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Abstract

Early life stress (ELS), such as childhood maltreatment, is a well-known etiological factor in 

psychopathology including psychosis. Exposure to ELS disrupts the neurodevelopment of 

widespread brain systems including key components of the Hypothalamic-Pituitary-Adrenal 

(HPA) axis stress response, such as the amygdala, hippocampus, and medial prefrontal cortex, as 

well as key components of the brains reward system, such as the nucleus accumbens and 

orbitofrontal cortex. These disruptions have a considerable impact on the function of emotion and 

reward circuitry, which play a central role in the emergence and severity of psychosis. While this 

overlap may provide insight into the pathophysiology of psychosis, it also provides unique 

opportunities to elucidate neurobiological substrates that may promote resilience to psychosis. In 

this review, we discuss the HPA axis stress response, the disruption in the neurodevelopment of 

emotion and reward processing associated with early stress exposures, and examine how this 

circuitry may contribute to resilience to psychotic disorders.
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Stress has long been recognized as an etiological factor for the emergence of 

psychopathology (1) and the impact of stress exposures on the neurodevelopmental 

processes underlying the risk for mental health disorders is becoming increasingly evident. 

While stress is an adaptive response to a threat to an organism’s homeostasis, the resulting 
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neurobiological cascade can negatively impact mental health through dysregulation of the 

stress systems and/or restructuring of the underlying neurobiology. Human brain 

development is protracted, beginning prenatally and continuing well into adulthood (2), 

providing necessary opportunities for the emergence of context-dependent, species-

appropriate behavior (3). However, this protracted development also provides opportunities 

for stress exposures during childhood to alter neurodevelopmental trajectories and can have 

rippling effects across the life span. Thus, exposure to stressors during childhood can have 

profound consequences not just during childhood but also during adulthood; contributing to 

the emergence of a range of psychiatric illnesses including psychotic disorders. Indeed, a 

recent meta-analysis examining the impact of various type of childhood stress exposures on 

risk for psychotic disorders estimated that 33% of cases worldwide are attributable to such 

exposures (4).

To date, the vast majority of work examining the impact of stress on the later development of 

psychotic disorders has focused on broadly defined stress exposures during childhood and 

early adolescence, which we collectively refer to in the present review as early life stress 

(ELS). It should be noted however, that recent efforts seeking to understand the impact of 

childhood stress exposures on development have begun to call for more refined definitions 

that parse different categories of stressors. For example, one approach has sought to examine 

the unique effects of experiences of deprivation (i.e., the absence of expected environmental 

inputs and complexity) and experiences of threat (i.e., the presence of experiences that 

represent a threat to one’s physical integrity) on neurodevelopment (5-9). Although such 

approaches are beginning to reveal more nuanced relationships between early stress 

exposures and psychopathological outcomes, data specific to psychotic outcomes are very 

limited. Thus, we have opted to use a more global definition of ELS, which encompasses a 

range of childhood stress exposures including abuse, neglect, institutionalization, poverty, 

parental psychopathology and family dysfunction, which has contributed significantly to our 

understanding of psychosis risk.

Moreover, there are multiple pathways through which ELS exerts enduring adverse effects 

on neurodevelopment that may contribute to the later emergence of psychiatric illnesses such 

as psychotic disorders (see (10) for a comprehensive review). In the current review we first 

focus primarily on the Hypothalamic-Pituitary-Adrenal (HPA) axis stress response and its 

impact on core stress reactive regions, such as the hippocampus, amygdala, and the medial 

prefrontal cortex (MPFC). We then discuss the impact of ELS on these core stress reactive 

regions, the role that these regions play in aversive processing, emotion regulation, and 

affective behavior, and ELS-related alterations of these regions in psychosis specifically. 

Next we review ELS-related alterations in reward circuitry and the central role of reward 

processes in risk for psychosis. Finally, we take a dimensional approach to psychosis and 

consider the role of ELS-related neurodevelopmental alterations across the spectrum of 

psychosis severity. Critically, we review the brain circuits involved in the response to ELS 

and highlight unique insights that this research may provide into resilience to psychotic 

disorders.
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Brain Circuitry Involved in the Stress Response

Upon detection of a stressor, the Hypothalamic-Pituitary-Adrenal (HPA) axis is activated to 

release a series of hormones from the Para-Ventricular Nucleus of the hypothalamus and the 

pituitary gland, which signal cortisol (the major glucocorticoid in humans) to be released 

from the cortex of the adrenal glands. Cortisol has widespread impacts on neurotransmission 

across the brain including at glutamatergic synapses in the hippocampus, amygdala, and the 

prefrontal cortex (PFC) (11). Among other functions, these regions play a central role in 

emotional responses to stress which includes interpreting, learning from, and coping with 

stressful stimuli (12). Additionally, cortisol modulates the effects of dopamine release in the 

mesolimbic dopamine pathway, particularly in the nucleus accumbens (NAcc) (13), 

dampening functional connectivity between the NAcc and orbitofrontal cortex (OFC) (14). 

