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Abstract

Background and objective: In this work, we address the problem of detecting and 

discriminating acute psychological stress (APS) in the presence of concurrent physical activity 

(PA) using wristband biosignals. We focused on signals available from wearable devices that can 

be worn in daily life because the ultimate objective of this work is to provide APS and PA 

information in real-time management of chronic conditions such as diabetes by automated 

personalized insulin delivery. Monitoring APS noninvasively throughout free-living conditions 

remains challenging because the responses to APS and PA of many physiological variables 

measured by wearable devices are similar.

Methods: Various classification algorithms are compared to simultaneously detect and 

discriminate the PA (sedentary state, treadmill running, and stationary bike) and the type of APS 

(non-stress state, mental stress, and emotional anxiety). The impact of APS inducements is 

verified with commonly used self-reported questionnaires (The State-Trait Anxiety Inventory 

(STAI)). To aid the classification algorithms, novel features are generated from the physiological 

variables reported by a wristband device during 117 hours of experiments involving simultaneous 

APS inducement and PA. We also translate the APS assessment into a quantitative metric for use 

in predicting the adverse outcomes.

Results: An accurate classification of the concurrent PA and APS states is achieved with an 

overall classification accuracy of 99% for PA and 92% for APS. The average accuracy of APS 

detection during sedentary state, treadmill running, and stationary bike is 97.3, 94.1, and 84.5%, 

respectively.
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Conclusions: The simultaneous assessment of APS and PA throughout free-living conditions 

from a convenient wristband device is useful for monitoring the factors contributing to an elevated 

risk of acute events in people with chronic diseases like cardiovascular complications and diabetes.
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1. Introduction

Continuous monitoring of the modifiable risk factors in chronic diseases such as 

cardiovascular (CV) diseases, hypertension, and diabetes can provide valuable information 

for interventions that mitigate the risks of undesirable outcomes. Acute psychological stress 

(APS) causes an immediate physiological response that is associated with an acute and 

transient increase in the risk of hyperglycemic and CV events. In addition to APS, vigorous 

physical activity (PA) is also an independent risk factor for cardiovascular events, though 

regular habitual PA reduces the risks of coronary heart disease events. PA can have a positive 

impact on glucose regulation in diabetes and is recommended to people with diabetes. 

Monitoring the APS of a person throughout everyday life and in free-living conditions can 

allow for preventative measures to mitigate APS-mediated diseases and risks. However, the 

physiological response of APS is not a distinctly unique signature. Similar to APS, 

structured exercise and routine PA in daily-living can also cause physiological responses that 

may lead to ischemia, metabolic imbalances, glycemic excursions, and morbidities caused 

by these conditions. Enabling the continuous monitoring and assessment of the possibly 

simultaneous occurrences of APS and PA in free-living conditions requires protocols and 

algorithms that can discriminate between the simultaneous stressors. Detection and 

discrimination of APS and PA can be complemented by determining the characteristics of 

these physiological and psychological stressors to propose individualized intervention 

strategies and mitigate their effects. In the case of diabetes, these interventions could lead to 

automated insulin delivery by adaptive multivariable artificial pancreas systems.

Several devices and algorithms can characterize APS and PA in clinical environments with 

high accuracy. Outside of clinical settings in free-living environments, the sensors are 

limited to those that can be worn comfortably and would be accepted as part of regular 

clothing or accessories. Recent advances in wearable devices provided wristbands with 3-

axis accelerometers and sensors for measuring skin temperature, electrodermal activity, and 

blood volume pulse. The data reported by these sensors can be refined and interpreted to 

incorporate the effects of APS and PA in treatment decisions. Our focus has been on the 

development of automated insulin delivery systems (artificial pancreas) [5–8] that use this 

additional knowledge along with the continuous glucose measurements in predicting future 

glucose concentrations used by model predictive control to optimize insulin infusion 

decisions. This paper is focused on the detection of APS, PA and their coexistence (they may 

cause opposite effects on glucose levels) and the identification of their types and intensities 

(Fig. 1). Both APS and PA lead to the activation of the sympathetic nervous system.
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The sympathetic division of the autonomic nervous system responds to PA by increasing the 

heart rate, blood pressure, and respiration rate, and by stimulating the release of glucose 

from the liver for energy. The general physiological response of APS is similar to PA, 

though exercise normally elicits a larger response. The physical fitness level, individual 

traits, and personal experiences affect transient neuroendocrine and physiological responses 

to APS. These factors make it challenging to reliably monitor psychological and physical 

stress by using only the measured variables and necessitates the use of detection, 

classification, and estimation techniques based on meticulously selected features derived 

from the measurements [1, 9, 10].

Several indicators can be considered for monitoring APS-related changes. The secretion of 

stress hormones, such as cortisol, is shown to be a marker of APS. However, continuous and 

noninvasive monitoring of hormonal levels in free-living conditions is not practical. A 

simple and easy-to-measure indicator of APS can be developed by using wearable devices. 

Recent developments in wristband technologies enable high-frequency collection and real-

time streaming of several physiological variables from a single device [11, 12] (Table 1, Fig. 

2). These conveniently measured biosignals can be used for APS detection as they can detect 

the physiological responses arising due to the activation of the sympathoadrenal medullary 

system. Galvanic skin response (GSR) is an indicator of sweating rate, therefore a strong 

correlation exists between GSR and PA intensity. Since sympathetic activation stimulates the 

sweat glands, GSR is also correlated with the APS level. Blood volume pulse (BVP) is a 

commonly used signal for extracting HRV variability features, which are useful indicators to 

understand different changes in cardiac output, thereby metabolic variations due to APS 

and/or PA. Skin temperature is useful to capture abrupt changes in skin functions, which are 

indicative of thermoregulation, insulation, sweating, and control of blood flow. Capturing 

changes in blood flow control and thermoregulation is useful to capture the effects of PA or 

APS. Accelerometer (ACC) plays a key role in distinguishing PA from APS, since there is 

no correlation between ACC and APS, though a strong association exists with PA. (Table 1). 

Due to the multifaceted response of APS, a multivariable measurement and assessment 

approach is required for the robust and reliable detection of APS in free-living conditions, 

especially in the presence of PA. Previous studies indicate that APS can be accurately 

detected using wristband devices [1, 10, 13–22]. A few studies report the classification of 

different types of APS, such as mental stress and emotional anxiety [1, 10, 18]. Detecting 

the concurrent presence and the type of APS is further complicated by the presence of 

different types and intensities of physical activities. Glucose level excursions during training 

for a race are different from the glucose variations during and before the race. Falling while 

bicycling, driving during rush hour, or hearing the screams of a young child while doing 

house chores are instances where APS co-exists with PA.

