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Abstract

Adolescence is a critical yet vulnerable period for developing behaviors important for mental well-

being. The existing literature suggests that physical activity (PA), exercise, and aerobic fitness 

promote well-being and reduce risk of mental health problems. In this review, we focus on PA, 

exercise, and fitness as modifiable resilience factors that may help to promote self-regulation via 

strengthening of top-down control of bottom up processes in the brain; thereby acting as a buffer 

against mental health problems during this period of vulnerability. First, we briefly review the link 

between PA, exercise, and aerobic fitness with mental well-being and reduced mental health 

problems in adolescence. Then, we present how impairments in self-regulation, which involves 

top-down control to modulate bottom-up processes, are common across a wide range of mental 

health disorders. Finally, we utilize the extant neuroimaging literature to highlight how neural 

systems underlying top-down control continue to develop across adolescence, and propose that 

PA, exercise, and aerobic fitness may facilitate resilience through strengthening both individual 

brain regions as well as large-scale neural circuits to improve emotional and behavioral regulation. 

Future neuroimaging studies assessing the effects of PA/exercise and aerobic fitness at various 

developmental stages in each sex and those that consider the characteristics (e.g. frequency, 

intensity, type) and social context of PA/exercise are vital to better understand both macro and 

micro-scale mechanisms by which these behaviors and attributes may facilitate mental health 

resilience during adolescent development.
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INTRODUCTION

Adolescence is the transition between childhood and adulthood, encompassing biological 

growth, social role transitions, and hormonal changes (1). It is also a period of enhanced 

brain plasticity and cognitive flexibility designed to promote learning in order to respond 

and adapt to new roles, environments, and encounters (2–4). As such, adolescence is often 

defined as both a period of opportunity and vulnerability (3). The developing adolescent 

brain can adapt and learn to establish behaviors important for mental well-being. However, 

the malleability of the adolescent brain may also render it vulnerable to maladaptive 

responses to mental stress. One in five adolescents experience mental health problems (5), 

with half of all lifetime diagnoses occurring by age fourteen (6). Mental health problems can 

generally be divided into externalizing disorders, including conduct and oppositional 

disorders and attention deficit-hyperactivity disorder (ADHD), and internalizing symptoms, 

including anxiety and depression (7). The prevalence of externalizing symptoms among 

adolescents is about 19% while internalizing symptoms affects between 14–32% of U.S. 

adolescents, with both symptoms displaying largely similar developmental trajectories 

across adolescence (8). Due to the negative health consequences of these mental health 

problems, understanding how the symptoms develop, their subsequent prevention, and 

alleviation are major public health targets.

In this narrative review, we focus on physical activity (PA), exercise, and fitness as 

modifiable brain resilience factors that promote neural processes of self-regulation, thereby 

acting as a buffer against mental health problems during this period of vulnerability (9–11). 

PA is defined as any bodily movement that increases energy expenditure above resting, and 

encompasses occupational, sports, conditioning, and other activities (12). Exercise, a subset 

of PA, is defined as planned, structured, repetitive, and purposive PA to improve or maintain 

physical fitness (12) – a set of physiologic attributes (e.g., body composition, muscle 

strength, balance, cardiorespiratory effects) related to the ability to perform PA and exercise 

that have a relationship with good health (13, 14). Aerobic fitness refers to maximal oxygen 

consumption (VO2max) (15), or the ability of circulatory and respiratory systems to deliver 

oxygen during activity, and is commonly interchanged with the term cardiorespiratory 
fitness (13).

PA, exercise, and aerobic fitness during adolescence are thought to confer resilience – 

defined here as ‘the ability to withstand, recover, or grow, in the face of stressors and 

changing demands’ (16). Importantly, this broader definition of resilience not only includes 

recovery, but also the ability of resistance towards disease onset. Specifically, this broader 

term is used here as PA, exercise, and aerobic fitness may each contribute to resilience in 

terms of both recovery and resistance against mental health issues. We use a cognitive-

affective neuroscience framework and build upon the extant PA/exercise/fitness 
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neuroimaging literature in youth to propose that PA, exercise, and aerobic fitness promote 

resilience by strengthening self-regulation through top-down control of bottom-up 

processing. Thus, this focused narrative review integrates concepts across the fields of 

behavioral research and exercise physiology, mental health, and cognitive developmental 

neuroimaging to provide a mechanistic framework that expands our understanding of how 

PA, exercise, and fitness promote mental health resilience across adolescence using 

Magnetic Resonance Imaging (MRI) neuroimaging (for detailed reviews of each of these 

literatures, see (17–19)). Specifically, in this review we: (1) briefly review the link between 

PA/exercise/aerobic fitness and mental health in adolescence; (2) present that impairments in 

self-regulation via top-down control are common across many mental health disorders; and 

(3) utilize the extant neuroimaging literature to highlight how neural systems of top-down 

control continue to mature during adolescence and that PA/exercise and fitness may 

strengthen these neural systems to reduce vulnerability to mental health problems. Overall, 

we discuss how during adolescence the parallel increase in mental health problems alongside 

decreased PA/exercise and fitness may play an important role in affecting optimal 

development of these neural systems.

