damaged mitochondria. 

Disruptions in mitophagy has been linked to the pathophysiology of age related retinopathy, 

Parkinson disease, amyotrophic lateral sclerosis (ALS) and AD (Stavoe and Holzbaur, 

2019). More about the role of autophagy in aging has been reviewed extensively recently in 

(Hansen et al., 2018) and (Leidal et al., 2018).

7. Outlook: how to study the functions and mechanisms of lipids in 

aging?

We propose that lipids should be a continued and expanding focus for understanding the 

aging process and the molecular determinants of healthy lifespans. As our knowledge of 

fundamental lipid and membrane biology increases, we anticipate that mechanistic links 

between the molecular functions of different lipid species will be tied into aging and aging-

associated disease pathologies. In contrast to other well-studied macromolecules, lipids are 

natural components of the human diet, so functional insights could lead to potential 

therapeutics to inhibit aging-associated deterioration and disease.

Our understanding of the role of lipids in the tissues health and aging will require further 

development of interdisciplinary approaches and integrative models. For example, while 

general trends for changes in lipid composition during aging have been uncovered, we still 

lack detailed descriptions of the organ, cell-type, and organelle-specific lipidomes during the 

lifespan. This will require harnessing the advances made in lipidomics and lipid chemistry in 

collaboration with scientists focusing on aging in complex models. Further biophysical 

approaches can then focus on identifying how the resulting properties of aging membranes 

change in vivo. Particular focus should be placed on identifying relevant lipid subdomains in 

cellular compartments, which is amenable to in vivo imaging with the incredible 

advancements to these technologies in recent years (Liu et al., 2018).

The next challenge relies on investigating the age-related molecular mechanisms that affect 

lipid bilayers and therefore the cells and tissues. Recent studies focused on the 

transcriptomic and epigenetic changes in aging are providing new information regarding 

changes of expression of enzymes and other molecules involved in lipid synthesis and 

metabolism. For example, DNA methylation of fatty acid elongating enzyme Elovl2 
regulatory region has been shown as the clear biomarker of aging (Garagnani et al., 2012; 

Hannum et al., 2013). We confirmed this correlation in the retina and shown that ELOVL2 

enzymatic activity is indispensable for photoreceptor function. In this way, we uncovered a 

molecular link between the metabolism of fatty acids and visual function in aging (Chen et 

al., n.d.).

Fully elucidating lipid function in aging, among other processes, will require better tools for 

controlling and isolating specific lipid components in living organisms. This necessitates the 

development of model systems and emerging genetic tools to control their metabolism. In 

microbial systems, we have shown how synthetic biology-inspired approaches can be used 

to interrogate basic biochemical functions of lipids and membrane structure (Budin and 

Keasling, 2019). This same approach can be applied to complex animal systems where aging 

processes are most relevant. Another consideration is choosing systems in which specific 
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lipid structures can be isolated for lipidomics and imaging. For example, one challenge for 

studying neuronal membranes in the white matter of brains is the abundance of myelin, 

which makes up the majority of lipid mass. Non-myelinated tissue, such as the retina, is 

therefore an attractive model for correlating changes in lipid composition to those in 

neuronal membrane structure. Invertebrate systems for animal lifespan, such as the fruit fly 

Drosophila melanogaster, are also not myelinated and feature strong genetic tools amenable 

for functional interrogation.

Understanding how membrane structure acts through the lifespan could allow us to identify 

molecular drivers of aging processes and possible therapeutic strategies to mitigate them. 

Such approaches would start with the dietary supplementation, continue with modulation of 

key enzymes and transporters, and finish with gene therapy approaches to restore healthy 

levels of key enzymes in lipid biosynthesis. From the clinical perspective, lipids 

supplementation is the most attractive therapeutic strategy because of its ease and lack of 

adverse effects, and therefore much effort has focused on this approach. In has to be noted, 

however, that without the knowledge of how the dietary lipids are processed and 

incorporated in the tissues of patients, which is difficult to assay, it is quite challenging to 

predict or interpret the results of nutritional studies.

8. Conclusion

The aging of cell membranes through changes in their lipid components is potentially 

relevant to a wide range of aging processes and aging-related disease. Much of these act in 

the CNS, whose deterioration with age limits the functional lifespan in humans. The aging 

brain undergoes significant remodelling of lipid composition, including alterations in lipids 

associated with neuronal membranes (PUFAs and plasmalogens) and myelin sheaths (sterols 

and sphingomyelin). Because of its centrality to neuronal function, membrane structure 

could be an important link connecting neurodegeneration with lipid availability from diet 

and during the lifespan. Interdisciplinary approaches that integrate physiology, genetics, 

lipid biochemistry, and membrane biophysics will be required to identify the molecular 

functions underlying these effects and how to effectively treat them.
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Highlights

• Age-related changes in lipid metabolism affect the composition of cell 

membranes

• The biophysical properties of membranes change with age and in age-related 

disease

• Biomarkers of neurodegeneration include genes from lipid metabolism and 

transport

• The retina is a model system for understanding lipid drivers of aging

• Interdisciplinary approaches are needed to connect molecular changes to 

physiology
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Figure 1: 
Overview of lipid structures with relevance to aging processes in the CNS. Blue regions 

indicate hydrophobic chains or regions and green regions the polar head groups. 

Representative examples are given for major lipid classes cited in the text as well as the head 

group and acyl chain diversity generally found in phospholipids. Text in red highlights key 

structural features, such as the acyl chain position, double bond position, or unique linkage 

found in plasmalogens.
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Figure 2: 
Lipid-encoded biophysical properties of cell membranes that can mediate aging-related 

molecular processes. Depending on their chemical composition, membranes have different 

propensities for diffusion or permeability, domain formation or phase separation, and 

bending or curvature generation. Identified lipid mediators of these processes are given, as 

well as potential roles for the properties in cells and aging organisms.
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Figure 3: 
Synthesis of very long chain (VLC) PUFAs, and their metabolites from essential fatty acids 

in mammals. Pathways for elongation (blue arrows) and desaturation (green arrow) of n-3 or 

n-6 essential fatty acids, alternatively referred to as ω−3 and ω−6. A common set of 

desaturases and elongases are used to extend and introduce further unsaturations in these 

fatty acids. The lipid species discussed in the text are highlighted, as are two key elongases 

(ELOVL2 and ELOVL4) involved in VLC-PUFA biogenesis.
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Figure 4: 
Membrane controlled processes in photoreceptor cells. Left - basic layout of rod 

photoreceptors cells; Center - rhodopsin activity in outer disc stacks is regulated by lipid 

composition established by opposite gradients of DHA and cholesterol; Right - 
phototransduction components are localized in lamellar region of disc membranes. Italicized 

names of processes are potential sites of control by lipid-defined membrane properties.
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Figure 5: 
Control of ETC function and mitochondrial ROS production by inner membrane lipid 

composition. Changes in lipid composition that increase membrane viscosity slow down the 

diffusion of membrane components, such as electron carriers (ubiquinones) in the ETC. The 

inner mitochondrial membrane in healthy cells is enriched in unsaturated and 

polyunsaturated lipids (top), which lower membrane viscosity and therefore promote 

ubiquinone (Q) and ubiquinol (QH2) turnover between ETC enzymes, such as complex I and 

complex III. Increases in membrane viscosity due to saturated lipid accumulation or lipid 

peroxidation (bottom) slow down the diffusion of the quinone pool, reducing ATP 

production of the ETC. Additionally, build up of electron donors (NADH) due to impaired 

ETC function generates increased ROS, further degrading IMM structure through lipid 

peroxidation.
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