In this work, we address the problem of detecting the presence of PA and APS and their 

simultaneous existence, and determining their types and intensities, through interpretation of 

physiological signals measured by a wristband (Fig. 2). Extending on previous work that 

considers APS or PA exclusively, in this work we discriminate among the types of APS 

(non-stress state, mental stress, and emotional anxiety) and the concurrent PA (sedentary 

state, treadmill run, stationary bike). We also develop quantifiable metrics that convey the 

level of the APS and the intensity of the PA. To enable the simultaneous detection and 
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assessment of APS and PA, we rely on the physiological variables that can be noninvasively 

measured by a single wearable wristband device (Fig. 2) [1, 10, 18–22]. Although many 

physiological variables can help distinguish APS from PA, such as eye-tracking [23], speech 

wave analysis [24], and lactate and cortisol levels, we restricted our selection to 

physiological variables that can be conveniently measured during daily life. We use the 

Empatica E4 wristband that reports five physiological variables and streams data in real-

time, including ACC readings, BVP, GSR, skin temperature (ST), and heart rate (HR) 

computed by an internal algorithm of E4 from BVP [11]. The measured physiological 

variables are used to generate informative features and train machine learning algorithms.

2. Procedure

2.1. Data Collection

Thirty-four subjects participated in 166 clinical experiments that included staying in 

sedentary state (SS) or performing a physical activity (treadmill run [TR] or stationary bike 

[SB]) and while there are no psychological stressors (non-stress [NS]), or APS is induced 

(mental stress [MS] or emotional anxiety stress [EAS]). The experiments were approved by 

the Institutional Review Board of the university. Ten different participants are involved in SS 

activities. The SS experiments are divided into three subcategories: (1) non-stressful events 

where participants watch neutral videos, read books, or surf the internet; (2) EAS 

inducement where data are collected during meetings with supervisors, driving a car, and 

solving test problems in the allotted time; and (3) MS inducement where a subject undergoes 

the Stroop test, IQ test, mental arithmetic or mathematics exam, or puzzle games. Any 

problem that involves mental stress is considered as MS inducement, while unusual 

scenarios where individuals feel anxiety or unease are considered as EAS inducement. The 

APS inducement methods are recognized in the literature to reliably induce APS and are 

considered standard techniques that are widely accepted and implemented in similar studies 

[1, 8, 10, 18–22, 25–33].

TR exercises are similarly divided into three categories: (1) NS events such as watching 

nature videos or listening to music; (2) EAS inducement where subjects watch surgery video 

or car crash videos; and (3) MS inducement where subjects solve mental math problems 

(mental multiplication of two-digit numbers) during the experiment [1, 8, 10, 20, 21, 25–28, 

31]. The energy expenditure is measured and compared across the NS, EAS, and MS 

experiments to ensure the physical activity is consistent across the experiments. A portable 

indirect calorimetry system (Cosmed K5, Rome, Italy [34]) is used for energy expenditure 

(EE) measurements to determine the intensity of the physical activity, with some 

experiments analyzed using EE estimates computed through the use of a wristband device 

[4]). We found that the distribution of EE measurements for each class of experiments does 

not have any statistically significant difference (p-value > 0.05). Therefore, the subjects 

performed similar intensity physical activity during the different experiments (during TR 

and SB exercise) (Fig. 3).

SB experiments are conducted with 19 participants. They are divided into three categories 

based on APS inducement, similar to the protocol of TR exercise. Table 2 lists all 

experiments conducted along with information about training and test data. The Empatica 
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E4 data are recorded during all experiments [11]. Demographic information of participants 

and experiment information (APS type, duration, starting time, activity type, EE (Fig. 3), 

etc) are also recorded.

Additionally, to assess the anxiety response of participants, The State-Trait Anxiety 

Inventory (STAI) [35–37] self-reported questionnaire data is collected both before and after 

each nonstress and emotional anxiety stress inducement experiments. STAI-T (Trait) and 

STAI-S (State) scores are calculated for each participant. STAI-T scores indicates the 

feelings of stress, anxiety or discomfort that one experiences on a day-to-day basis. STAI-S 

scores indicates temporal fear, nervousness, discomfort and the arousal of the autonomic 

nervous system induced by different situations that are perceived as stressful conditions [35–

37].

2.2. Pre-Processing

Empatica E4 collects biosignals at high- frequency; ACC: 32 Hz, BVP: 64 Hz, GSR: 4 Hz, 

ST: 4 Hz and HR: 1 Hz) [11]. The raw signals collected from the device are corrupted by 

noise and motion artifacts. Various signal processing techniques are used to obtain the 

denoised signals. The Savitzky-Golay (SG) filter is used for denoising the ACC [38], ST 

[39], HR [40], GSR [39] measurements. After tuning the parameters of the SG filter, the 

order and frame length parameters are determined for the measurements as: ACC (order: 7 

and frame length: 15), ST (5 and 9), HR (5 and 9), and GSR (5 and 11). The motion artifacts 

corrupting the BVP data have signatures and frequencies similar to the underlying BVP 

signal, which makes their filtering a nontrivial task. Since the BVP is a useful biosignal for 

discriminating among APS and PA, we utilize a sequential signal processing technique 

involving an initial bandpass filter (Butterworth filter, cut off frequencies: [ 0.3 Hz - 3.5 Hz]) 

followed by an adaptive noise cancellation algorithm based on nonlinear recursive least 

squares (NRLS) filtering and wavelet decomposition algorithm (Symlets 4 wavelet function, 

4 level decomposition) [41–43]. The details of our implementation is presented in the 

Appendix B. The uncorrupted and denoised BVP signal is obtained from the raw signal 

using the cascaded signal processing technique (Fig. 4) [44].

2.3. Feature Extraction

Features are extracted from the filtered biosignals at one-minute intervals (Table 2). 