RELATIONSHIPS AMONG PA, EXERCISE, AND FITNESS WITH MENTAL 

HEALTH IN ADOLESCENTS

The U.S. Physical Activity Guidelines recommend that youth ages 6–17 years accumulate at 

least 60 minutes of moderate-to-vigorous intensity PA per day for physical and mental 

health benefits (20). Recent systematic reviews and meta-analyses of study samples ranging 

from 20 to over 35,000 participants highlight the potential for PA to reduce and prevent 

symptoms associated with depression and anxiety, as well as ADHD and substance use 

disorders among youth (11, 18, 21, 22). Due to its wide-ranging benefits, exercise has also 

been proposed as a non-pharmacological treatment to alleviate depression (sub-clinical or 

clinical), anxiety, and externalizing disorders such as ADHD. Several recent reviews and 

meta-analyses of study samples ranging from 10 to 779 participants concluded that PA and 

exercise can improve internalizing and externalizing symptoms in youth (23–26), with 

depression and anxiety the two most-studied outcomes (27). However, relatively less is 

known about the role of fitness components and mental health in youth (28). One hypothesis 

is that higher levels of fitness components lead to greater mental well-being in youth (29, 

30). Specifically, improvements in aerobic fitness are associated with better mental well-

being (e.g., less depression; improved school and social functioning) in children and 

adolescents (30–34). Altogether these findings indicate that higher fitness levels, and low 

(40–54% of maximal heart rate (MHR) on VO2max test) and moderate (55–69% of MHR) 

intensity exercise buffer against internalizing and externalizing symptoms, particularly 

depression and ADHD. Recently, in an effort to increase the methodological quality of 

randomized control trials (RCTs) in this area, findings from a pilot study in 9–12 year-old 

children (N=27) suggested that the low-to-moderate intensity exercise intervention 

significantly reduced depressive and trait anxiety symptoms, whereas the high intensity 

intervention did not have any significant effects (35). However, limitations of prior studies 

include: a lack of experimental design with rigorous controls, a wide variety of exercise 

durations, intensities, and frequencies, little attention to the role of puberty or effects in 
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children under 16 years, and often no information provided on pre-trial PA or fitness levels – 

all of which may influence results.

Despite compelling evidence that PA/exercise and fitness are beneficial to mental health and 

may help to promote resilience in youth affected by mental health problems, the question 

remains as to how resilience is conferred. The potential mechanism(s) of these effects are 

likely multifaceted, and include stress-buffering effects, optimizing neuroendocrine and 

physiological responsivity, reducing inflammation, and enhancing neuroplasticity (36, 37). 

In terms of the latter, below we discuss how PA/exercise may increase fitness components to 

confer resilience via ultimately promoting better self-regulation through structural and 

functional changes in how the brain may process and regulate information.

SELF-REGULATION THROUGH TOP-DOWN PROCESSING AND MENTAL 

HEALTH

Self-regulation, broadly defined as the ability to “monitor and modulate cognition, emotion, 

and behavior” (38), occurs through the operation of two simultaneous ways in which we 

process information, known as top-down and bottom-up processes (Figure 1A). Bottom-up 

processes are more automatic and are derived from the sensory information provided by cues 

and stimuli in our environment, whereas top-down processes are more conscious and 

cognitively driven. This self-regulation framework involving two simultaneous information-

processing systems has been useful for contemporary theories of emotional regulation (i.e. 

the ability to increase or decrease the intensity of an emotion in response to a given 

situation) and behavioral regulation (i.e. modulating behavior such as implementing 

executive function and/or self-control) (39). Considerable overlap exists in the neural 

circuitry that underlies such self-regulation capabilities, and dysregulation of information 

processing, including both emotional and behavioral regulation, has been identified as a 

potential risk phenotype of mental health disorders (40). Externalizing disorders are 

commonly conceptualized as dysfunction of top-down behavioral self-regulation, such as 

inattention, impulsivity, and hyperactivity, whereas other externalizing and internalizing 

disorders, such as conduct disorder, bipolar, anxiety, and depression, may reflect dysfunction 

of top-down emotional self-regulation (41). Although these disorders have traditionally been 

studied separately, impairment in self-regulation resulting in poor control of bottom up 

processes is thought to be a common transdiagnostic mechanism in individuals affected by 

mental illness (41, 42).

