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ABSTRACT
Statins are the first-line choice in Lipid-lowering therapy to reduce cardiovascular risk. In a con-
tinuous attempt to optimise treatment success, there is a need for additional research on genes
and related molecular pathways that can determine the efficacy and toxicity of lipid-lowering
drugs. Several variations within genes associated with lipid metabolism, including those involved
in uptake, distribution and metabolism of statins have been reported. The purpose of this study
was to evaluate the effect of genetic variations in the key genes responsible for statins’ metab-
olism and their role in personalised medicine and pharmacogenetic testing (PGx) in patients
treated with such drugs. Genetic assessment for specific known SNPs within the most known
genes such as ABCG2, SLCO1B1, CYP3A4, and HMGCR, appears likely to predict the efficacy of sta-
tin therapy and prevent their side effects but does not necessarily reduce the risk of cardiovas-
cular events.

KEY MESSAGES

� Hypercholesterolaemia patients show different response to statin therapy.
� Several variations within genes associated with statin metabolism have been investigated.
� Genetic assessment for specific known SNPs within the most known genes may improve the
efficacy of statins treatment and prevent their side effects.
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Introduction

In recent years, we have seen significant improve-
ments in lipid-lowering therapy, with several new
classes of drugs currently available or being tested in
late-phase clinical trials. However, statins are still the
most widely used lipid-lowering agents to reduce car-
diovascular risk [1]. Statins are prescribed to lower
serum LDL-C by controlling the rate-limiting enzyme
in cholesterol synthesis i.e. 3-hydroxy-3-methylglutaryl
coenzyme A reductase (HMGCR). This process can
reduce the production of hepatic cholesterol, upregu-
late LDLR and increase LDL uptake [2]. The goal of
lowering lipids is to reduce LDL-C by 100mg/dL in
high-risk patients and an optional target of less than
40mg/dL in patients at highest risk [3–5].

Based on current evidence, European Society of
Cardiology and the European Atherosclerosis
Association (ECS/EAS) recommended the initiation of
high-intensity statin therapy during the first two
weeks of hospitalisation for the index acute coronary
syndrome (ACS) [6,7]. Moreover, pre-treatment (or
loading dose for patients already on a statin) with a
high-intensity statin should be considered in ACS
patients with planned invasive management [8].
Several clinical trials have revealed the effective role
of statins in reducing cardiovascular events following
lowering LDL-C levels [9,10]. Some medications reduce
the effectiveness of statins by reducing bioavailability
or increasing the metabolism of statins (e.g. rifampicin)
[11]. Moreover, some clinical complications affecting
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the metabolism of cholesterol, such as hypothyroid-
ism, should be considered [12,13]. Besides these fac-
tors, several variations within genes associated with
lipid metabolism such as genes involved in uptake,
distribution and metabolism can exert their influ-
ence [14].

According to the previous reports, one of the side
effects of statin treatment is myopathy that may result
in treatment discontinuation [15]. There are several
risk factors for statin-induced myopathy that are
related to patients’ characteristics such as age and
genetics, and also drug-related transporter sys-
tems [16].

Statin therapy is limited in case of skeletal muscle
toxicity which can be correlated with elevated sys-
temic drug exposure. Up to 10% of statin-treated
patients will experience muscle pain or weakness
[17,18] and life-threatening rhabdomyolysis [19], which
tend to occur several months to years after sta-
tin initiation.

In addition, LDL-C remains above the target still in
a considerable proportion of the treated patients
(>40%) [20]. Barriers to attain LDL-C goals include fail-
ure to initiate therapy, non-adherence, side effects,
inappropriate drug/dose selection, and inadequate
dose titration. Although several algorithms for dose
selection have been introduced to minimise dose titra-
tion, they are not widely used, resulting in over 20%
of patients with LDL-C still remaining above the target
value [21]. Some studies have shown that statin ther-
apy may change the course of clinical events without
notable decrease in LDL-C [22,23]. In a study it has
been showed significantly greater benefit from inten-
sive statin therapy in carriers of rs20455 (Trp719Arg)
than non-carriers which appears to be due to a
mechanism distinct from lipid or CRP lowering [22].
This highlights the importance of pharmacogenomics
and pharmacogenetics in predicting the therapeutic
outcome. Additional research on genes, related
molecular pathways, and their impact on lipid-lower-
ing drugs would pave the road for more effective
treatments [24]. Therefore, the purpose of this study
was to evaluate the effect of genetic variation in the
key genes responsible for statins metabolism (Figure
1) and their role in personalised medicine and phar-
macogenetic testing (PGx) in patients treated with
these drugs.

