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Summary

Studying the microbial composition of internal organs and their associations with disease remains 

challenging due to the difficulty of acquiring clinical biopsies. We designed a statistical model to 

analyze the prevalence of species across sample types from The Cancer Genome Atlas (TCGA), 

revealing that species equiprevalent across sample types are predominantly contaminants, bearing 

unique signatures from each TCGA-designated sequencing center. Removing such species 

mitigated batch effects and isolated the tissue-resident microbiome, which was validated by 

original matched TCGA samples. Gene copies and nucleotide variants can further distinguish 

mixed-evidence species. We, thus, present The Cancer Microbiome Atlas (TCMA), a collection of 

curated, decontaminated microbial compositions of oropharyngeal, esophageal, gastrointestinal, 

and colorectal tissues. This led to the discovery of prognostic species and blood signatures of 

mucosal barrier injuries and enabled systematic matched microbe-host multi-omic analyses, which 

will help guide future studies of the microbiome’s role in human health and disease.
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In Brief

Dohlman et al. present The Cancer Microbiome Atlas, a public database of decontaminated, 

tissue-resident microbial profiles of TCGA gastrointestinal cancer tissues. As these profiles are 

matched to specific TCGA tissue samples, this work allows identification of prognostic species 

and provides a resource for performing multi-omic, pan-cancer analyses of host-microbe 

interactions.

Introduction

The human body supports an ecosystem of 10–100 trillion microorganisms (Luckey, 1972; 

Sender et al., 2016), representing 500–1,000 unique species per individual (Human 

Microbiome Project Consortium, 2012; Qin et al., 2010). Perturbations to this ecosystem, 

termed dysbiosis, can impact human health: microbial alterations have been implicated in a 

variety of health conditions, including obesity, diabetes, inflammatory bowel disease, cancer, 

and other diseases (Elinav et al., 2019; Iliev and Leonardi, 2017; Levy et al., 2017; Schirmer 

et al., 2019). While public microbiome projects such as the Human Microbiome Project 

(HMP) and MetaHIT have helped bring tremendous insights into the diversity and function 

of human flora, these databases are dominated by tissue swabs and stool samples that do not 

necessarily reflect the microbial composition of internal organs (Grice et al., 2008; Prast-

Nielsen et al., 2019). Collection of clinical biopsies specifically dedicated to microbial 

profiling remains difficult despite many disease-related host-microbe interactions occurring 

at the epithelium of internal body sites.
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Next-generation sequencing (NGS) is frequently used to profile biopsied human tissue 

samples at a broad range of body sites and disease states, and these sequencing datasets 

contain a significant number of sequencing reads of microbial origin (Kostic et al., 2011; 

Poore et al., 2020; Robinson et al., 2017). Large sequencing projects can, thus, be mined to 

promote understanding of host-microbe interactions in both healthy and diseased human 

tissue. To that end, the bioinformatics tool PathSeq (Kostic et al., 2011) was used to identify 

enrichment of Fusobacterium nucleatum in The Cancer Genome Atlas (TCGA) colorectal 

cancer (CRC) tumors (Kostic et al., 2013; Kostic et al., 2012). Since then, dozens of research 

articles explored the role of F. nucleatum in tumorigenesis, finding associations with stage, 

survival, metastasis, and even drug response (Bullman et al., 2017; Flanagan et al., 2014; Yu 

et al., 2017). More broadly, sequencing data from TCGA has been used ad hoc to screen for 

viral and bacterial presence in stomach adenoma (Cancer Genome Atlas Research Network, 

2014) and cervical cancer (Cancer Genome Atlas Research Network et al., 2017) 

specifically, as well as viromes (Tang et al., 2013) and bacteriomes (Robinson et al., 2017). 

Recently, analysis of TCGA sequencing data has been used to demonstrate the potential for 

bloodborne microbial DNA to diagnose certain cancers (Poore et al., 2020). Given that even 

low-biomass tumors contain tissue-specific microbiomes (Nejman et al., 2020), analysis of 

microbial DNA and RNA in TCGA sequencing data has great potential for diagnostic 

applications, as well as for exploring host-microbe interactions along molecular and clinical 

axes.