Depending on the type of cognitive information (e.g. emotion, memory, attention), a number 

of brain regions are involved in self-regulation at the neural level, including the prefrontal 

cortex (PFC), superior parietal lobe, and cerebellum (43, 44). In terms of top-down 

modulation of emotions, the orbitofrontal (OFC), ventral medial PFC (mPFC), and anterior 

cingulate cortex (ACC) are involved in a larger corticolimbic network, which helps to 

regulate bottom-up processing of emotional stimuli via the amygdala, ventral striatum, and 

hippocampus (45–47) (Figure 1B). The integration of top-down control over bottom-up 

emotional processes allows for better emotional control since the meaning assigned to 

emotional stimuli are not automatic, but rather are dependent on an individual’s experiences, 
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personality, and goals (48), thus allowing for adaptive strategies such as expressive 

suppression and cognitive appraisal (49). The PFC plays a significant and unique role during 

top down processing as it exerts both ‘modulatory’ and ‘directional’ influences over other 

brain regions involved in this intrinsic circuit. Top-down behavioral regulation also involves 

the dorsal lateral PFC (LPFC) and its interactions with brain regions involved in the larger 

frontoparietal network (FPN), including portions of the superior parietal lobe known as the 

intraparietal sulci (IPS) (50). The FPN supports key high-level cognitive tasks vital for self-

regulation, including goal-directed attention and working memory, in order to flexibly 

interact with other cognitive and motor systems necessary for successful adaption of 

behavior depending on a current goal (51). Lastly, dorsal portions of the mPFC also interacts 

with the posterior cingulate (PCC) and the temporal parietal junction (TPJ) as part of the 

default mode network (DMN), which is most active at rest (i.e. absence of top-down and 

bottom-up processing and/or goal directed tasks), with primary functions including 

mentalizing, perspective-taking, and self-representation (52, 53). Unsurprisingly, poor PFC 

structural connectivity and dysfunction of these intrinsic large-scale networks (corticolimbic, 

FPN, DMN) involved in top-down control are common features seen in those affected by 

mental health problems and are thought to be a transdiagnostic risk factor (51, 54–56).

PA/EXERCISE AND FITNESS FACILITATE RESILIENCE BY 

STRENGTHENING BRAIN SELF-REGULATION MECHANISMS DURING 

ADOLESCENCE

PA and exercise may act as resilience factors by exerting neuroplastic effects via promoting 

structure and function of neural circuits involved in self-regulation that are continuing to 

develop during adolescence. The key brain regions involved in emotional and behavioral 

self-regulation are not fully developed at birth, and continue to develop across childhood and 

adolescence (2, 4). Cortical regions that process sensorimotor information as well as the 

subcortical limbic structures (i.e. amygdala, hippocampus, and striatum) (57) involved in 

bottom-up emotional processing mature prior to the protracted development of the PFC 

which is uniquely involved in top-down control processing (2, 4). Therefore, there is a 

tentative bias towards bottom-up processing as the relatively immature PFC is building and 

refining its role in supporting top-down control capabilities to regulate emotions and 

behavior (2). Beyond structural changes to the PFC, structures involved in the large-scale 

corticolimbic, FPN, and DMN brain networks (58), and white matter pathways sub-serving 

these networks (59), continue to mature across childhood and adolescence (60). That is, 

there is increased coordination of higher order cognitive processes in adolescents (61, 62) 

and age-related differences are seen in functional connections between the PFC and 

amygdala within the corticolimbic network (63). Structural and functional developmental 

changes in the PFC and integration with the structures of these related intrinsic large-scale 

networks ultimately lead to progressive improvements in key components of cognitive 

control, including working memory and attention to relevant, but inhibition of irrelevant, 

stimuli in adolescents (64, 65). Furthermore, the development of these top-down processes 

allows for the ability to control bottom-up reactions to external cues that foster essential 

mental strategies for adaptive cognitive and emotional functioning (57, 66–68). Importantly, 
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this early maturation of bottom-up brain regions (i.e. sensorimotor, limbic) relative to the 

protracted top-down brain areas (i.e. PFC, superior parietal lobe, etc.) overlap with the 

developmental timing in which mental health problems begin to emerge during the 

adolescent years (Figure 2A/B). Coincidentally, an age-related decline in PA and exercise 

occur during this same transition from childhood to adolescence (69–71) (Figure 2C). 

Building upon the extant cross-sectional and RCT PA, exercise, and fitness studies using 

MRI (Table 1), we hypothesize that PA, exercise, and fitness may positively affect PFC brain 

structure and function, along with intrinsic large-scale networks (corticolimbic, FPN, DMN), 

to allow for better top-down control as a potential neural mechanism of resilience against 

mental health problems during adolescence (Figure 3).