Statistical features (mean, standard deviation, kurtosis, skewness, etc.), mathematical 

features (derivative, area under the curve, arccosine, etc.) and data specific features (zero-

cross of ACC readings, total-energy response of GSR, maximum amplitude of the low 

frequency BVP variations, etc.) are extracted [1, 45–51]. The ratios of extracted features can 

be valuable to distinguish among APS and PA. For example, during a stressful SS episode, 

the ACC readings are relatively stable (mean magnitude of ACC), while the GSR (mean 

magnitude of GSR) values increase because of the incremental increase in sweating rate in 

response to the stress. Therefore, the ratio of the mean magnitudes of ACC and GSR is 

informative for detecting APS. We extracted additional secondary features as the ratios of 

various primary features. A total of 2068 feature variables are obtained, with 718 primary 

features and 1350 secondary features. A total of 225 primary features are extracted from the 

3-D ACC, 148 from the processed and denoised BVP [44], 98 from the HR, 111 from the 
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ST, 136 from the GSR readings. Some of the extracted features are highly correlated with 

each other and do not provide additional information for training the machine learning 

algorithms.

Due to the lack of physical exertion, the SS experiments are longer in duration than the other 

experiments, which causes an imbalance among the classes. Since imbalances in class sizes 

may result in bias and poor classification accuracy, a combination of up-sampling (Adaptive 

Synthetic Sampling (ADASYN) [52]) and down-sampling method are used. The impact of 

upsampling the minor class is reduced by simultaneously downsampling the major class by 

retaining the unique samples as determined by the similarity measure of k-means clustering. 

We also studied what effect different levels of upsampling the minor class has on the 

accuracy of the physical state and acute psychological stress classification results. The 

upsampling of the minor class by 10%, 25%, and 40%, is considered and the results for the 

testing data set are compared for the three different upsampling levels. We found that the 

highest accuracy is achieved with 25% upsampling of the minor class (Table 9). After 

balancing the data set, 2141 minutes of training data are obtained for each of the SS, TR, 

and SB activities. In addition, 1057 minutes of data are obtained for each of NS, EAS, and 

MS experiments during the SS, 407 minutes of data are obtained for each of NS, EAS, and 

MS experiments during SB exercise, and 296 minutes of data are obtained for NS, EAS, and 

MS experiments during TR exercise (Fig. 5). The final data set is divided into training data 

(90% of samples), and testing data (10% of samples), respectively, and 10-fold cross-

validation is utilized for validation and hyperparameter optimization.

2.4. Feature Reduction

To mitigate the effects of over-fitting the models to redundant feature variables, feature 

reduction methods are used. We considered various features reduction approaches including 

forward/backward selection method. This method exhaustively searches the feature domain 

in an iterative procedure and is computationally intractable, especially with large data sets 

[53, 54]. Therefore the computational intractability of the forward/backward selection 

method precludes its use for this data set, though it will be studied in future work. Instead, 

we used the t-test statistic to find the set of feature variables that are significantly different 

for each class [55, 56]. Since the selected features through the use of the t-test statistic can 

still be a set of highly correlated feature variables, we reduce the dimensionality of the 

selected feature variables using principal components [57]. The details of feature selection 

and reduction are discussing in the following section.

We compute the p-values for the feature variables between pairs of PA classes and the 

feature variables are retained at a 1% confidence level, which yields 1750 retained features. 

All feature variables are found to be normally distributed, and outliers in the extracted 

feature variables are removed by retaining only the values that lie within the 1st and 99th 

percentiles for the distribution of the values. Some extracted features can be highly 

correlated, such as the median and the mean of HR, which can bias the training of the 

machine learning algorithms. Principal component analysis (PCA) is used to generate a 

reduced number of uncorrelated latent variables from the 1750 retained features [45, 57, 58]. 

After principal component analysis is used to reduce the dimension of the feature variables, 
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we retain only the principal components for building the machine learning models for 

classification. The number of principal components to retain is determined through explicit 

enumeration by optimizing the classification accuracy using 10-fold cross-validation, and 

the number of retained components are varied between explaining 70% and 99% of the 

variance in the data set of feature variables. The number of principal components retained 

for training the physical state classification models to discriminate among SS, TR and SB 

exercises is 250 (90% variance explained), and the number of principal components retained 

for training the APS classification models during SS, TR and SB exercises are 300, 250 and 

200, respectively, corresponding to 92%, 92%, and 95% is variances explained, respectively. 

The primary ACC features are not used for the classification among APS types because 

there is no rational link between APS and the ACC data. Secondary ACC features can be 

used to discriminate among APS types because the secondary features will capture an 

increase in a particular variable relative to the primary features of the ACC readings.

2.5. Machine Learning (ML) Algorithms

The normalized principal components are used with various ML algorithms, including k-

nearest neighbors (k-NN), support vector machine (SVM), decision tree (DT), naive Bayes 

(NB), ensemble learning (EL), linear discriminant, (LD), and deep-learning (DL). The key 

features of these ML techniques are summarized in Appendix A. Four different ML-based 

classification models are developed, one for the classification of PA, and three for the 

classification of APS during SS, TR, SB classes (Figure 7). Each classification node has its 

own unique classification algorithm selected as the best performing algorithm from among 

the seven different algorithms that are evaluated as candidates for each classification task to 

select the best model based on validation data.

Bayesian optimization with expected improvement acquisition function is used to optimize 

the hyperparameters for each algorithm. Distance and number of neighbors (k-NN), Box-

constraints and kernel scale (SVM), number of ensemble learning cycle, ensemble 

aggregation method, minimum leaf size and learning rate (EL), lambda and learner (LR), 

distribution and width (NB), minimum leaf size (DT) are optimized for 100 iterations with 

10-fold cross-validation to achieve the minimum objective the value. Table 4 summarizes 

optimal hyperparameters of the selected best ML algorithms for each PS. The number of the 

hidden neurons, number of layers and structure of the DL algorithm are iteratively optimized 

based on accuracy improvements with the validation data set.

3. Results

3.1. Physical Activity Classification

The testing data is evaluated with the various classification algorithms, and SVM performed 

slightly better than the other algorithms with more than 99% classification accuracy (Figs. 6 

and 7). Achieving a high accuracy for PS classification is important because inaccuracies in 

PA classification can have an effect on APS detection.

The confusion matrix for the SVM algorithm (Fig. 7) shows that the TR exercise are 

classified with high accuracy (99.6%), while a few SS activities misclassified as SB exercise. 
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The ACC readings can readily distinguish between TR and SB exercises, though a few 

subjects hold the handle-bar during the TR exercise, which causes the physiological 

variables during TR to resemble the SB and leads to misclassifications (1%).

Table 5 presents the results of recall, precision and F- score calculations for the PS 

classification algorithm. We presented only the most accurate three algorithms, which are 

SVM, EL, and LD, respectively. SVM performs slightly better with all indexes.