However, few actionable microbiota targets like F. nucleatum have emerged from such 

analyses. When examining a subset of TCGA sequencing data, previous analyses (Robinson 

et al., 2017) found that microbial reads from a number of species were the result of 

contamination, and that distinguishing contamination from tissue-embedded microbes 

remained an outstanding challenge for use of this dataset. Indeed, while concerns over 

contamination are less pressing for samples with high microbial biomass such as stool or 

swabs, microbiome studies on low-biomass samples suffer from contamination during 

sample collection and DNA extraction. Contamination can originate from the laboratory 

environment, including nucleic acid extraction kits (Davis et al., 2018; Eisenhofer et al., 

2019; Glassing et al., 2016). Thus, controlling for contamination in these datasets is a crucial 

step that must precede downstream analyses of host-microbe interactions. Samples for multi-

institutional projects are acquired, processed, and sequenced at different sites, each of which 

may introduce its own contaminants that influence the extracted microbial profiles, impede 

reproducibility, and complicate discovery of microbial biomarkers. Thus, a number of 

strategies have been deployed to identify contamination in TCGA sequencing data, through 

examination of batch effects, sample analyte concentrations, and through manual curation 

(Poore et al., 2020; Robinson et al., 2017). To date, such analyses have never been validated 

by original TCGA tissue or blood samples, nor have decontaminated TCGA microbiome 

datasets been made readily available.

Sequencing data in TCGA provide a unique opportunity for identifying tissue-specific 

microbiota, since matched tissue and blood samples from various cancer types are processed 

and sequenced in parallel using various sequencing platforms at designated centers (Choi et 

al., 2017). Using an unbiased statistical model comparing the prevalence of microbial 

species in tissue and blood samples, we isolated the tissue-resident microbiome in TCGA 
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sequencing data. We found that species equally prevalent across tissue types and blood 

samples are mostly artifacts or contaminants that (1) bear unique signatures from the 

designated TCGA sequencing center and (2) comprise more than half of all detectible 

microbial sequencing reads in many tissue samples. With gene- and nucleotide-level 

resolution, our model is also capable of normalizing read counts for “mixed-evidence” cases, 

in which sequencing reads aligning a given species may come from a combination of 

endogenous and contaminant microbiota. To validate our approach, we obtained original 

matched CRC tissue and plasma samples that were previously sequenced by TCGA and 

performed 16S rRNA amplicon sequencing. This independently confirmed not only the 

absence of putative contaminants but also that the tissue-resident, computationally 

decontaminated microbial profiles that we extracted from TCGA sequencing data matched 

the microbial composition of the original tissue samples.

Finally, we ran the vetted decontamination algorithm to establish the TCMA database, which 

users can access from an interactive website (https://tcma.pratt.duke.edu). The database 

contains curated tissue-resident microbial profiles for 4,937 sequencing runs on 3,689 

unique samples from 1,772 patients representing 5 TCGA projects and 21 anatomic sites 

with tissue-resident populations. As proof-of-principle, we used TCMA to identify two 

bacterial co-abundance groups in CRC tissue, including species enriched in CRC tumors 

compared with matched adjacent normal tissue and species prognostic of patient survival. 

TCMA enabled a matched microbe-host transcriptomic, proteomic, and epigenetic analysis 

that identified associations between microbes and host gene expression patterns and 

pathways. Finally, by comparing TCMA-curated blood samples of CRC and brain cancer 

(BC) patients, we identified a bacterial signature associated with colorectal mucosal barrier 

injury unique to CRC blood samples. Thus, TCMA constitutes a powerful resource for 

validation and hypothesis generation in future studies of host-microbe interactions relevant 

to cancer.