Cross-sectional studies have linked aerobic fitness with cortical gray matter morphometry in 

the PFC, as well as motor, parietal, superior temporal and occipital regions (72–76) and 

greater white matter volume in inferior fronto-opercular, inferior temporal, cingulate, and 

middle occipital and fusiform gyri in youth; although findings have been mixed (77, 78). 

Aerobic fitness has also been linked to larger subcortical volumes, including the 

hippocampus (73, 78, 79) and basal ganglia (73, 76, 80), as well as improvements in 

hippocampal-dependent processes, such as memory encoding (81) and working memory 

(82, 83). These regions and white matter connections uniquely contribute to various aspects 

of self-regulation including: goal-oriented behavior and thought (e.g. inferior fronto-

opercular) (84–89), voluntary motor control and inhibition (e.g. basal ganglia) (90), emotion 

and behavior regulation (e.g. cingulate) (91) as well as valence of visual stimuli (e.g. inferior 

temporal) including faces via the fusiform (92). Hippocampal volumes have also been found 

to mediate the association between PA (e.g., sports participation) and depression symptoms 

among male children (93). In addition to brain structure, the structural connectivity between 

brain regions, as measured by diffusion weighted MRI (DWI), is an important component to 

the aforementioned larger scale networks that are involved in emotional and behavioral self-

regulation. Cross-sectional studies suggest PA is related to overall greater fractional 

anisotropy (FA) (94, 95) across the entire brain. Moreover, aerobic fitness as well as RCT 

studies have linked exercise to differences in FA within specific white matter tracts, 

including: the superior corona radiata (SCR) and superior longitudinal fasciculus (SLF) that 

are long range tracts connecting the PFC to other brain regions such as the superior parietal 

lobe; the corpus callosum (CC) (96–99) that integrates motor, sensory, and cognitive 

processes between the two hemispheres (100); the uncinate fasciculus (UF) (101) that 

connects the PFC to corticolimbic regions, such as the hippocampus and amygdala (102); 

and in the motor (corticospinal) tract (103). Thus, as the identified white matter structural 

pathways linked to PA and exercise innervate the PFC and sub-serve cognitive functioning 

(e.g. CC, SLF, SCR) (88, 104, 105) and emotional systems (e.g. UF) (106), these findings 

may suggest that regular exercise may exert widespread effects on PFC white matter 

connectivity to strengthen top-down control systems that are involved in behavioral 

regulation. Notably, these exercise-related differences in PFC structure, connectivity with 

other self-regulatory brain regions, and hippocampal volumes and associated behaviors 

overlap with brain regions and cognitive functions involved in the larger-scale functional 

networks such as the DMN and FPN.
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A few initial cross-sectional and RCT studies of brain function and blood flow also support 

the notion that exercise may influence neural resources required for top-down control (107–

111) and learning (112) among youth. Lower-fit children demonstrate different patterns of 

activation in somatosensory, insula, ACC, parietal, and the middle PFC during tasks of 

sustained attention and inhibition (108, 110), and two RCTs found exercise resulted in 

differences in PFC activity during the anti-saccade task (109, 113). Another cross-sectional 

study found that lower-fit adolescent males had lower activity in PFC regions, as well as 

impaired decoupling of the hippocampus to the DMN when encoding new memories 

compared to their higher-fit peers (112). Beyond task activation, two additional studies 

provide initial evidence that aerobic fitness may influence intrinsic functional organization 

of large-scale networks, including resting-state brain activity patterns in the DMN, cognitive 

control (i.e. notably similar to the FPN described here), and motor networks (107), as well as 

increased cerebral blood flow to the hippocampus (114). Thus, exercise-related differences 

are found in the DMN at rest and in various FPN regions during goal-directed top-down 

cognitive tasks, like paying attention, inhibiting a motor response, or learning new 

memories.

Taken together, structural and functional MRI findings suggest that PA and exercise may 

confer resilience at the neural level through structure and function of the PFC, as well as 

potential integration and refinement of the PFC with other brain regions involved in large-

scale networks, such as the FPN, DMN, and corticolimbic systems. In turn, strengthening 

these systems to improve top-down control of bottom-up processes may ultimately lead to 

enhanced modulation of behavioral self-regulation such as attention or impulse control, as 

well as emotional self-regulation of positive and negative emotionality and/or emotion-

expressive behavior. Specifically, exercise-related improvements in FPN activation and 

DMN deactivation may enhance attention, inhibition, and working memory capacities, 

ultimately increasing the capacity to change one’s attention, suppress negative affect, and/or 

implement cognitive reappraisal strategies to modify duration and/or intensity of undesirable 

or aversive feelings. Improved cognitive control may also promote a healthier self-concept, 

higher self-esteem, and/or advanced coping and problem-solving skills which could also be 

protective (115, 116). Thus, PA and exercise may refine these key neural systems, offering 

reductions in internalizing and externalizing symptoms via increased cognitive control, 

ultimately decreasing risk for mental health problems during the vulnerable adolescent 

developmental period.