These regions are critical to a host of basic learning processes including reward processing 

(15) and decision-making (16). Thus, as shown in Figure 1, stress exposures directly impact 

circuitry critical to both emotion- and reward-based processes

The HPA axis is self-regulatory, leading to an adaptive reduction of the stress response and a 

decrease in cortisol levels after a threat is alleviated (17). HPA axis dysregulation, however, 

leads to increased basal cortisol levels under resting conditions, a reduced response to acute 

stressors, and widespread disruptions in neurotransmission (11, 18). According to the 

“glucocorticoid cascade hypothesis”, hippocampal atrophy results from HPA axis 

dysregulation of cortisol levels under conditions of chronic stress (19). Although 

hippocampal volume may be affected by genetic or neurodevelopmental predisposing 

factors, it is also a critical target for the effects of chronic stress. The amygdala and PFC, 

however, also display considerable restructuring under chronic stress conditions (20-22). For 

example, while dendritic retraction occurs within the hippocampus, dendritic growth occurs 

within the amygdala in response to long-term restraint stress in rodents (23). Such structural 

alterations may underlie some of the behavioral changes associated with psychosis (23, 24).

Early Life Stress Induces Developmental Alterations in Stress-Related 

Neurobiology

One of the first studies to investigate the impact of ELS on the brain found that 

institutionally-reared children had a significant reduction in glucose metabolism in MPFC, 

OFC and infralimbic regions, as well as in the amygdala and hippocampus (25). Since that 

initial study, the consequences of ELS on the structure of the brain have been extensively 

studied with several early studies reporting global structural changes across multiple brain 

regions. These included reduced volume in temporal, frontal, parietal, and occipital regions, 

and in overall cortical gray and white matter volume (26-31) with at least one study finding 

that an earlier age of onset and longer duration of childhood stress exposure predicted 

greater reductions in brain volumes (32). Given the role of limbic regions in the stress 

response, however, HPA axis regions such as the hippocampus and amygdala, have been 

more extensively studied in relation to ELS.

Consistent with the “glucocorticoid cascade hypothesis”, early work in rodents found that 

elevating stress-related hormone levels for an extended period reduced the number of 
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neurons in the hippocampus (33) and this effect is particularly pronounced during early 

postnatal development (34, 35). In humans, evidence for the relation between ELS and 

decreased hippocampal volumes has been found in patients with a range of psychiatric 

disorders including psychotic disorders (36-38), depression (39-43), and post-traumatic 

stress disorder (PTSD) (44-46). Hippocampal reduction, however, is not a sufficient 

hallmark of psychiatric disorders as it has also been observed in non-patient samples with a 

history of ELS (47-49). Notably, hippocampal changes have generally not been observed in 

children immediately following trauma exposure, even in those with PTSD (26, 29, 32, 50, 

51), suggesting that the effect of ELS on the hippocampus is likely protracted. This is 

supported by findings demonstrating that hippocampal changes have been observed in 

children with PTSD 12–18 months following trauma exposure (52).

While stress contributes to atrophy in the hippocampus, it has been associated with growth 

of the amygdala. In humans, several notable studies have found larger amygdala volumes in 

those with a history of ELS (53-55); although as reviewed previously (56), these effects have 

not been consistently observed. Like results in the hippocampus, when effects are observed, 

they are generally not observed in children immediately following trauma exposure, even in 

those with PTSD (26, 27, 50), suggesting that that the impact of ELS on the amygdala may 

also be protracted. Notably, many psychiatric disorders linked to exposure to ELS including 

psychotic disorders (57), depression (58) and PTSD (59) typically find reduced, rather than 

enlarged, amygdala volumes. Thus, exposure to ELS may act to sensitize the amygdala to 

subsequent stressors leading to volume reductions later in life that may contribute to risk for 

psychiatric illness (60).