Results

WGS and WXS harbor colorectal bacterial reads distinct from blood and brain

To explore the microbial populations of sequenced TCGA tissue, we began by analyzing 

multi-platform sequencing data for 730 tissue and 555 blood samples from 617 CRC (TCGA 

projects COAD/READ) patients and for 958 tissue and 914 blood samples from 923 BC 

(TCGA projects GBM/LGG) patients. For several thousand whole-genome sequencing 

(WGS) and whole-exome sequencing (WXS) experiments, we retrieved raw sequencing data 

from the TCGA database and extracted and mapped high-quality reads of bacterial origin 

using PathSeq (Kostic et al., 2011). We found that microbial reads were more abundant and 

more diverse in solid tissue than in matched blood samples from CRC patients; in contrast, 

the abundance and diversity of microbial reads were no greater in BC tissue than matched 

blood samples (Figures 1A and S1A). Furthermore, CRC tissue had more abundant and 

diverse microbiota than BC tissue (Figures 1B and S1B), consistent with the notion that 

blood and brain tissue are more sterile than colorectal tissues. Notably, microbial reads were 

also more abundant and diverse in blood samples from CRC patients than in those of BC 

patients (Figures 1B and S1B).
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Comparative analysis of microbial reads between CRC tissue and blood samples revealed 

two distinct groups of bacterial species: those enriched in tissue and those equally prevalent 

in tissue and blood (Figures 1C and S1C). Species were seldom more prevalent in blood than 

in tissue. Species that were more prevalent in CRC tissue than in CRC blood included many 

species known to be associated with mucosal barrier injury (MBI) (CDC, 2019), whereas the 

group equally present in CRC tissue and blood contained very few such species (Figures 1C 

and S1C). By comparison, nearly all species detected in samples from BC patients were 

equiprevalent in tissue and blood, with few enriched in tissue (Figures 1C and S1C). Similar 

comparative analyses of tissue and blood from CRC and BC patients showed significant 

populations of disease-enriched species for CRC but few for BC (Figures 1D and S1D). We 

then repeated this comparative prevalence analysis using samples from ovarian cancer 

(OVC; TCGA project OV; Figures S1E and S1F).

The microbial composition of CRC tissue samples was also markedly distinct from that of 

matched blood samples or BC tissue samples. Among the most dominant phyla in CRC 

tissue were Bacteroidetes and Firmicutes, which were relatively absent in blood and brain 

tissue samples (Figures 1E and S1G). Next, we compared the relative abundance of bacterial 

taxa in CRC tissue versus matched blood samples (Figure 1F) and CRC tissue versus BC 

tissues (Figure 1G) from different donors. These analyses were largely consistent, with taxa 

from Bacteroidetes, Firmicutes, and Fusobacteria clades being consistently overrepresented 

in CRC tissue, compared with Proteobacteria and Actinobacteria, which accounted for a 

relatively greater fraction of reads in CRC blood samples and BC tissue samples. Genera 

that were relatively more abundant in CRC blood samples or BC tissue samples compared 

with CRC tissue samples consistently included Acinetobacter, Mycobacterium, and 

Ralstonia, among others (Figures 1F and 1G). Metagenomic profiling of TCGA samples 

using Kraken2 (Wood et al., 2019) largely recapitulated PathSeq results (Figures S1H–S1J).

Together, these comparative analyses were capable of distinguishing species enriched in 

CRC tissues from those with similar prevalence across different blood samples and disease 

types. The analyses confirmed that bacteria in CRC tissues were (1) more diverse and 

abundant and (2) were enriched for mucosa-related species.

Species equiprevalent in tissue and blood are predominantly contaminants

Besides species enriched in CRC tissues, a significant number of detected species were 

equally prevalent in blood, CRC tissue, BC tissue, and OV tissue (Figures 1C, 1D, and S1C–

S1F). While compromised epithelial barrier function may allow the translocation of 

microorganisms to the bloodstream at low levels (Chelakkot et al., 2018), we expected that 

such species would be prevalent at much lower levels in blood than in CRC tissue. To 

analyze equiprevalent species and determine their origin, we first examined a set of 70 

bacterial genera known to be enriched in negative controls of metagenomic sequencing 

experiments (Eisenhofer et al., 2019). Overall, genera in this “common contaminant” set 

were more prevalent in blood samples (p = 4.45e–10; Figures 2B and 2A) than genera not in 

the list.