FUTURE STUDIES TO INVESTIGATE THE LINK BETWEEN PA/EXERCISE, 

SELF-REGULATION VIA TOP-DOWN CONTROL, AND MENTAL HEALTH 

RESILIENCE

Using the extant PA/exercise/fitness and MRI literature as well as a cognitive-affective 

neuroscience framework, we propose increased PA/exercise and improved fitness may 

facilitate self-regulation via improved top-down control over more prominent de facto 

bottom-up processes during adolescence as a potential resilience mechanism to promote 

well-being and mitigate risk for mental health problems. Additional multi-disciplinary 

studies are necessary to directly assess this plausible neural mechanism. As such, we 
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highlight key considerations for future studies that are needed to address the remaining 

fundamental questions (Supplement Box 1) as to how PA/exercise and fitness impact brain 

development to better identify the neural mechanism(s) that promote resilience during 

adolescence.

1. Possible developmental and sex-specific effects:

The studies to date have included mostly children and/or pre-adolescents (see age details in 

Table 1). Given that the brain is malleable with dynamic patterns of brain maturation across 

childhood and adolescence (4, 59, 117), it is likely that PA and exercise may modify brain 

structure and function of particular neural circuitries based on the age and/or developmental 

stage and the sex of the individual. Since the PFC and self-regulation are still undergoing 

dynamic growth as individuals’ transition from childhood to adulthood, PA and exercise may 

have larger effects on these systems in adolescence as compared to other periods of the 

lifespan. In addition, sex differences in mental health problems emerge during the transition 

from childhood to adolescence, with increased internalizing problems in females and 

increased externalizing problems in males (118, 119). Interestingly, some evidence suggests 

that the age-related PA decline during the transition from childhood to adolescence (69–71) 

are steeper and begin earlier in females as compared to males (120, 121). This is important 

because sex differences in PA and exercise levels may also contribute to sex differences seen 

in mental health prevalence rates (9–11). Compounding the challenge of understanding 

developmental and sex effects of PA/exercise and risk for mental health problems during 

adolescence, are the physical and hormonal changes that occur with puberty. The timing of 

pubertal maturation (e.g., maturing earlier vs. same time/later to peers) has been theorized to 

contribute to the development of internalizing symptoms in females (122–124), and sex 

differences in brain maturation (125–128) have been linked to pubertal maturation (126, 

129). Differences in rising levels of sex steroids in males and females (e.g. testosterone, 

estradiol) may also contribute to sex differences in brain development that may lead to the 

prevalent imbalance of internalizing versus externalizing symptoms that are seen between 

females and males. Yet few of the PA and exercise neuroimaging studies have reported on 

the pubertal development of their samples (see Supplemental Material). Studies are needed 

to help disentangle how sex differences in PA/exercise, patterns of brain maturation, and 

pubertal processes may uniquely combine to contribute to risk versus resilience of mental 

health problems in males and females during adolescence.

2. Multi-modal MRI to assess changes in large-scale networks and self-regulation with PA 
and exercise:

The aforementioned MRI studies suggest PA/exercise and aerobic fitness are associated with 

key structural and functional changes in brain regions, such as the PFC and hippocampus, in 

children and adolescents. Future MRI studies are needed to more fully characterize how PA 

and exercise affect large-scale networks, including those that involve PFC-related circuitry 

to implement top-down control. In addition, despite the compelling literature on PA, 

exercise, and emotional well-being, it surprisingly remains unknown if PA and exercise 

impact brain structure and function of the corticolimbic system and brain activity patterns of 

emotional regulation across adolescence. Future studies are needed beyond examining a 

specific brain region and/or behavioral construct to more fully examine how PA and exercise 
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influence large-scale networks of cognitive control and emotional processing, with a focus 

on targeting already identified transdiagnostic functional and structural phenotypes (130). 

PA and exercise intervention studies should consider using both resting-state protocols as 

well as fMRI tasks that directly assess changes to self-regulatory systems that contribute to 

emotional self-regulation and bias, such as emotional Stroop or emotional reappraisal tasks 

(131–133). Given that internetwork communication continues to integrate with age across 

development (60, 117), PA and exercise may promote PFC integration into the corticolimbic 

and FPN networks to facilitate self-regulation via strengthening top-down control abilities. 

For example, acute exercise in both young and old adults show that just 30 minutes of 

moderate intensity exercise results in synchrony among brain regions involved in the 

corticolimbic, FPN, and DMN (134). It is likely that this pattern may also hold true for 

adolescents; yet the consequences of continual PA and exercise may be more long-lasting in 

that the adolescent brain is continuing to mature and largely remains under construction. 