3.2. Acute Psychological Stress Classification

The performance of the APS classification algorithm with the testing data is evaluated, and 

the APS classification during SS activities yields up to a 97.3% accuracy with LD 

algorithms, which is slightly better than other algorithms. The SVM algorithm performed 

well in APS classification for both the TR and SB exercises. The confusion matrix of the 

APS classification results during SS, TR, and SB activities are presented in Fig. 1, Fig. 7 and 

Fig. 9. Since the score scales and calculations are different for each ML algorithm, for 

providing consistent APS level estimation, SVM is chosen as the single algorithm to be used 

and, which yields 99.19% (PS classification), 94.07% (APS-SS), 94.17% (APS-TR), and 

86.21% (APS-SB) accuracy.

During SS activities, NS is distinguished from MS/EAS with up to a 100% accuracy. The 

MS detection achieves slightly lower accuracy with 93%. During TR exercise, all instances 

of NS inducement are accurately identified. The SVM algorithm is able to distinguish 

different types of APS with 84% accuracy during SB exercise. We calculate the commonly 

used performance metrics (recall, precision and F-score values) for the algorithms and 

various APS types (Table 6–8).

The normalized APS levels obtained are analyzed for nine different cases (Fig. 8), each of 

the three PA with each of the APS categories. NS, EAS, and MS categories are statistically 

evaluated using a two-way analysis of variance (ANOVA) and estimated APS level, and the 

classifications are found to be statistically significant (p-values < 0.05). Hence, the proposed 

approach has good potential to distinguish different types of PA and PA dependent various 

type of APS. Also testing data APS level values are analyzed with two-way ANOVA 

statistical test. Without exception, all levels for 9 different categories are found to be 

statistically different (p-value < 0.05).

We compare the accuracies for each group with a two-way ANOVA. Excluding the SB-NS 

case (which has low accuracy), eight different groups of PS and APS are compared (SS-NS, 

SS-EAS, SS-MS, TR-NS, TR-EAS, TR-MS, SB-EAS, and SB-MS) and the p-values for PS, 

APS, and the interaction of PS and APS are 0.44, 0.30, and 0.78, respectively. We therefore 

conclude that the proposed approach has the potential to distinguish the different types of PA 

and for each of them different type of APS.

We validate the stress inducement with calculated STAI scores [35, 36]. Since the number of 

observations is not large enough, the outcome of the regular statistical comparison methods 

are significantly affected by outliers. To overcome this challenge, we decided to develop a 

robust linear regression model for statistical comparison. Robust models eliminate the 
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effects of the outliers on the statistical outcomes [59]. We statistically compared the 

differences between the STAI-T questionnaire before stress inducement (STAI-Tbefore) and 

after stress inducement (STAI-Tafter) for APS-EAS and APS-NS experiments. We found that 

test scores are not statistically different (p-value: 0.56). In addition, we also compared 

differences between the STAI-S questionnaire before stress inducement (STAI-Sbefore) and 

after stress inducement (STAI-Safter) for APS-EAS and APS-NS experiments. We found that 

test scores are statistically different as a result of the developed robust linear regression 

model (p-value: 0.0007<0.05).

4. Discussion of the Results

APS detection is quite popular research interest. However the majority of the previous 

studies focus on APS detection only during SS activities. Since the the alterations of the 

significant biosensors measurements may present similar trend during PA and APS events, 

the distinguishing PA and PA depended APS is a challenging task and still unsolved. To 

achieve this, we present a multisensor fusion method to take into account the different 

physiological indicators simultaneously. In addition, we demonstrate a novel approach with 

two layer classification structure. The first layer classifies the PA of participants. The second 

layer, which is dependent to the first layer, classifies the APS type of subjects and estimates 

the level of APS. Therefore presented two layer based cascade approach allows to identify 

the types of PA and depend on APS level and type.

Data from nine experiments are used to test the algorithms developed. The nine experiments 

correspond to one from each of SS-NS, SS-EAS, SS-MS, TR-NS, TR-EAS, TR-MS, SB-

NS, SB-EAS, and SB-MS. The data set is from subjects not included in the model 

development stage. Table 10 reports APS accuracy and APS level estimations. The 

algorithms report three stress scores each minute, which are normalized between [0–1]. All 

the APS instances are classified with 87.16% accuracy across all the experiments. Some 

categories such as NS during SS and MS inducement during SB exercise are classified with 

100% accuracy. EAS inducement during TR exercise yields the lowest accuracy with 65.8%.

Fig. 8 illustrates APS level estimation during SS activities and TR/SB exercises. The 

presence of APS is accurately captured during the occurrence of various types of APS. The 

APS level is estimated in the presence of different PA and under various types of APS 

inducement.

The STAI-T score indicates the day-to-day anxiety level of participants rather than acute 

changes in stress or anxiety levels. Therefore, comparing STAI-S scores is appropriate to 

capture the influence of temporal changes due to particular stress inducement experiments. 

For this reason, differences in the scores of STAI-Sbefore and STAI-Safter questionnaires for 

APS-EAS and APS-NS experiments are compared. The analysis of the STAI-S scores 

demonstrate the experiments conducted produce a temporal impact on the APS level of the 

participants, while their general psychological stress characteristics remain steady.

The APS and PA inducement protocols authorized and approved by the Institutional Review 

Board (IRB) committee were employed in this work to avoid causing adverse effects or 
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harms to the subjects. The IRB committee rightfully prioritizes the health and safety of 

subjects. Due to the limitations imposed by the IRB, we conducted experiments involving 

mild APS inducement techniques that assure and prioritize the safety of subjects, while 

inducing sufficient APS for the study.

The detection of either individual or concurrent instances of PA and/or APS is achieved 

using machine learning techniques and the large number of input feature variables is 

decreased to a lower number with dimension reduction techniques. Despite the promising 

results, the proposed methods are not based on a robust and optimal feature selection 

technique. The excessive computational load of the forward/backward feature selection 

method rendered such robust feature selection methods intractable for our use. Moreover, we 

have a cascaded classification problem, and each classification problem requires the 

selection of a subset of feature variables. All computations were conducted using a computer 

with a Intel Core i7 6500U processor, 32 GB 2400 MHz DDR4 memory, 2TB HD storage, 

and 4GB GDDR5 1392 MHz graphics card. We will consider implementing a robust and 

computationally tractable feature selection approach in future work using a server system 

and employing parallel processing techniques that effectively mitigate the excessive 

computational load of the robust forward/backward feature selection method.