Genetic variants and statin efficacy

Although many of the new guidelines for cardiovascu-
lar treatments no longer specify lipid targets, many

clinicians have used lipid-lowering responses to moni-
tor treatment efficacy and therefore optimise the sta-
tin dose. In addition to various constitutional or
clinical factors (e.g. race, gender, ethnicity, and side
effects) that affect statins function, genetic back-
ground can also play an important role in lipid reduc-
tion success. Increasing the dose in patients who do
not show a significant decrease in lipids may also
increase the risk of statin toxicity [24].

Hundreds of candidate gene studies and several
genome-wide association studies (GWASs) have
focussed on the influence of genetic variants on statin
pharmacokinetics (e.g. drug and metabolite levels in
blood, area under the time–concentration curve
[AUC]) and statin pharmacodynamics (lipid lowering,
incidence of adverse events, incidence of cardiovascu-
lar events). Discussing relevant clinical research, this
contemporary review focuses on polymorphisms in
several key genes that affect statin pharmacokinetics
(e.g. transporters and metabolising enzymes), statin
efficacy (e.g. drug targets and pathways), and end-
organ toxicity (e.g. myopathy pathways) [17,25]. Some
of key genes that affect statin pharmacokinetics

Figure 1. The simple schematic pathway for statin transport-
ers. Statins undergo passive intestinal absorption and subse-
quently are taken up from the blood stream into the liver by
members of solute carrier transporter family (SLCO1B1,
SLCO1B3, SLCO2B1). Statins are metabolised by phase I and II
enzymes and eliminated via efflux transporters mediated bil-
iary excretion. Different enzymes are involved in phase I statin
metabolism such as CYP3A4. Elimination of statins is carried
out by members of the efflux family transporters ABCB1,
ABCC2, ABCG2 or ABCB11. Statin metabolism and elimination
take place primarily in the liver and to a lesser extent in
the kidney.
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include ABCG2, CYP3A4, HMGCR and SLCO1B1 are dis-
cussed in this review.

ABCG2

ATP-binding cassette G2 protein (ABCG2, also known
as breast cancer resistance protein) is an efflux trans-
porter which is expressed in a number of normal tis-
sues such as brain, heart, colon, small intestine,
kidney, liver, placenta, mammary gland and stem cells
as well as in cancer cells [26]. ABCG2 is a mediator of
the cellular efflux of a wide range of xenobiotics
including antibiotics, chemotherapeutic agent, and
dietary toxins as well as endogenous compounds such
as oestrogens and oestrogen conjugates. It seems that
ABCG2 protects normal cells against cytotoxic materi-
als; however, it is also a tumour resistance inducer to
several anticancer drugs [27]. ABCG2 gene encodes the
efflux transporter BCRP (Breast Cancer Resistance
Protein) which is expressed on the canicular mem-
brane of hepatocytes and in enterocytes constitutively.
Rosuvastatin is actively pumped from the portal blood
into the enterocytes and is thus resulting in faecal
excretion of the drug. Similarly, changes in BCRP activ-
ity affects the amount of rosuvastatin circulating in
the blood. It has been shown that ABCG2c.421C>A
genetic variant leads to increased plasma concentra-
tions of simvastatin [28] which is associated with
increased risk of simvastatin induced myopathy
(SIM) [29].

Absorption of ABCG2 substrates from the gut, their
entry through the blood–brain barrier and through
the placenta into the foetus is limited by the ABCG2
action. Moreover, by increasing the excretion of its
substrates into the bile and urine, systemic exposure
to many drugs is reduced potentially [30].
Rosuvastatin is a known substrate for ABCG2. One of
the best-characterized sequence variations in the
ABCG2 gene is c.421C>A SNP (rs2231142), resulting in
an amino acid change p. Gln141Lys. In vitro studies
showed that the c.421A variant has been associated
with reduced ABCG2 transport activity with respect to
estrone-sulfate, methotrexate, mitoxantrone, and topo-
tecan [31]. Some studies have suggested that this
SNPresults in reduced expression ofABCG2 [32,33].
Although other studies have suggested that it
decreases the ATPase activity of ABCG2 protein [30,34]
while the p.Gln141Lys variant is located within the cell
apart from the ATP-binding region. It has been found
that in humans in vivo, the c.421A allele is associated
with an increase in plasma concentrations of topote-
can, diflomotecan, and sulfasalazine, as compared with

the c.421C allele [35,36]. The ABCG2 c.421C>A SNP
affects the pharmacokinetics of atorvastatin and rosu-
vastatin significantly, thus this indicates that ABCG2
plays an important role in limiting the absorption of
these statins in the gut. This effect was shown for
rosuvastatin than in atorvastatin, suggesting different
impact of rs2231142 on the pharmacokinetics of differ-
ent statins. ABCG2 genotyping, along with other gen-
etic markers such as the SLCO1B1 c.521T>C SNP,
might be used to personalise selection of a statin and
related dose [28].