Strengthening such top-down systems during development could ultimately lead to 

improvements in impulse control, inhibition of thoughts and actions, and modulation of 

intense emotions – all of which are important to self-regulation and may ultimately help 

mitigate risk for emotional health problems during this critical period of maturation.

3. Understanding how PA/exercise and fitness characteristics optimize mental health 
benefits:

The type (i.e. aerobic, strength), frequency, and intensity of PA/exercise that may be optimal 

for promoting resilience during adolescence remains unknown. In addition, in order to better 

address potential confounders, future studies need to provide more details on baseline 

participant characteristics beyond those related to mental health, such as general PA, sports 

participation, and fitness levels. Although beyond the scope of this review, there are also 

multiple behavioral and neurocognitive mechanisms that link aerobic fitness and mental 

health in youth (e.g., higher fitness leads to greater participation in social activities that help 

develop relationships; higher self-efficacy and esteem for activity behaviors; and greater 

social and problem-solving skills) that may promote resilience. In addition, the question 

remains of how the prosocial context of PA/exercise and fitness level may reduce mental 

health symptoms in both sexes -- albeit through potentially different psychosocial avenues. 

For example, team sports may provide benefits beyond individualized sports through 

positive social interactions with peers that provide social support and increase self-esteem 

(135–137). Both cross-sectional (138) and longitudinal (139) studies indicate that 

adolescents who participate in team sports report greater mental/emotional well-being (135, 

140), compared to those who participate in individual sports. A recent meta-analysis 

highlighted domain-specific (e.g., PA for transportation vs. PA in physical education class) 

benefits of PA which are likely due to the interplay of multiple psychosocial and biological 

mechanisms (141). Additionally, sex differences may exist in how the prosocial environment 

of PA and exercise may uniquely promote well-being and mental health. Organized sports 

emphasizing competition may provide emotional benefits for males (142, 143), while 

physical education classes emphasizing self-efficacy and mastery may be more beneficial for 

females (142). The emotional benefits of PA and exercise may also be maximized when the 

behavior is intrinsically motivated (e.g., engaging in PA/exercise for inherent feelings of 

pleasure and accomplishment) (144–146). In the context of PA, young males may be more 
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intrinsically-motivated to be active and therefore derive more pleasure from activity 

compared to young females, who may be more extrinsically-motivated (viewing PA as a 

means to an end goal, i.e. weight maintenance) (147, 148). A greater understanding of the 

relative contribution of each of the different mechanisms at hand will maximize the benefit 

of PA/exercise and provide more evidence that PA and exercise can act as resilience factors 

against mental health symptoms.

CONCLUSION

PA/exercise and fitness during adolescence are linked to brain structure and function 

implicated in cognitive and emotional systems associated with mental health. With many 

unanswered questions concerning these behaviors, attributes, and resilience during this 

sensitive period of adolescent development, future research is necessary to determine if 

neuroplastic effects of PA/exercise may lead to resilience of mental health problems via 

integration of the PFC and related circuitry into large-scaled cognitive and emotional 

systems, including top-down control of bottom-up processes. Initial neuroimaging studies 

suggest PA/exercise and fitness may be vital to both healthy brain development as well as 

mental health among adolescents worldwide. Across borders and cultures, PA/exercise and 

fitness likely play a crucial role in helping the adolescent brain flourish.
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Figure 1. 
A) Schematic of the prefrontal cortex’s role involved in emotional and behavioral self-

regulation through top-down (dashed circles) and bottom-up (solid circles) processes and B) 

Brain regions involved in top-down and bottom-up processing interact with other brain 

regions as part of large-scale networks, such as the corticolimbic (green), frontoparietal 

(yellow), and the default mode (red) networks to generate complex thoughts and behaviors. 

Abbreviations: LPFC: lateral prefrontal cortex; mPFC: medial prefrontal cortex; ACC: 

anterior cingulate cortex; AMY: amygdala; HIP: hippocampus; VS: ventral striatum; IPS: 

intraparietal sulcus; TPJ: temporoparietal junction; PCC: posterior cingulate cortex; OFC: 

orbitofrontal cortex
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Figure 2. 
Schematic of emotional, neurodevelopment, and physical activity changes that occur 

simultaneously across adolescence. A) Prevalence of behavioral problems and internalizing 

disorders emerge with age across adolescence (based on data from the 2018 National Survey 

of Children’s Health (149)). B) Regional and network specific changes occur in structural 

and functional brain maturation, including decreases in cortical thickness (red to blue), 

increases in white matter development (bundle thickness), and refinement of functional brain 

networks (circles, lines). C) Meanwhile, moderate to vigorous physical activity levels 

significantly decline as children transition into adolescence (based on data from the 2003–