Another HPA axis region highly sensitive to the effects of stress is the PFC. In contrast to 

the hippocampus and amygdala, however, widespread changes in the PFC have been 

observed in children soon after exposure to ELS (61). PFC development underlies a number 

of higher-order functions including regulatory emotional and cognitive functions that 

contribute to goal-directed and prosocial behavior (3), which are often disrupted in children 

exposed to ELS. Variation in MPFC volume, a region central to emotion regulation and fear 

extinction, has consistently been associated with exposure to ELS. In rodent models, the 

MPFC is highly sensitive to the effects of chronic stress in childhood (62, 63) and in human 

studies, decreased MPFC volume is commonly associated with ELS (64-67). ELS-related 

MPFC abnormalities are found in nearly every major psychiatric disorder (68) and the 

MPFC is a common neural substrate for most forms of mental illness (69). Similarly, 

reduced volume and thickness of the adjacent OFC (28, 29, 70-73), a region central to 

reward-based learning and emotion regulation (74), is also found in children exposed to 

ELS. The OFC has increasingly been recognized as playing a central role in the 

pathophysiology of nearly all psychiatric disorders (75) and may contribute to disrupted 

motivational processes, which are a common transdiagnostic feature of psychiatric illness 

(74).
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Early Life Stress Induces Alterations in Cognitive Function

Global Cognitive Function:

It has been argued that vulnerability to mental health problems following exposure to ELS 

may be due to alterations or calibrations in neurocognitive systems in response to early 

stressful environments that, over time, can become maladaptive (76, 77). Due to the 

disrupted neurodevelopment of these systems, however, ELS may more profoundly affect 

cognitive functioning than stress exposures later in life. This is supported by findings 

indicating that ELS impacts intellectual functioning at a global level. For example, neglected 

children score significantly lower on intelligence quotient (IQ) than controls (78). Moreover, 

institutionalized children have decreased intellectual performance relative to 

neverinstitutionalized children (79-81) and a recent meta-analysis including over 3,800 

children found an IQ difference of nearly 20 points (82). Such global cognitive deficits are 

commonly associated with adult psychopathology (83).

Emotion Processing:

In addition to these global cognitive effects, ELS also affects affective processing more 

specifically (84). For example, a recent meta-analysis of over 11,000 (85) children and 

adolescents found that exposure to ELS was associated with poor emotion regulation as well 

as increased avoidance, emotional suppression, and expression of negative emotions in 

response to stress. Altered capacity to regulate emotional responses is a common feature of 

many psychiatric disorders and thus, studying the impact of ELS on emotion processing 

circuitry may improve understanding of how ELS contributes to the later emergence of adult 

psychiatric disorders.

A recent meta-analysis of 162 MRI studies of emotion found that, in addition to activations 

seen in the amygdala, ventral striatum, thalamus, hypothalamus, and periaqueductal gray, 

regions within the medial, orbital, and inferior lateral frontal cortices were also consistently 

activated during emotion-based tasks (86). Moreover, the generation of emotional responses 

involves both bottom-up (i.e. amygdala-MPFC) and top-down (i.e. MPFCamygdala) activity, 

which are critically shaped by developmental stage and context (3). Given this complexity, it 

is not surprising that ELS effects on emotion processing have been linked to widespread 

alterations in brain function. However, given the hierarchical nature of brain development, it 

is difficult to discriminate the direct effects of ELS on stress-sensitive regions from their 

effects on downstream developmental targets (87).

Reward Processing:

Recently, increased attention has also been directed towards understanding the impact of 

ELS on reward-based processing. Unfortunately, few behavioral studies have directly 

examined the impact of ELS on reward-related behavior in children. However, data derived 

from younger (88) and older adults (89) have found associations between ELS and 

impairments in reward learning. Generally, the neural circuitry involved in reward 

processing includes a central core: the ventral striatum/NAcc and the ventral tegmental area 

(VTA) of the midbrain, which contribute to detecting rewarding stimuli. Information related 

to reward value is processed across glutamatergic projections from the OFC and anterior 
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cingulate cortex (ACC), as well as dopaminergic projections from the VTA onto the ventral 

striatum. Information from multiple components of this network are then integrated in the 

PFC where it is translated into action. Several other structures including the amygdala, 

hippocampus, lateral habenular nucleus and regions of the raphe, may modulate this 

circuitry (90, 91).