CYP3A4

It has been known that hepatic isoenzymeCYP3A4 is
metabolising simvastatin, and to a lesser extent, ator-
vastatin [37]. Inhibitors or inducers of this enzyme
affect the plasma concentration of these statins, then
results either in an increased risk of side effects such
as myopathy and rhabdomyolysis or a reduction in
the efficacy of treatment [38]. The primary metabolic
pathway for statins such as lovastatin, simvastatin and
atorvastatin is CYP3A4. It has been shown that CYP3A4
activity can be varied up to 10-fold among groups of
affected individuals which may result from variations
in genes encoding for these enzymes [39]. A study
reported association of CYP3A4 promoter variant
(rs2740574) with higher LDL-C levels after treatment in
340 hypercholesterolaemia patients treated with ator-
vastatin 10mg/day, though carriers of the missense
variant (rs4986910) revealed an enhanced efficacy
response and lower LDL-C levels in comparison with
the wild-type allele [39]. rs2740574- the promoter vari-
ant- alters efficiency of transcription with high CYP3A4
activity resulting in rapid drug metabolism and subse-
quent lower plasma concentration of atorvastatin [40].
It is reported that individuals with wild-type genotype
for rs2740574 variant, had a significantly greater
reduction in LDL-C as compared to the variant allele
(G allele). Though, they found no association between
rs4986910 variant and response to atorvastatin [41].
Moreover, another study on Indian population demon-
strated no significant association between rs2740574
and lower LDL-C levels in response to atorvastatin
[42]. Despite the significant pharmacokinetic interac-
tions between inhibitors and inducers of CYP3A4 and
lovastatin/simvastatin, their clinical relevance appears
to be limited, especially at lower statin doses.
However, combination of statins with fibrates, mainly
gemfibrozil considerably increases the potential for
muscular toxicity [43].
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HMGCR

As above described, statins inhibit the rate-limiting
enzyme in cholesterol synthesis – namely, HMGCR [2].
There are wide inter-individual differences in response
to statin therapy and serum lipid levels [44]. Despite
the undeniable environmental impact, variations
observed in serum lipid levels in different individuals
are primarily described by genetic variability [45,46].
Although recent evidence suggests that HMGCR geno-
types elucidated less than 2% of the variance in statin
response, alternative splicing of HMGCRcan explain6 to
15% of its variance [47,48]. Alternative splicing of
HMGCR pre-mRNA on exon 13, produces two tran-
scripts as full-length (FL) HMGCR and D13 HMGCR
which is related to rs3846662 [49]. Exon 13 encodes a
part of the catalytic/statin-binding domain of the
HMGCR [50,51]. It is likely that rs3846662 modifies the
binding motif of heterozygous nuclear ribonucleopro-
tein A1 (HNRNPA1) which regulates alternative splicing
of HMGCR [52]. According to these findings, it is sug-
gested that an increase in the amount of D13 HMGCR
mRNA in individuals carrying the rs3846662 A allele
[53], results in probable lower activity in HMGCR [53],
as well as lower levels of baseline LDL-C and reduced
sensitivity and response to the statin inhibition [48,54].
A cohort of familial hypercholesterolaemia patients
indicated that alternative splicing of HMGCR would
explain 22 to 55% of the variance in statin response. A
Study showed that rs3846662 and the alternative
splicing of HMGCR mRNA have a significant effect on
women’s response to statin therapy [55].

LDLR

The presence and type of LDLR mutations influence
response to lipid-lowering therapy. Numerous rando-
mised trials have demonstrated that therapies that
lower LDL-C levels by reducing LDL particles through
upregulation of the LDL receptor (LDLR) reduce the
risk of cardiovascular events [56,57]. There is recent
evidence that the 30-untranslated region [3-UTR] of
LDLR is required for berberine-mediated LDLC reduc-
tion through a mechanism that increases LDLR mRNA
stability. Single-nucleotide polymorphisms (SNPs) in
the 3-UTR have been associated with in vivo LDLC lev-
els, as well as in vitro LDLR mRNA stability [58], and
variation in this region may also influence statin-medi-
ated lipid reduction [59]. It has been identified that
some variants within the LDLR gene areassociated
with attenuated lipid-lowering response to simvastatin
treatment. Response was further reduced in individu-
als with both LDLR and previously described HMGCR

haplotypes [60]. Numerous variants through the LPL
pathway and current therapies that lower LDL-C levels
through the LDLR pathway were also associated with
similar lower CHD risk per unit lower plasma ApoB lev-
els [61].