2006 National Health and Nutrition Examination Survey (69)). Images were created using 

the QIT software package (150).
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Figure 3. 
Theoretical model as to how PA/exercise and fitness impacts brain structure and function to 

promote resilience against mental health problems during adolescence. MRI studies in 

children and adolescence have shown PA/exercise and fitness relate to white matter fiber 

tracts (blue) and morphometric and brain activity differences in specific brain regions 

(dashed lines). We hypothesize that these structural and functional differences occurring 

with PA and exercise (to enhance fitness) may contribute to resilience against mental health 

problems through facilitating the integration of top-down control of bottom-up processes 

within the large-scale corticolimbic (green), frontoparietal (yellow), and default mode (red) 

networks to enhance behavior and emotional self-regulation during adolescent development. 

Abbreviations: CC: corpus callosum; SLF: superior longitudinal fasciculus; CST: 

corticospinal tract; UNC: uncinate fasciculus; PFC: prefrontal cortex; LPFC: lateral 

prefrontal cortex; vmPFC: ventromedial prefrontal cortex; dACC: dorsal anterior cingulate 

cortex; AMY: amygdala; HIP: hippocampus; VS: ventral striatum; IPS: intraparietal sulcus; 

TPJ: temporoparietal junction; PCC: posterior cingulate cortex; OFC: orbitofrontal cortex
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Table 1.

Cross-sectional and intervention studies of physical activity (PA), exercise (EX), or aerobic fitness (AF) and 

brain MRI in children and adolescents. Abbreviations: RCT: randomized control trial; sMRI: structural MRI; 

DWI: diffusion weighted imaging; fMRI: functional MRI; ASL: arterial spin labeling; TBSS: tract-based 

spatial statistics; ROI: region of interest

AUTHOR YEAR STUDY 
DESIGN

SAMPLE 
SIZE AGE

PA/
EX/
AF

MRI 
TYPE BRAIN ANALYSIS BRAIN 

OUTCOME

Chaddock (79) 2010 Cross-
sectional

N=49, 59% 
Female

9–10 
years

AF sMRI ROI: hippocampus, NAc Volume

Chaddock (80) 2010 Cross-
sectional

N=55, 55% 
Female

9–10 
years

AF sMRI ROI: dorsal striatum 
(caudate nucleus and 
putamen), ventral striatum 
(NAc), and globus pallidus

Volume

Herting (78) 2012 Cross- 
sectional

N=34, 0% 
Female

15–18 
years

AF sMRI ROI: hippocampus, total 
gray and white matter

Volume

Chaddock- 
Heyman (72)

2015 Cross-
sectional

N=48, 54% 
Female

9–10 
years

AF sMRI ROI: frontal (anterior, 
middle, superior), parietal 
(superior, inferior), 
temporal (superior, middle, 
inferior), and lateral 
occipital regions

Cortical 
thickness

Herting (75) 2016 Cross-
sectional

N=34, 0% 
Female

15–18 
years

AF sMRI Whole brain Cortical 
thickness, 
surface area, 
volume

Esteban- 
Cornejo (73)

2017 Cross-
sectional

N=101, 41% 
Female

8–11 
years

AF sMRI Whole brain gray matter Volume

Esteban- 
Cornejo (74)

2019 Cross-
sectional

N=101, 41% 
Female

8–11 
years

AF sMRI ROI: frontal (right 
premotor cortex, right 
supplementary motor 
cortex, and left IFG), 
temporal (left IFG, right 
parahippocampal gyrus, 
and right superior temporal 
gyrus), and occipital (right 
calcarine cortex) regions

Cortical 
thickness, 
surface area

Esteban- 
Cornejo (77)

2019 Cross-
sectional; 
Two 
samples

1) N = 100, 
40% Female

1) 8–11 
years

AF sMRI Whole brain white matter Volume

2) N = 142, 
55% Female

2) 7–9 
years

AF sMRI Whole brain white matter Volume

Gorham (93) 2019 Cross-
sectional

N=4191, 
48% Female

9–11 
years

PA sMRI ROI: hippocampus Volume

Ruotsalainen 
(76)

2019 Cross-
sectional

N=60, 67% 
Female

12–16 
years

PA; 
AF

sMRI ROI: putamen, pallidum, 
caudate, NAc, thalamus, 
and hippocampus; 
paracentral lobule, 
postcentral gyrus, posterior 
cingulate cortex, precentral 
gyrus, superior frontal 
gyrus, lateral OFC, ACC 
(rostral anterior and caudal 
anterior division), MFG 
(rostral and caudal 
divisions), and medial OFC 
(medial OFC and frontal 
pole)

Volume

Chaddock- 
Heyman (96)