Species equiprevalent in CRC tissue and blood were also considerably more genetically and 

phenotypically diverse than species enriched in CRC with respect to their G-C content, 
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genome size, and optimal growth conditions. Conversely, CRC-enriched species were much 

less tolerant to extreme growth conditions, with optimal temperature, pH, and NaCl levels 

more closely resembling those of human homeostasis (Figures 2C and S2B). Together, these 

results suggest that the equiprevalent group may contain contaminant species, which have 

larger genomes—a signature of “generalist” bacteria that must endure more variable and 

unstable environmental conditions than gut microbiota (Sriswasdi et al., 2017).

Equiprevalent species are associated with particular sequencing centers

Principle coordinate analysis (PCoA) of UniFrac distances between CRC samples 

demonstrated that the primary axis of variation in TCGA microbiome data could be 

attributed to differences between blood samples and tissue samples (41.43%) (Figures 2D 

and S2C). Interestingly, the second axis of microbial variation was determined by the 

sequencing center at which the samples were processed (17.20%), regardless of sample type. 

All TCGA samples (tissue and blood) were harvested at a tissue source site and then sent to 

designated genome sequencing centers (Figure S2D). While the first PCoA axis captured 

differences in the presence of tissue-enriched species that are more abundant in CRC tissue 

than in blood, the second axis captured species found in both tissue and blood samples at 

similar levels, many of which were associated with sequencing center (Figures 2D, S2E, and 

S2F). We then examined the abundance of equiprevalent species in blood samples and found 

significant clustering according to the sequencing centers at which the samples were 

processed (Figures 2E and S2F). For comparison, we performed the same analysis on tissue 

and blood samples from BC patients, which revealed no discernible variation between tissue 

and blood samples, but rather significant clustering by sequencing center (Figures S2G and 

S2H).

Therefore, the majority of species equiprevalent in tissue and blood are not endogenous but 

are mostly artifacts introduced during processing and profiling at respective sequencing 

centers. For ease of description, we will refer to equiprevalent species as “contaminants” and 

tissue-enriched species as “tissue-resident” for the remainder of the article. However, the 

equiprevalent population may still contain biologically relevant species that are detected in 

both tissue and blood.

A generalizable model for isolating tissue-resident microbiota in TCGA tumor samples

Based on the comparative analyses of prevalence in tissue and blood, we developed a 

generalizable statistical model to distinguish tissue-resident microbiota from contaminant 

species across cancer types in TCGA. Of the 1,136 bacterial species detectable in more than 

5% of CRC tissue samples, this model classified 769 species as tissue-resident (67.69%) and 

367 species as contaminants (32.31%). Tissue-resident populations identified by comparing 

prevalence in tissue and blood were largely consistent with prevalence comparisons of CRC 

tissue with BC tissue, as well as analogous comparisons made with WXS data (Figure S2I). 

The model was used to perform binary classifications for all observed species. For each 

sample in the cohort, and at each subsequent taxonomic level, we then used species-level 

classifications to design a mixture model estimating the fraction of contaminant read counts 

within a given clade. This method provides a generalizable approach for decomposing 
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observed microbial populations into their tissue-resident and contaminant fractions on a 

sample-by-sample basis at multiple taxonomic levels.

Proteobacteria and Actinobacteria contribute the largest fraction of contaminant reads

As expected, the removal of contaminant species resulted in a reduction in the number of 

bacterial reads in all sample types. Specifically, bacterial species classified as contaminants 

accounted for a median of 16.27% bacterial read counts in tissue but varied considerably 

(Figure 2F). Contaminants consistently dominated blood samples, with a median of 99.45% 

of detected WGS reads being the result of contamination. The phyla Proteobacteria and 

Actinobacteria contributed the greatest fraction of contaminant reads in WGS data, with 

medians of 76.67% and 80.95% of reads, respectively, found in CRC tissue samples being 

the result of contamination (Figure 2G). By contrast, only small fractions of Firmicutes 
(1.70%), Bacteroidetes (0.02%), and Fusobacteria (0.00%) reads were predicted to be the 

result of contamination (Figure 2G). Contamination rates were largely similar for WXS and 

across sequencing centers (Figures S2J and S2K).