Over the last several years, exposure to ELS has commonly been associated with variation in 

reward circuitry. For example, a history of exposure to ELS has been associated with 

reductions in size of the striatum (48, 92, 93), alterations in the developmental trajectory of 

NAcc volume (94), and reduced volume, thickness or connectivity of the OFC (28, 29, 

70-72). Moreover, data derived from task-based fMRI studies find that a history of ELS is 

consistently associated with variation in striatal response to anticipation and/or receipt of 

reward (60). Finally, relative to children in the lowest quartile of childhood stress exposure, 

those exposed to high levels of stress evidence altered brain activation within the reward 

network to a monetary incentive delay task 10 years later and this altered activation is 

associated with real-world reward-seeking behavior (88). Notably, a recent review has 

concluded that alterations in reward behavior and circuitry may be among the most 

prominent transdiagnostic feature of psychiatric disorders (95) and thus, may be critical for 

understanding how ELS contributes to the later emergence of adult psychopathology.

Overlap in Stress-Related Circuitry Underlying Risk and Resilience to 

Psychotic Disorders

Although early adversity may increase risk for the later emergence of psychiatric illness, it is 

also important to note that there is considerable variability in the outcomes associated with 

ELS. For example, data from the Isle of Wight study, a large longitudinal epidemiological 

study, demonstrated that of the ~10% of individuals who reported repeated or severe abuse 

in childhood, ~44% evidenced no psychopathology over a period of 30 years. Moreover, in 

those exposed to repeated or severe abuse, rates of personality functioning difficulties, 

relationship instability, crime and poor self-reported health were significantly lower in 

individuals without vs. those with adult psychopathology (96). Thus, although exposure to 

ELS may impact neurodevelopment, these impacts do not always lead to poor outcomes.

Perhaps not surprisingly, stress-related neural circuitry that contributes to resilience to adult 

psychopathology overlaps considerably with the circuitry implicated in risk for later 

psychiatric disorders. For example, a recent review of 48 MRI studies (56) examining adult 

outcomes associated with childhood maltreatment found that resilient adults evidenced 

increased hippocampal volume and increased resting state functional connectivity of limbic 

regions as well as a greater ability to regulate emotion relative to those who were not 

resilient. Although it is not yet clear whether such effects represent pre-existing, adaptive or 

compensatory processes in the underlying neurobiology, the overlap in neural circuitry of 

both risk and resilience to adult psychopathology holds considerable promise for advancing 

our understanding of the pathophysiology of chronic mental illnesses such as psychosis.

In addition to the meta-analytic data suggesting that roughly 33% of psychotic disorder 

cases are attributable to ELS exposures (4), other forms of childhood adversity including 
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parental mental illness, poverty and urbanicity (97) have consistently been implicated in risk 

for psychotic disorders. Thus, capitalizing on what is known about the effects of ELS on the 

brain to further our understanding of the neurodevelopmental mechanisms that may increase 

risk for psychosis, is an intuitive approach. However, elucidating the overlap between the 

circuitry impacted by ELS and the circuitry contributing to the later emergence of psychosis, 

also provides unique opportunities to understand resilience to psychotic disorders. Recent 

years have seen a dramatic increase in work seeking to apply the concept of resilience to the 

study of psychosis. Indeed, in the last 5 years, the number of publications on this topic 

(n=190) have more than doubled from that of the entire period from 1980-2014 (n=75) 

(PubMed keywords; psychosis + resilience, 5/4/2020). This is in line with the growing 

recognition that psychosis should be viewed as a dimensional, rather than a categorical 

construct.

Dimensional approaches to the study of psychosis have been proposed in multiple forms 

throughout the history of psychiatry (98) but have only recently begun to attract widespread 

attention. The dimensional approach encompasses a full range of psychotic symptom 

expressions from subclinical or prodromal manifestations, typically observed in non-

psychiatric populations or high-risk samples, to the clinically significant symptoms typically 

observed in patients with psychotic disorders. This approach, which allows for the 

examination of individuals who exhibit subclinical psychotic symptoms but who do not meet 

criteria for a psychiatric disorder, offers novel opportunities for elucidating risk and 

resilience to psychotic disorders (99). To date, most of the studies exploring the psychosis 

dimension have aimed to identify characteristics (clinical, neurocognitive, imaging) that 

facilitate the prediction of transition to a clinical state. However, such studies also provide 

insight into mechanisms of resilience, which reduce the risk for transition and contribute to 

better long-term outcomes.