SLCO1B1

The SLCO1B1 gene encodes a protein called organic
anion transporting polypeptide 1B1, or OATP1B1 which
is found in liver cells. OATP1B1 transports bilirubin,
certain hormones, toxins, and drugs into the liver for
removal from the body [62]. Several drugs are nor-
mally transported by the OATP1B1 protein including
statins, heart disease medications, certain antibiotics
and some cancer therapy drugs [63,64]. Among sta-
tins, rosuvastatin is an inhibitor of 3-hydroxymethyl-
glutaryl co-enzyme A reductase which Inhibits 3-
hydroxymethylglutaryl co-enzyme A reductase, and
therefore leads to reduced production of mevalonic
acid by hepatocytes. This results in reduction of total
circulating levels of cholesterol and LDL-C in the
blood. One of the most commonly used drugs in the
treatment of hypercholesterolaemia, hypertriglyceri-
daemia, hyperlipidaemia, mixed dyslipidemia and
homozygous familial hypercholesterolaemia is rosuvas-
tatin [65]. Additionally, rosuvastatin and pitavastatin
have been proposed as probe substrates for OATP1B.
Prueksaritanont et al. showed relative sensitivity and
selectivity to OATP1B inhibitors. They recommended
pitavastatin over rosuvastatin as a more sensitive and
selective clinical OATP1B probe [66].

The most comprehensively studied example is the
effect of the missense variant rs4149056 in SLCO1B1
(SLCO1B1�5 and part of SLCO1B1�15) that results in
elevated statin plasma concentrations due to impaired
hepatic clearance [67,68] and, in the case of simvasta-
tin use, this increased exposure has convincingly been
associated with increased risks of developing myop-
athy [69]. Based on these and other similar reports,
important informationon SLCO allele frequency with
putative clinical relevancehave been provided [70–73].
The pharmacogenetics of rosuvastatin has been influ-
enced by SLCO1B1c.521T>C (rs4149056, p. Val174Ala)
and ABCG2c.421C>A (rs2231142, p. Gln141Lys) genetic
variants. OATP1B1- encoded by SLCO1B1- is responsible
for the uptake of rosuvastatin by hepatocytes and
from the intestinal lumen by enterocytes.
Consequently, each polymorphism that alters OATP1B1
activity affect plasma levels of rosuvastatin. The
SLCO1B1 c.521T>C SNP has been shown to reduce
OATP1B1 transporter activity [74] and therefore,
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elevatesrosuvastatin concentrations/exposure in
plasma which leads to an increased risk of statin-indu-
cedmyopathy [67].

Statins structure and types

Statins are made in two ways, either of fungal-derived
or synthetically products. Fungal-derived statins
includes lovastatin, pravastatin, and simvastatin and-
synthetic compounds consists of atorvastatin, cerivas-
tatin, fluvastatin, pravastatin, pitavastatin, and
rosuvastatin [75,76]. There are functional differences
between natural and synthetic statins that depend on
their ability to interact and inhibit HMG-CoA reductase
and their hydrophobicity. Due to the structural proper-
ties of statins, synthetic forms are more likely to inter-
act with HMG-CoA reductase. Atorvastatin and
rosuvastatin are more likely to interact with hydrogen.
In addition, rosuvastatin also has a polar interaction
between the methane sulphonamide group and the
HMG-CoA reductase enzyme. Therefore, rosuvastatin
has the greatest effect on reducing HMG-CoA reduc-
tase activity by up to 50% [76,77]. Due to the polar
hydroxyl group and methane sulphonamide, pravasta-
tin and rosuvastatin are hydrophobic. Lovastatin, flu-
vastatin, simvastatin and atorvastatin are relatively
lipophilic compounds. Lipophilic statins (except pita-
vastatin and cerivastatin) are less bioavailable com-
pounds because of their first-pass effect on the liver
surface [77,78]. Side effects, such as muscle toxicity,
have been reported due to the penetration of lipo-
philic statins into the extrahepatic tissue. But hydro-
philic statins are excluded from the extracellular tissue
because of the need for active transport mechanisms
in the liver. However, there is a balance between the
favourable and side effects of lipophilic and hydropho-
bic statins [77].