Additionally, correlation between the normalized relative abundances of taxa in matched 

WGS and WXS samples was predictive of contamination rates. Correlations between 

Bacteroidetes, Fusobacteria, and Firmicutes abundances in WGS and WXS were 

consistently high, in contrast to Actinobacteria and Proteobacteria (Figure 2H). For blood 

samples, the normalized relative abundances of these five phyla were wholly uncorrelated 

between matched WGS and WXS (Figure S2L). Overall, these results show that significant 

fractions of the bacterial reads in WGS data for CRC tissue and blood samples are the result 

of contamination from Actinobacteria and Proteobacteria species.

Detecting tissue-resident and contaminant species with gene-level resolution

For species designated as tissue-resident (e.g., B. vulgatus) or as contamination (e.g., A. 
junii), we subsequently explored the extent to which microbial genes could be reliably 

detected in TCGA sequencing data. Using annotated genomes to search for gene-level 

assignments, we found that for many such species, sequencing alignments provided 

coverage of the full microbial genome. As expected, gene prevalence profiles of tissue and 

blood samples largely recapitulated those of species-level assignments (Figures 3A, 3B, 

S3A, and S3B). For tissue-resident species, the gene prevalence distribution was much lower 

in blood samples than tissue, while for contaminants, the gene prevalence distribution of 

blood and tissue samples were nearly identical (Figures 3D, 3E, S3C, and S3D); genome 

coverage was greater in tissue than blood for tissue-resident species but identical for 

contaminant species (Figures 3G, 3H, S3E, and S3F). Likewise, genome coverage in tissue 

samples was nearly equal at Harvard and Baylor for tissue-resident species but not for 

contaminant species (Figures S3G and S3H). These results suggest that gene- and 

nucleotide-level analyses of microbial sequencing reads may be leveraged to help 

distinguish contamination from tissue-resident populations.

Distinguishing tissue-resident Escherichia reads from contamination

An outstanding challenge in controlling contamination is the problem of mixed-evidence 

cases in which detected sequencing reads come from an unknown combination of 
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endogenous and contaminant sources (Poore et al., 2020; Robinson et al., 2017). For 

example, although Escherichia coli is ubiquitous among human microbiomes, species-level 

E. coli reads were present in tissue (64.68%) and blood (66.29%) at nearly equal rates and 

were strongly associated with sequencing center (Figure 2E). We therefore explored whether 

gene-level read alignments could provide greater resolution and could be used to estimate 

the fraction of sequencing reads resulting from contamination versus endogenous 

microbiota. To test this, we mapped microbial sequencing reads from TCGA tissue and 

blood samples to genes in the annotated E. coli genome.

Overall, reads aligning to E. coli genes in tissue and blood samples were detected at up to 

the same rates as species-level E. coli alignments (Figure 3C) and had similar genome 

coverage (Figure 3I). However, a small number of E. coli genes displayed a signature 

analogous to tissue-resident microbiota in our species-level prevalence analysis (Figure 3C). 

Moreover, we observed bimodality in the blood prevalence of E. coli genes (Figure 3F), 

suggesting the presence of distinct tissue-resident and contaminant E. coli populations. We 

identified a set of 119 E. coli genes significantly enriched in tissue samples (q < 0.01; Figure 

3J), several of which have credible reasons for being enriched in tissue samples. The top 

candidate, cadA (q = 4.44E-9), is a gene encoding one of two lysine decarboxylases 

(Kikuchi et al., 1997; Yamamoto et al., 1997) produced by E. coli; the other is ldcC, which 

is not enriched in tissue samples (q = 0.16) (Figures 3K and S3J). While ldcC encodes a 

gene that is constitutively expressed, cadA transcription is induced under conditions of 

anaerobic growth at low pH and its gene product displays greater thermostability and acid 

tolerance (Lemonnier and Lane, 1998). Additionally, genes in the pks island encoding 

colibactin were significantly more prevalent in tissue than blood, matching previous reports 

that E. coli strains expressing this gene are associated with CRC tissues (Figure S3L) 

(Arthur et al., 2012).