Perhaps one of the most notable findings linking stress-related neurocircuitry to resilience in 

psychotic disorders is that reductions in hippocampal and amygdala volumes are not present 

in the high-risk state but are present in patients with psychotic disorders (100). Thus, it 

seems possible that alterations in the developmental trajectory of these stress sensitive 

regions either contribute to, or protect against, the development of illness. Another striking 

finding, is that the pituitary, a core HPA axis region, is enlarged in those who transition to a 

clinical syndrome, with greater enlargement associated with a decreased time to transition 

(101, 102). Notably, basal cortisol levels have also been found to be elevated in high-risk 

individuals and may be predictive of transition (103, 104). Collectively, these data suggest 

that variation in the stress response systems, longitudinally, may contribute, at least in part, 

to both risk and resilience psychotic disorders.

Not surprisingly, much of the work examining transition from a subclinical to a clinical 

syndrome suggest that emotion and reward processes are a central feature of resilience to 

poor outcomes. Emotion and reward processing deficits are consistently implicated in risk 

for the development of psychotic disorders and significantly contribute to the poor outcomes 

associated with it. Such impairments are also present in those exhibiting subclinical 

symptoms. For example, patients with psychotic disorders typically use more maladaptive 

emotion regulation strategies and fewer adaptive strategies than healthy controls (105, 106). 
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Such maladaptive emotion regulation is found across the entire spectrum of psychotic 

symptoms (107) including chronic patients (106, 108), first-episode patients (109), high-risk 

or prodromal (110) and general population samples (111, 112). Moreover, poor outcomes in 

individuals with psychotic disorders are strongly associated with a range of social cognitive 

processes encompassing emotion processing (113) and its underlying circuitry contributes to 

poor outcomes even in those with subclinical symptoms. In a high-risk sample, low levels of 

overall functioning at a 12-month follow-up visit was associated with baseline alterations in 

the recognition of anger and relative to those with high levels of overall functioning at 12-

month follow-up, those with low levels of functioning evidenced more negative associations 

between anger recognition and left hippocampal volume as well as between fear recognition 

and left MPFC volume (114).

Similarly, behavioral studies have consistently demonstrated that deficits in reward learning 

(115-117), reward valuation (118-120) and effort-based decision making (121-124) are a 

core feature of psychotic disorders and such deficits have also been observed across the 

psychosis spectrum (125-130). These findings are not surprising given the plethora of data 

implicating dopaminergic function in both psychosis and reward-processing (131). Relative 

to those who do not transition, high-risk individuals who do transition have elevated baseline 

striatal dopamine (132) suggesting that progressive changes in dopaminergic function 

contribute to the emergence of illness. Thus, stable dopaminergic function may protect 

against transition; facilitating resilience. Indeed, it has been argued that the ability to 

maintain properly functioning reward pathways, which are dependent on dopamine, may be 

critical to resilience more generally. Specifically, resilient individuals may have a reward 

system that is hypersensitive to reward or more resistant to change (133). However, in this 

context, resilience may represent adaptive changes to reward circuitry rather than an absence 

of change (134). Consistent with this view, Richter et al. (135) recently demonstrated that 

healthy young adults who had high levels of childhood adversity showed reduced bottom-up 

activation in the VS, VTA and hippocampus. However, in those with a high adversity load, 

high trait resilience was related to increased activation in the VTA and hippocampus and less 

negative functional interactions between these regions, suggesting a compensatory or 

protective mechanism counteracting the effects of adversity.

Longitudinal Structural Changes Predicting Risk and Resilience

In addition to regions directly impacted by the stress response, imaging studies of resilience 

to psychotic disorders implicate many structures and functions that contribute to emotion 

and reward processes, but may be down-stream targets of HPA axis regions. One of the 

earliest studies to examine differences in the brains of individuals at high-risk for psychotic 

disorders who later transitioned to a clinical syndrome vs. those who did not found that 

those who did develop a psychotic disorder demonstrated significant longitudinal reductions 

of gray matter in the left parahippocampal gyrus, fusiform gyrus, OFC and cerebellum as 

well as in the cingulate (136). More recent data suggest that such changes are not just 

predictive of transition of a clinical syndrome but may also relate to the worsening of 

symptoms. For example, Tognin and colleagues (137) found that regions that provided the 

greatest contribution to prediction of symptom progression in a high-risk sample were the 

right temporal fusiform cortex, right temporal pole, right parahippocampal gyrus, inferior 
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temporal gyrus, and left insular cortex, regions that are more peripherally involved in 

emotion regulation and reward (138-140). Notably, other findings have suggested that 

compensatory increases in activity in some of these regions, including inferior frontal, 

anterior cingulate, and parahippocampal regions, are associated with clinical improvement in 

high-risk samples longitudinally (100).