A limitation of the current work is that the data collected is not sufficient to develop 

advanced deep learning models. More data is needed to appropriately train advanced deep 

learning models. Thus, we used traditional machine learning approaches, though future 

research will consider collecting additional data to develop and test the performance of 

deep-learning approaches.

The presented approach covers the common PA in daily life, though it is not exhaustive of 

all daily events. Accurate classification during all kinds of daily activities requires extending 

the presented approach to include other classification scenarios. In future work, we will 

employ the developed models with people with Type 1 diabetes to track the PA and APS 

trends. The algorithms developed in this work will enable the real-time assessment of the 

physical and psychological stressors experienced by people with Type 1 diabetes.

5. Conclusions

The simultaneous classification of APS during various PA presents a promising approach to 

monitor physical and acute psychological stresses throughout ambulatory conditions. This 

work compares several classification algorithms to evaluate their performance using a 

representative data set. The outcomes of the classifiers are useful for monitoring of people 

living with chronic conditions, such as cardiovascular complications or diabetes and 

enabling multivariable artificial pancreas development that can automatically mitigate the 

effects of physical activities and acute psychological stress on glucose levels.
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Appendix A. Machine Learning Algorithms

Appendix A.1. k-Nearest Neighbors

The k-NN algorithm is a non-parametric classification algorithm that classifies the test data 

relative to the classes observed in the training samples. The test data sample is classified 

based on a majority vote of its neighbors, and the class label for the test data is assigned to 

the most common class amongst its k-nearest neighbors as defined by a distance function. In 

this work, the distance function and the number of nearest neighbors is optimized to 

maximize the classification accuracy, resulting in the optimal distance (Table 4) metric as 

the Spearman distance with two nearest neighbors considered. The Spearman distance, dij, 

between two samples xi and xj in an n-dimensional feature space is given by

dij = ∑
k = 1

n
xi, k − xj, k

2
(A.1)

The advantages of the k-NN algorithm are that the classes do not need to be linearly 

separable or unimodal distributed, and the learning process is simple. The disadvantages are 

that the time to find the nearest neighbors in a large data set may be excessive and the 

algorithm may be sensitive to noisy or uninformative feature variables.

Appendix A.2. Support Vector Machine

The SVM algorithm is based on statistical learning theory and the structural risk 

minimization principle and aims to determine an optimally separating hyperplane between 

classes. Given the class-labelled training data {xi, yi}, i ∈ {1,…,N}, where x ∈ ℝn and y ∈ 
{+1,−1}n, the SVM classifier is determined as the solution of the following optimization 

problem

min
w, b, ζ

1
2wTw + C ∑

i = 1

N
ζi

subject to yi wTϕ xi + b ≥ 1 − ζi,
ζi ≥ 0, ∀i ∈ {1, …, N}

(A.2)

where the training data xi are mapped into a higher-dimensional space by the function φ(xi) 

and C > 0 is the parameter penalizing the error term. Moreover, K (xi, xj) = ϕ (xi)T ϕ (xi) is 

the kernel function for projecting the training data to a higher-dimensional space. In this 

work, the radial basis function is used for the kernel function

K xi, xj = exp −γ xi − xj 2 , γ > 0 (A.3)

where γ is a kernel scale parameter. The solution to the optimization problem maximizes the 

margin, the distance between the separating hyperplane and instances of the training data on 

either side of the hyperplane. The SVM algorithm may require relatively more 

computational resources for the solution to the optimization problem, especially in large data 

sets with multiple classes. While conducting the classification in a higher-dimensional space 
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improves performance even if the data are not linearly separable in the original feature 

space, the computational load may be a concern.

Appendix A.3. Decision Tree

A decision tree is comprised of nodes and connecting edges, with each node evaluating the 

predictive feature variable to make a decision. A decision tree may be generated by 

recursively partitioning the input data according to measure of impurity or node error. In this 

work, the Gini impurity of a node is used, given by

Gini = 1 − ∑
i = 1

J
pi2 (A.4)

where J is the number of classes and pi is the fraction of samples in class i relative to the size 

of the data set. Partitions are generated in the feature space following an induction method as 

ai < s, with ai the value of feature variable for a sample and s is a cut-point. The cut-points 

are determined over the range of the feature variable such that a minimum weighted 

impurity is achieved, where the weights are given by the number of samples that lie in the 

branches following the split. The DT algorithm is easy to implement and can approximate 

complex decision boundaries by using a large enough decision tree, though large decision 

trees can cause over-fitting problems. Some over-fitting can be mitigated by pruning rules to 

reduce or eliminate branches.

Appendix A.4. Naive Bayes

The Bayes classifier uses the class posterior probabilities P (c | x) based on Bayes theorem

P(c ∣ x) = P(x ∣ c)P(c)
P(x) (A.5)

given the feature variables to make decisions, where c is the class label, x is the feature 

variables, and P (x) can be neglected as it is constant among classes. The Bayes classifier 

finds the maximum posterior probability (MAP) for the given features variables as

c * = arg max
i

P x ∣ ci P ci (A.6)

The estimation of the class-conditional probability distributions P (x | ci) may be challenging 

if the feature space is high-dimensional. Approximations are commonly used to imply that 

the feature variables are independent given the class, yielding the NB classifier as

c * = argmax
i

∏
j = 1

n
P xj ∣ ci P ci (A.7)

The advantages of the NB algorithm are that it is easy to implement and has good 

computational efficiency, given the probabilities are well represented, though the estimations 
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of the probability distributions may require large data sets. In this work, the class-conditional 

probabilities of distributions are assumed to be Gaussian and constant priors.

Appendix A.5. Ensemble Learning

The EL approach combines multiple base classifiers to obtain a final classification result, 

with each base classifier as any kind of classification algorithms such as DT, neural 

networks, or SVMs. Bootstrap aggregating, also known as bagging, involves each base 

classifier being trained on a subset of the training data set, with the training data for each 

base classifier sampled by bootstrap sampling. The classification of a test sample is obtained 

from a simple majority voting scheme. The boosting algorithm develops classifiers 

sequentially where the subsequent classifier assigns a higher weight to the errors of the 

preceding classifier. As the subsequent classifiers assign higher weights to the misclassified 

samples, a final classification is obtained from a weighted combination of the base 

classifiers. Three different weak learners are considered; decision tree, discriminant analysis 

(both linear and quadratic), and k-nearest neighbor classifier with three different methods; 

bagging, boosting, and subspace. Except for the subspace method, all boosting and bagging 

algorithms are based on tree learners. Subspace can use either discriminant analysis or k-

nearest neighbor learners. Method and weak learners are considered as a hyperparameter 

(Table 4) of the EL model which is optimized with Bayesian optimization.