2014 Cross-
sectional

N=24, 38% 
Female

9–10 
years

AF DWI TBSS; Tractography ROIs: 
CC, corona radiata, SLF, 
posterior thalamic 

White matter 
microstructure
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AUTHOR YEAR STUDY 
DESIGN

SAMPLE 
SIZE AGE

PA/
EX/
AF

MRI 
TYPE BRAIN ANALYSIS BRAIN 

OUTCOME

radiation, and cerebral 
peduncle

Herting (103) 2014 Cross-
sectional

N=34, 0% 
Female

15–18 
years

PA; 
AF

DWI TBSS; Tractography ROIs: 
forceps major and minor, 
arcuate fascisulus, anterior 
thalamic radiation, 
corticospinal tract, inferior 
fronto- occipital fasciculus, 
ILF, UF

White matter 
microstructure

Krafft (98) 2014 RCT N=18, 50% 
Female

8–11 
years

EX DWI Tractography ROI: SLF White matter 
microstructure

Schaeffer 
(101)

2014 RCT N=18, % 
Female Not 
Reported

8–11 
years

EX DWI Tractography ROI: UF White matter 
microstructure

Chaddock- 
Heyman (97)

2018 RCT N=143, 51% 
Female

7–9 
years

EX DWI TBSS; Tractography ROIs: 
CC, corona radiata, SLF, 
posterior thalamic 
radiation, and UF

White matter 
microstructure

Rodriguez- 
Ayllon (95)

2019 Cross-
sectional

N=103, 41% 
Female

8–11 
years

PA DWI Tractography ROI: 
cingulum, corticospinal 
tract, forceps major and 
minor, ILF, SLF, UF

White matter 
microstructure

Rodriguez- 
Ayllon (94)

2020 Cross-
sectional

N=2532, 
50% Female

10 
years

PA DWI Whole brain tractography White matter 
microstructure

Ruotsalainen 
(99)

2020 Cross-
sectional

N=59, 66% 
Female

12–16 
years

PA; 
AF

DWI TBSS ROI: body and genu 
of CC, the bilateral 
superior corona radiata, the 
bilateral SLF and the 
bilateral UF

White matter 
microstructure

Davis (109) 2011 RCT N=20, 40% 
Female

7–11 
years

EX Task 
fMRI

ROI: frontal eye field, 
supplementary eye field, 
PFC, posterior parietal 
cortex

Anti-saccade

Voss (110) 2011 Cross-
sectional

N=28, 53% 
Female

9–10 
years

AF Task 
fMRI

Whole brain; ROI: ACC, 
post-central gyrus, pre-
central gyrus, left superior 
parietal lobule, SMA, 
precuneus, left central 
opercular cortex, left 
insular cortex, left temporal 
lobe, left putamen, left 
thalamus, left frontal pole, 
left MFG

Flanker

Chaddock 
(108)

2012 Cross-
sectional

N=32, 50% 
Female

9–10 
years

AF Task 
fMRI

Whole brain; ROI: left 
MFG, right MFG, SMA, 
ACC, left and right 
superior parietal lobule

Flanker

Chaddock-
Heyman (111)

2013 RCT
N=23, 57% 
Female

8–9 
years

EX Task 
fMRI

ROI: right anterior PFC, 
ACC

Modified 
Flanker with 
Nogo trials

Herting (112) 2013 Cross-
sectional

N=34; 0% 
Female

15–18 
years

AF Task 
fMRI

ROI: hippocampus Verbal 
Associative 
Learning

Krafft (113) 2014 RCT N=43, 65% 
Female

8–11 
years

EX Task 
fMRI

Whole brain Anti-saccade & 
Flanker

Krafft (107) 2014 RCT N=22, 67% 
Female

8–11 
years

EX Resting 
state 
fMRI

ROI of 4 networks: default 
mode, salience, cognitive 
control, and motor

Cognitive, 
Default, & 
Motor Networks

Biol Psychiatry Cogn Neurosci Neuroimaging. Author manuscript; available in PMC 2022 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Belcher et al. Page 24

AUTHOR YEAR STUDY 
DESIGN

SAMPLE 
SIZE AGE

PA/
EX/
AF

MRI 
TYPE BRAIN ANALYSIS BRAIN 

OUTCOME

Chaddock- 
Heyman (114)

2016 Cross-
sectional

N=73, 56% 
Female

7–9 
years

AF ASL ROI: hippocampus, 
brainstem

Cerebral blood 
flow

NAc, nucleus accumbens; OFC, orbitofrontal cortex; CC, corpus callosum; MFG, middle frontal gyrus; ACC, anterior cingulate cortex; PFC, 
prefrontal cortex; SMA, supplementary motor area; SLF, superior longitudinal fasciculus; ILF, inferior longitudinal fasciculus; UF, uncinate 
fasciculus; IFG, inferior frontal gyrus;
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