Discrepancies in intraspecies genome content may be explained by adaptive gene loss, an 

evolutionary mechanism whereby bacteria dispense with genes that are unnecessary for their 

environmental conditions (Koskiniemi et al., 2012; Mira et al., 2001). Pathway analysis 

(Huang da et al., 2009) revealed that tissue-enriched E. coli genes were significantly 

associated with processes including iron-ion homeostasis, enterobactin biosynthesis, ion 

transport, ferric-enterobactin transport, and copper-ion response (p < 0.01) (Figure 3L). Iron 

(Fe3+) and copper (Cu2+) are abundant in the host and can be toxic to E. coli in acidic, 

aerobic conditions; therefore, strains of E. coli must tightly regulate intracellular 

concentrations of these metals and undergo selection to do so (Porcheron et al., 2013; 

Rensing and Grass, 2003). Given that hypothetically bloodborne E. coli would also have to 

contend with high concentrations of copper and iron, enrichment of these genes and 

processes in tissue relative to blood suggests that the majority of E. coli reads detected in 

blood samples are not endogenous but rather the result of contamination. However, tissue-

enriched genes such as cadA and others serve as benchmarks for distinguishing the two.

Tissue-enriched sequencing reads can be identified with nucleotide precision

We then examined microbial sequencing reads at nucleotide-level resolution. Given that 

gene-level alignments helped resolve mixed-evidence cases, we explored whether bacterial 
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sequence variants, such as SNPs, could be used in a similar fashion. Variant prevalence 

across CRC tissue and blood samples largely recapitulated the results from species- and 

gene-level profiles (Figures S3L–S3M). Interestingly, we also found populations of apparent 

tissue-enriched and equiprevalent variants in E. coli genomes, suggesting that analyses of 

sequence variants may prove useful in distinguishing between endogenous and contaminant 

sequencing reads in mixed-evidence cases.

Decontamination removes sequencing center artifacts

Removing contamination affected all samples, but samples with low bacterial abundance a 
priori were the most affected (Figure 4A), consistent with observations that low-biomass 

samples are the most profoundly affected by contamination (Eisenhofer et al., 2019; 

Glassing et al., 2016). Decontamination also regularized the relative abundance profiles of 

CRC tissue samples, most prominently by the removal of contaminant Actinobacteria and 

Proteobacteria reads (Figure 4B).

Despite being naive to sequencing center, our prevalence-based model for decomposing the 

TCGA microbiome data into tissue-resident and contaminant fractions also mitigated center-

related batch effects. Prior to removing contamination, TCGA microbiome data clustered by 

both sample type and sequencing center (Figure 2D). However, unsupervised clustering of 

the tissue-resident component extracted from the original TCGA sequencing data showed no 

dependency on sequencing center and maintained variation related to sample type (Figure 

4C). Examining the contamination component, we found the opposite: samples no longer 

clustered by sample type but rather organized exclusively according to sequencing center 

(Figure 4D). These results reflected the removal of species that were uniquely prevalent in 

tissue samples from either Baylor or Harvard (Figures 4E, 4F, and S4A).

Finally, our algorithm greatly increased the similarity between the microbial populations in 

patient-matched tissue samples sequenced at both Harvard and Baylor, while maintaining 

diversity among samples overall (Figure 4G). Thus, our prevalence-based model is able to 

homogenize matched samples sequenced at different centers and mitigate sequencing center 

artifacts.