Appendix A.6. Linear Discriminant

The linear discriminant finds the projection matrix W that maximizes the ratio of between-

class scatter to average within-class scatter in the lower-dimensional space. The matrix W is 

obtained as the solution to the optimization problem

W * = max
W

W TSBW
W TSW W

(A.8)

where SB and SW are the between and within classes scatter matrices defined as

SB = ∑
c

μc − x μc − x T
(A.9)

SW = ∑
c

∑
i ∈ c

xi − μc xi − μc
T

(A.10)

where x is the overall mean of the data and μc is the mean of data within class c. The 

solution to the optimization problem can be obtained by eigenvalue decomposition. A 

limitation of the classical LD is that the within-class scatter matrix can be singular if the 

training sample size is small. Moreover, the algorithm does not perform well if the samples 

have heteroscedastic non-Gaussian distributions as it neglects boundaries among classes.
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Appendix A.7. Deep Learning

A model comprising of a deep multilayer perceptron architecture can automatically learn 

complex functions that map the input feature space to output class labels. The DL model has 

multiple layers, where each layer maps its input to a hidden feature space, and the final 

output layer maps from the hidden space to the output class labels through a softmax 

function. The hidden layers map the inputs ui to the hidden feature space ti as ti = g(Wui +b), 

where W is a matrix of weights, b is a vector of offsets, and g (·) is a known activation 

function, typically considered as a rectified linear unit or sigmoid function. The softmax 

decoder maps the hidden representation to a set of positive numbers that sum to 1, which are 

considered as the class probabilities. The model parameters, including the neuron weight 

coefficients, are learned by minimizing a loss function representing the difference between 

true labels yi and predicted scores from the model f (xi) over the training data as

L = ∑
i = 1

N
loss f xi , yi (A.11)

The training phase involves learning the model parameters (W, b) using stochastic gradient 

descent to minimize the loss function. During training, the samples are propagated forward 

through the network to generate output activations and the errors are backpropagated 

through the network to update the weights and offsets with adaptive moment estimation 

optimizer (ADAM). To avoid overfitting in the DL framework with numerous parameters, 

the dropout regularization technique is used to randomly zero the inputs to subsequent layers 

with a specified probability. The dropout layer regularizes the network and prevents 

overfitting, and is similar to the ensemble techniques, like bagging or model averaging. The 

structure of the DL model consists of the input layer, fully connected layer (7 hidden layers), 

dropout layer (50%), fully connected layer (5 hidden layers), softmax layer and 

classification layer, respectively. The ability of DL to handle large amounts of data and 

automatically extract important features and complex interactions is an advantage, though 

smaller data sets and suboptimal networks may degrade the parameter convergence and 

performance.

Appendix B. Details of PPG Signal Processing Approach

Since the photoplethysmography (PPG) technique that measures blood volume pulse (BVP) 

is highly susceptible to noise and motion artifacts, the PPG signal requires denoising and 

removal of motion artifacts. The motion artifacts are removed using an adaptive noise 

cancellation (ANC) approach that employs the reference accelerometer (ACC) data. In this 

work, we use three different signal processing techniques to obtain the denoised PPG signal 

from the raw PPG (Fig. B.10).

Both the raw ACC and PPG signals are normalized to lie within [−1,1] range. The ACC data 

(sampled at 32 Hz) is upsampled to obtain the same sampling frequency as the PPG data (64 

Hz). By testing different delays in the measured signals, a 1-second time delay between the 

ACC and the PPG signals is found. A bandpass filter is applied to both the ACC and the 
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PPG readings to retain frequencies within a physiologically plausible range. The heart rate 

(HR) typically varies between 30–210 BPM (0.5–3.5 Hz), and other studies also consider 

this range of allowable frequencies for the bandpass filter [60, 61]. Therefore, we also 

employed this allowable range of frequencies for the bandpass filter to denoise the ACC and 

PPG data. We considered different filtering methods such as the Butterworth, Chebyshev 

Type I/II, and Elliptic filters. Based on the performance, we settled on the 4th-order 

Butterworth bandpass filter with the specified cut-off frequencies. The bandpass filter yields 

a denoised signal that primarily retains the plausible HR frequencies within the allowable 

range. An example of the bandpass filtering result is illustrated in Figs. B.11, B.12 and B.13. 

Despite the bandpass filtering, motion artifacts may still affect the PPG data filtering 

because the frequencies of the motion artifacts may lie within the allowable frequency 

region of 0.5–3.5 Hz. Therefore, additional steps are required to remove the motion artifacts 

from the data.

Figure B.10: 
Overview of PPG Signal Processing

Figure B.11: 
Raw Data Frequency Domain Analysis

We utilize adaptive noise cancellation (ANC) to remove motion artifacts from the PPG 

signal [62, 63]. Several different algorithms are proposed for ANC, including recursive least 

squares filter and least mean squares filter.
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Figure B.12: 
Bandpass Filtered BVP Data Frequency Domain Analysis

Nonlinear recursive least squares (NRLS) filters are used for ANC, with the PPG as the 

noisy signal requiring removal of motion artifacts that are correlated with the ACC data. The 

NRLS algorithm extends on the typical recursive least squares algorithm by using the 

Volterra series expansion to incorporate additional non-linear terms [63]. The nonlinearity 

between the PPG and ACC data is modeled using a second-order Volterra-series expansion. 

The parameters of the NRLS algorithm are the filter length (M) and the forgetting factor (λ), 

which are specified as 6 and 0.999, respectively. The algorithm is initialized by the initial 

covariance matrix (P) and initial weight vector (ω) as 1000×IM and [0, …, 0], respectively. 