Alterations in brain structure contribute not just to the risk of transitioning to a clinical state, 

but also to both short- and long-term outcomes in high risk samples. For example, in a high-

risk sample studied over a 52-week follow-up period, those who did not transition to a 

clinical disorder showed a significant improvement in subclinical symptoms at follow-up 

that correlated with increased volume (141) and structural connectivity (142) of the corpus 

callosum, which has been shown to contribute to emotion processing deficits in psychotic 

disorders (143). In another study, Cropley et al. (144) examined baseline differences in gray 

matter volume in high-risk samples who did or did not transition after approximately 7 years 

of follow-up and found that, in those who continued to exhibit symptoms, gray matter 

volume was reduced in the middle frontal gyrus, right precuneus/posterior cingulate, left 

inferior temporal gyrus, and a broad posterior region encompassing amygdala, superior 

occipital cortex, and middle frontal pre- and post-central gyrus. Similarly, de Wit et al (145) 

examined a high-risk sample over a 6-year follow-up and found that the trajectory of 

cingulate gyrus change differentiated between those who had poor outcomes relative to 

those who improved at follow-up. Specifically, resilient individuals had less tissue loss, 

which they suggested might reflect a compensatory mechanism. More recent work by the 

same group (146) used Support Vector Regression analysis to predict long-term functional 

and clinical outcome from baseline MRI measures and found strong correlations between 

subcortical volume across regions encompassing the caudate nucleus, thalamus, pallidum, 

and amygdala as well as corpus callosum, cerebellum and third and lateral ventricle and 

long-term level of functioning.

Future Directions

Collectively, these data highlight the considerable overlap between the circuitry impacted by 

exposure to ELS and the circuitry associated with risk and resilience to psychotic disorders. 

We have previously argued that ELS-related insults to brain circuitry may be functioning to 

“add insult to injury” (147) such that the very same circuitry that is being affected by these 

exposures overlaps with the circuitry that underlies psychosis. However, it also seems likely 

that this circuitry, when preserved, contributes to resilience to psychotic disorder outcomes. 

Thus, early intervention strategies for children exposed to significant levels of stress may be 

a critical step in bolstering resilience to psychotic disorders and their associated poor 

outcomes.

McLaughlin et al. (148) recently proposed several intervention strategies that could be 

implemented in children exposed to ELS to interrupt the emergence of dysfunctional 

emotion- and reward-related processing. Moreover, because maternal regulation of a child’s 

emotional responses to stress may scaffold emotional regulation (149) and reward directed 

responding (135), interventions directed towards parenting of children exposed to high levels 

of stress may be beneficial. This is supported by recent findings that a mother’s behavioral 
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regulation of her 3-year-old child is associated with alterations in emotion processing 

circuitry, including amygdala connectivity to frontal and parietal regions, and reward 

circuitry, including VS connectivity to the OFC and inferior frontal gyrus, 7-8 years later 

(150). Thus, early interventions aimed at improving emotion and reward-related processing 

long before the onset of psychopathology may hold considerable promise for bolstering 

resilience to psychotic disorders. Despite targeting individuals who are already exhibiting 

attenuated psychotic symptoms, early intervention strategies in high-risk psychosis samples 

have been successful in delaying the onset of the illness and improving outcomes (151). 

Interventions applied sooner, specifically targeted at processes that are known to contribute 

to risk for the disorder, would likely have a much greater impact.

Conclusions

Despite substantial progress in understanding how ELS may contribute to risk and resilience 

to psychotic disorders, there are still many unanswered questions regarding the 

neurodevelopmental impact of ELS. First, different types of ELS (e.g. poverty, deprivation, 

abuse) and variation in the severity of exposure may have differing influences on brain 

circuitry. Second, the developmental stage at which stress exposure occurs and whether that 

stress exposure is chronic or transient are also important factors that are likely to influence 

neurodevelopment. Finally, individual differences in the underlying neurobiology may 

predispose some individuals toward resilience in the presence of ELS. Therefore, while it is 

clear that ELS has a profound impact on neurodevelopment underlying risk and resilience to 

psychosis, more research is needed to understand the ELS-related mechanisms, timing, and 

factors contributing to neurodevelopmental changes that underlie psychosis.
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Figure 1. 
The impact of Early Life Stress (ELS) on brain circuitry and potential outcomes contributing 

to psychopathology. Core stress reactive regions are shown in green. Key noncore regions 

that are also affected by stress are shown in purple. While each region may represent a 

unique pathway through which ELS contributes to psychopathology, it is important to note 

that ELS may also affect the neurodevelopment of connections between these unique 

pathways.
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