Original TCGA tissue and blood samples validate tissue-resident microbial compositions 
and equiprevalent species as contaminants

To benchmark our analysis, we obtained five primary CRC tumor samples and matched 

plasma samples from an original TCGA tissue provider (Table S1). These samples were 

specifically chosen to ensure that each tissue and plasma sample was profiled by WGSat 

both Baylor and Harvard. For controls, we also procured three plasma samples from healthy 

individuals and spiked one plasma sample with E. coli. We then used 16S amplicon 

sequencing to validate that the bacterial composition of the original TCGA samples 

resembled the decontaminated compositions extracted from TCGA sequencing data for 

matched tumor samples (Figure 4H).

We found that the original TCGA tumor samples contained ample bacterial diversity and 

read counts (Figures 4I and S4B) and that their bacterial composition largely recapitulated 

the decontaminated, tissue-resident microbial population our decontamination model 
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extracted from TCGA WGS data on matched samples (Figures 4J and S4D). In addition to 

increasing the similarity between WGS and 16S validation results (Figure S4C), 

decontamination greatly improved the concordance between microbial compositions of 

matched WGS experiments performed at Harvard and Baylor (Figure 4G). Despite detecting 

a large number of bacterial sequencing reads in tumor samples, bacterial diversity of CRC 

plasma was not significantly greater than healthy plasma (p = 0.30) or water controls (p = 

0.44). Moreover, the 16S bacterial composition of original TCGA plasma samples was 

distinct from the bacterial composition of WGS data from the same samples (Figures S4E 

and S4F), supporting the notion that the majority of bacterial reads detected in TCGA blood 

samples are contamination introduced during DNA extraction and sequencing, rather than at 

the time of procurement. These validation results demonstrate that our model accurately 

identifies and removes contaminants and that computational decontamination produced 

profiles that represent the true microbial composition of tissue.

Colorectal tissue microbiomes cluster into Fusobacterium and Bacteroides co-abundance 
groups

Having validated the contamination-adjusted microbial profiles, we sought to leverage the 

decontaminated TCMA dataset to investigate whether certain subgroups of microbiota were 

more likely to be found together in tissue from CRC patients. Using the bootstrapping 

procedure, SparCC (Friedman and Alm, 2012), we found two anticorrelated co-abundance 

groups (Figures 5A–5C, S5A, and S5B): the “Fusobacterium cluster” contained 

Porphyromonas, Prevotella, Peptostreptococcus, and Campylobacter, among other species 

that were associated with tumor samples; the second “Bacteroides cluster” is larger and 

contained a highly correlated set of microbes, including Parabacteroides, Clostridium, and 

Alistipes. This group may represent a more normal/healthy microbiome, as several of these 

species were positively associated with normal tissue samples. Taxa in the Fusobacterium 
cluster were significantly associated with colorectal neoplasms, while taxa in the 

Bacteroides cluster were associated with C. difficile infection, irritable bowel syndrome, and 

cirrhosis (q < 0.05). These co-abundance groups may represent two distinct “enterotypes” of 

CRC tissue microbiomes.

Bacterial co-abundance groups are predictive of the host tissue molecular environment

Next, we evaluated whether the bacterial co-abundance groups we identified had discernible 

effects on host gene expression or regulation. Microbiota and host cells are known to engage 

with one another through a complex variety of molecular interactions. Host-derived nutrients 

and dietary macromolecules are utilized by microorganisms as a food source, while 

microbial byproducts including short-chain fatty acids (SCFAs) are known to modulate gene 

expression, cell differentiation, and inflammatory response (Donohoe et al., 2011; Furusawa 

et al., 2013).

The TCGA database contains a dense cube of molecular profiling data, including matched 

genetic, epigenetic, transcriptional, and proteomic assays performed on thousands of 

samples. Thus, the ability to compare microbial profiles with matched host molecular 

profiles represents an unprecedented opportunity for querying host-microbe interactions in 

various tissue types. As proof-of-principle, we used batch-normalized RPPA, mRNA-seq, 
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miRNA-seq, and methylation 27-K data from TCGA to compute correlations between 

features in these datasets with genera in the Fusobacterium and Bacteroides clusters 

identified previously (Figures 5D, 5E, S5C, and S5D). For each of these assays, we found 

that these bacterial co-abundance groups were predictive of host gene expression patterns. 