The RLS algorithm is mathematically expressed as

e(k) = s(k) + d(k) − d′(k) (B.1)

α(k) = λ−1P(k − 1)U(k)
1 + λ−1UT(k)P(k − 1)U(k)

(B.2)

ω(k) = ω(k − 1) + α(k)e(k) (B.3)

P(k) = λ−1 1 − α(k)UT(k) P(k − 1)d′(k) = ω(k)TU(k) (B.4)

where U denotes the accelerometer measurements, e(k) denotes the enhancement signal, s(k) 

is the ideal signal free of motion artifacts, d(k) denotes the unknown motion artifacts that are 

to be estimated and removed, and d′(k) is the estimate of the motion artifacts. The adaptive 

filter minimizes d(k)−d′(k) to obtain a signal as close as possible to s(k). Fig. B.14 

illustrates the structure for ANC using the NRLS algorithm. The NRLS algorithm is applied 

three times in series for the X, Y and Z axis, resulting in the signal with significantly 

reduced motion artifacts.

Figures B.15 and B.16 present additional examples of improvement in the BVP signal in the 

time and frequency domains.
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The ANC approach works well when the motion artifacts are captured by the terms in the 

NRLS algorithm. Therefore, some motion artifacts and noise may still affect the signals after 

the bandpass filtering and ANC algorithms. Wavelet decomposition is used to further 

denosise the PPG data by dividing the original signal into different frequency components 

and discarding the components deemed to represent noise [61, 63, 64]. The Symlets 4 

wavelet

Figure B.13: 
Time Domain Analysis - After Bandpass Filter Design

Figure B.14: 
Noise Cancellation with NRLS Adaptive Filter
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Figure B.15: 
Improvement in the BVP data from the proposed signal processing approach to remove 

noise and motion artifacts. (top: raw PPG data and the bioPlux data; bottom: processed PPG 

data and the bioPlus data)

function is used with 4 decomposition levels for denoising the PPG signal. The processed 

signal is compared to a ground-truth measurement to evaluate the efficiency of the denoising 

and motion artifact removal techniques. To obtain the ground-truth data, a limited number of 

experiments are conducted using the bioPLUX finger-tip PPG device that samples the PPG 

at a 1 kHz sampling frequency [65]. The bioPlux measurements are collected with subjects 

maintaining a stable hand and finger to avoid noise and motion artifacts from affecting the 

ground-truth measurements, while subjects simultaneously wore the Empatica E4 wristband 

during TR exercise on the other arm. The results of the signal processing algorithms are 

compared with the raw Empatica E4 BVP measurements, the processed Empatica E4 BVP 

measurements, and the bioPlux data as the ground-truth measurement. Figure 4 shows the 

improvement in the quality of the BVP signal due to the proposed signal processing method. 

It is readily observed that the filtering and artifact removal techniques enhance the signal 

quality.

Sevil et al. Page 18

Comput Methods Programs Biomed. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure B.16: 
Frequency domain analysis of the improvement in the BVP data from the proposed signal 

processing approach to remove noise and motion artifacts. (top: raw PPG data and the 

bioPlux data; bottom: processed PPG data and the bioPlus data)
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HIGHLIGHTS

• Algorithms are developed for detecting and discriminating acute 

psychological stress in the presence of concurrent physical activities.

• Wristband biosignals are used for conducting the detection and discrimination 

under daily free-living.

• Various classification algorithms are compared to simultaneously detect the 

physical activities (sedentary state, treadmill running, and stationary bike) and 

the type of psychological stress (non-stress state, mental stress, and emotional 

anxiety).

• Accurate classification of concurrent physical activities (PA) and acute 

psychological stress (APS) is achieved with an overall classification accuracy 

of 96% for PA and 92% for APS.
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Figure 1: 
Overview of Proposed Method (Stress Level: Normalized APS Estimates [0–1]), (Numbers: 

Percentage Classification Accuracy (Testing) for Each Individual Branch)
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Figure 2: 
Signals for Discriminating Exercise from APS (Red and italics) Can Measured by Empatica 

E4 [1, 10, 11, 18–22]
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Figure 3: 
Energy Expenditure Measurements for Each Cases (TR: Treadmill, NS: Non-Stress, EAS: 

Exciting-Anxiety Stress, MS: Mental-Stress, BK: Bike Exercise)
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Figure 4: 
Example Processed and Raw BVP Signal (Details In: Appendix B)
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Figure 5: 
Data Preparation and Separation (D: Downsampling with k-means Clustering, U: 

Upsampling with Adaptive Synthetic Sampling (ADASYN) (Maximum Upsampling Rate: 

25%), NS: Non-Stress, EAS: Exciting-Anxiety Stress, MS: Mental Stress, SS: Sedentary 

State, TR: Treadmill, SB: Stationary Bike, PS: Physical State, APS: Acute Psychological 

Stress)
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Figure 6: 
Comparison of Accuracy of PS Classification with Different Algorithms
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Figure 7: 
Confusion Matrices of PS and APS Classification Algorithms (10% Testing Data Set)
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Figure 8: 
APS Level Estimation During Different Physical Activities
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Figure 9: 
Classification of Different APS by Various ML Algorithms During Different Physical 

Activities
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Table 1:

Noninvasively Measurable Biosensor and Their Physiological Indicators (PI)

Sensor Measurement PI PA APS

GSR Electrical conductance of 
the skin, sweat gland 
activation

Sympathetic nervous system 
(SNS) activation

Increase due to the sweating Increase due to sweat gland 
stimulus as a result of SNS

BVP Absorption of light by the 
blood flowing through the 
vessels

Heart rate variability (HRV) 
as it is affected due to SNS 
activation [1]

HRV altered due to SNS 
activation [1]

HRV altered due to SNS 
activation [1]

ST Accurate temperature 
measurement of the skin 
surface

The response of systemic 
vasoconstriction and 
thermoregulation

Drop due to segmental 
vasoconstriction caused by a 
reflex in the spinal cord [2]

Temperature of 
thermoregulatory tissues drop 
[3]

3-D ACC Tool which can measures 
proper acceleration

Movement, speed, 
acceleration, stability, 
position

Intensity of PA is highly 
correlated with changes of the 
ACC signal [4]

No correlation exists [4]

HR Derived from BVP (Inter-
beat Interval)

Individual cardiovascular 
condition

Intensity of PA is highly 
correlated with increase of the 
HR signal

Intensity of APS is highly 
correlated with increase of the 
HR signal
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Table 2:

Experiments Conducted for Data Collection

Different PS with Various APS Inducements

Physical Act. Number of Experiments Number of Subject Minutes

Resting 89 10 3172

Treadmill 57 20 2164

Sta. Bike 61 19 1713

Sedentary State Ex. with APS Inducement

Physical Act. Number of Experiments Number of Subject Minutes

Non-Stress 28 6 846

Excitement 29 9 1129

Mental Stress 32 6 1197

Treadmill Experiments with APS Inducement

Physical Act. Number of Experiments Number of Subject Minutes

Non-Stress 28 20 1162

Excitement 12 12 676

Mental Stress 17 8 326

Stationary Bike Experiments with APS Inducement

Physical Act. Number of Experiments Number of Subject Minutes

Non-Stress 29 19 891

Excitement 24 12 585

Mental Stress 8 7 237

Comput Methods Programs Biomed. Author manuscript; available in PMC 2022 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sevil et al. Page 36

Table 3:

Partially List of Informative Features (Std: Standard Deviation, V. Low: Very Low, Tr: Treadmill, Sta. Bike: 

Stationary Bike)

Features for Different PS with Various APS Inducements

(Std of Processed BVP)/(Std of Norm of ACC (X-Y-Z))

(Mean of Norm of ACC)/(3rd Quartile of Norm of ACC)

(Mean of HR)/(Mean of Norm of ACC (X-Y-Z))

Number of local maximums of BVP Signal

Features for Sedentary State Experiments with APS Inducement

(Median of HR)/(Median of Norm of ACC (X-Y-Z))

1st Quartile of Heart Rate (HR)

Number of local maximums of Processed BVP Signal

(Max of V. Low Freq of GSR) - (Min of V. Low Freq of GSR)

Features for Different Types of APS Classification During Tr. Ex.

(Maximum of GSR)/(Mean of GSR)

Min. of Consecutive Differences of Local Max and Local Min of BVP

Zero Cross of BVP

(Std of ST)/(Std of GSR)

Features for Different Types of APS Classification During Sta. Bike

Standard Deviation (STD) of Processed Blood-Volume Pulse (BVP)

Band power of Skin Temperature (ST)

Energy response of Galvanic Skin Response (GSR)

Mean of ST
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Table 4:

Hyperparameter (HP) Optimization (Opt. Value: Optimum Value, PS: Physical State, Const: Constraints, NL: 

Number of Learning, MLF: Minimum Leaf Size)

PS Best ML HP-1 Opt. Value HP-2 Opt. Value

All SVM Box Const. 998.20 Kernel-Scale 44.43

SS LD Delta 0.0255 Gamma 0.4174

TR SVM Box Const. 109.80 Kernel-Scale 25.72

SB EL NL 304 Learning-Rate 0.99

SB EL Method Adaboost MLF 5
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Table 5:

Recall, Precision and F-Score for PS Classification

Algorithm
Recall

SS SB TR Mean

SVM 0.986 0.974 0.986 0.982

EL 0.971 0.973 0.972 0.972

LD 0.970 0.948 0.966 0.961

Algorithm
Precision

SS SB TR Mean

SVM 0.984 0.995 0.990 0.990

EL 0.989 0.987 0.981 0.986

LD 0.989 0.987 0.963 0.980

Algorithm
F-score

SS SB TR Mean

SVM 0.988 0.982 0.988 0.986

EL 0.978 0.979 0.979 0.979

LD 0.975 0.963 0.973 0.970
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Table 6:

Recall for APS Classifications

PS Algorithm
Recall

NS EAS MS Mean

SS LD 0.965 0.911 0.975 0.950

SS EL 0.934 0.899 0.945 0.926

SS SVM 0.962 0.908 0.963 0.944

SB EL 0.618 0.558 0.814 0.663

SB LD 0.706 0.575 0.841 0.707

SB SVM 0.714 0.647 0.797 0.719

TR SVM 0.858 0.871 0.903 0.877

TR EL 0.702 0.777 0.888 0.789

TR LD 0.884 0.831 0.919 0.878
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Table 7:

Precision for APS Classifications

PS Algorithm
Precision

NS EAS MS Mean

SS LD 0.927 0.990 0.966 0.961

SS EL 0.987 0.980 0.944 0.971

SS SVM 0.915 0.990 0.966 0.957

SB EL 0.833 0.869 0.931 0.878

SB LD 0.791 0.869 0.896 0.852

SB SVM 0.791 0.869 0.896 0.852

TR SVM 0.931 0.785 0.938 0.885

TR EL 0.896 0.785 0.959 0.880

TR LD 0.931 0.750 0.959 0.880
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Table 8:

F-Score for APS Classifications

PS Algorithm
F-Score

NS EAS MS Mean

SS LD 0.974 0.953 0.964 0.963

SS EL 0.973 0.966 0.974 0.971

SS SVM 0.972 0.951 0.956 0.960

SB EL 0.855 0.837 0.935 0.875

SB LD 0.858 0.777 0.920 0.851

SB SVM 0.858 0.777 0.920 0.851

TR SVM 0.837 0.865 0.939 0.880

TR EL 0.845 0.862 0.927 0.878

TR LD 0.834 0.859 0.936 0.876
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Table 9:

Testing Accuracy Comparison For Different Levels of Upsampling (Results are reported based on best 

algorithm for each cases)

Maximum (%) PS APS-SS APS-TR APS-SB

Upsampling

10 99.6 (SVM) 97.1 (LD) 89.6 (SVM) 88.1 (EL)

25 99.1 (SVM) 97.1 (LD) 94.1 (SVM) 84.5 (SVM)

40 99.0 (SVM) 97.3 (LD) 92.5 (SVM) 84.5 (EL)
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Table 10:

Results of APS Level Estimation and APS Accuracy Along All Separated Testing Experiments (Exp: 

Experiment, Avg: Average, NS: Non-Stress, MS: Mental Stress, EAS: Exciting-Anxiety Stress, SS: Sedentary 

State, SB: Stationary Bike, TR: Treadmill, Acc: Accuracy, Avg: Average, Minute: Min)

Exp. Type Acc. of APS (%) Time (min)
Avg. of APS Level

p-value (Friedman Test)
NS EAS MS

SS-NS 100 32 0.867 0.559 0.293 4 * 10−12

TR-NS 93.5 31 0.709 0.388 0.408 9 * 10−8

SB-NS 76.9 65 0.802 0.634 0.199 8 * 10−15

SS-EAS 100 31 0.489 0.905 0.401 3 * 10−15

TR-EAS 65.8 41 0.256 0.378 0.289 0.03

SB-EAS 100 11 0.299 0.888 0.202 4 * 10−5

SS-MS 68.3 31 0.601 0.178 0.808 3 * 10−7

TR-MS 83.8 31 0.399 0.501 0.766 5 * 10−5

SB-MS 100 10 0.290 0.122 0.908 9 * 10−3
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