As mentioned previously, a common nonsynony-
mous variant in the drug transporter SLCO1B1
(rs4149056) has beenassociated with a 4-fold increase

in the risk of myopathy among patients with high
dose simvastatin usage at genome-wide levels of stat-
istical significance [69]. This finding has been widely
proved in several studies [63,79,80]. Attempts to find
additional common variants related to statin-related
muscle injury have failed to yield replicable results
[81,82]. A recent study conducted whole-exome
sequencing on 88 Czech patients with mild statin-
associated muscle toxicity, demonstrated an increased
burden of rare variants in 24 genes [83].

Individual polymorphic forms of the same drug
substance may differ in their physical properties such
as chemical reactivity, solubility and dissolution rate,
stability, melting and sublimation temperature, dens-
ity, hardness, adsorption, hygroscopicity and refractive
index. It is particularly crucial for statins, which are-
poorly soluble and have low bioavailability. The low
total bioavailability of statins creates the need for new
polymorphic forms that will increase the therapeutic
effect and reduce the dose of the drug taken by the
patient. Based on the available scientific reports, it can
be concluded that amorphous forms of statins create
the possibility of increasing the solubility and bioavail-
ability of this group of drugs, which in turn is an
opportunity to increase theireffectiveness in the treat-
ment of cardiovascular diseases [84].

Statins and personalised medicine

Personalised medicine in cardiovascular diseases
hasadvancedrapidly, with PGx applications accessible
for both researchers and clinicians. This may help
selection, dosing and monitoring of drugs [85,86]. It
seems that the variations in genes involved in statins
metabolic pathways may influence the therapeutic
effectiveness of these drugs (Table 1). Genetic assess-
ment for specific known SNPs appears likely to
improve the efficacy of statins treatment and prevent
their side effects but does not necessarily predict a
reduction in the risk of cardiovascular events by

Table 1. The most known genetic variants in statins pharmacogenetics reported on ClinVar/PharmKG.
Gene rs Number Effect Drug Outcome References

SLCO1B1 rs4149056 c.521T>C
(p.Val174Ala)

Simvastatin
Rosuvastatin
Pravastatin
Cerivastatin

CC: higher risk of myopathy
CT: intermediate risk of myopathy

[64, 68, 79, 87]

rs4149015 c.-910G>A
(upstream variant)

Pravastatin
Pitavastatin

AA: decreased response
AG: intermediate response

[87–89]

ABCG2 rs2231142 c.421C>A (p.Gln141Lys) Rosuvastatin GG: reduced response
GT: intermediate response

[90,91]

HMGCR rs17238540 g.27506T>G
(Intron Variant)

Pravastatin GG: reduced response
TG: intermediate response

[92]

rs3846662 g.23092A>G
(Intron Variant)

Simvastatin
Pravastatin

GG & AG: Probability of reduced
response due to deletion of
exon 13 of HMGCR gene

[53, 93]
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statins [94]. In addition, PGx test can be performed as
a valuable tool for clinicians to monitor the treatment
process of patients with statin therapy. Catalan and
LeLorier [95] showed that only 33% of patients still
adhere to statin therapy after 1 year. Another study by
Dorais et al. [96], showed that among the 19,727 sta-
tin-treated patients, 53.3% stopped taking the drug
after 1 year.

It is likely that pharmacogenetic testing will
become a routine part of clinical practice in the near
future. Notably, the rapid progress in technology and
increased application of NGS techniques have allowed
a paradigm shift from candidate variant researches
towards comprehensive analyses of genomic makeup.
Personalised medicine is still in its infancy; however,
there are challenges such as ethical, behavioural,
methodological, technical and financial issues in pro-
viding an available service for all patients around the
world based on causal variants at associated loci.

According to the results of clinical trials as well
assystematic reviews and well-powered GWAS, variants
in several genes such as APOE, LPA, ABCG2, SLCO1B1
have been confirmed to affect LDL-C response to sta-
tins and are likely to have a limited effect on clinical
benefit. Although there are various reports of associ-
ation of different SNPs affecting only clinical benefit of
statin therapy, such claims mostly rely on questionable
evidence. Genetic variation, without a doubt, can
affect statin response; however, due to the small effect
sizes of these variants, using such information in clin-
ical decision-making should be made with caution.The
consideration of interaction between gene and envir-
onment and the application of “omics” data in PGx
studies will assist the reliable outcomes and new strat-
egies of pharmacogenomics research and
development.
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