For instance, in RPPA protein expression data we found that ADAR1 and PARP1 expression 

appeared to distinguish these co-abundance groups (Figure 5E). The protein ADAR1 is 

upregulated by inflammatory mediators such as TNF-alpha and IFN-gamma (Yang et al., 

2003) and regulates pathogen detection and autoinflammation by discriminating self from 

non-self RNA (Chung et al., 2018), while PARP1 regulates DNA repair and is activated by 

Helicobacter pylori in gastric cancer (Nossa et al., 2009). Independently, we found that 

ADAR1 expression correlated with expression of PARP1, TNF-alpha, and IFN-gamma in 

TCGA RNA-seq data for CRC (Figure S5E). These results suggest that genes regulating 

inflammation and pathogen response may distinguish the Fusobacterium and Bacteroides 
co-abundance groups in CRC. More broadly, these analyses illustrate the utility of TCMA as 

a unique resource for comparing microbial and multi-omic host profiles from matched tissue 

samples.

Matched tumor-normal analysis reveals species associated with colorectal neoplasms

The TCGA database contains detailed annotations on each tissue donor, including statistics 

on tumor stage, size, morphology, and location, as well information on patient survival, 

treatment history, and therapeutic response. To identify microbes predictive of pathological 

and prognostic characteristics of CRC tissue, we used matched normal tissue and primary 

tumor samples to perform a paired comparison of tissue-resident microbes (Figures 5F, S5F, 

and S5G). This analysis identified 37 species that were significantly enriched in either 

normal (n = 14) or tumor (n = 23) samples (p < 0.05) (Table S2).

The species most significantly associated with CRC tumors compared with matched normal 

tissue was F. nucleatum (p = 1.82E-3), which is known to promote intestinal tumorigenesis. 

Overall, approximately half of tumor-associated species belonged to the genus 

Fusobacterium, including F. hwasookii, F. massiliense, and a number of unclassified 

Fusobacterium spp. (p < 0.01). Non-Fusobacterium species associated with CRC tumors 

included P. micra, S. moorei, and P. stomatis (p < 0.05), several of which belonged to the 

Fusobacterium co-abundance group (Figure S5A) and have previously been implicated in 

CRC (Kostic et al., 2013; Purcell et al., 2017; Warren et al., 2013). Other species, including 

several Campylobacter spp. did not have extant links to the disease. Of these, C. ureolyticus 
(Log2FC = 1.97; p = 2.19e–2) is an emerging gastrointestinal pathogen implicated in 

inflammatory bowel disease and colitis (Bullman et al., 2013; O’Donovan et al., 2014), 

prompting further examination. C. ureolyticus abundance correlated with expression of 

several genes, including CAMK2D and UGDH (Figures S5J, S5H, and S5I), and several 

genes expressed by C. ureolyticus were significantly associated with tumor samples 

compared with normal tissue (Figure S5J). Additionally, C. ureolyticus was associated with 

worse progression-free interval (PFI) in recurrent CRC patients (Figure S5K).

Taxa that were significantly more abundant in adjacent normal tissue compared with 

matched tumor tissue were dominated by Bacteroides and Parabacteroides spp. (p < 0.05) 
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(Figure S5G), many of which belonged to the Bacteroides co-abundance group (Figure 

S5A). By leveraging patient-matched tumor and normal tissue samples, TCMA may thus be 

used identify bacterial associations with CRC and other gastrointestinal cancers.

Survival analysis reveals candidate microbial biomarkers predictive of clinical outcomes

Using survival data collected by the PanCanAtlas (Liu et al., 2018), we next examined 

whether co-abundance groups were predicative of overall survival (OS). For each species, 

we used a log-rank test to assess its individual prognostic value. Interestingly, species in the 

Bacteroides co-abundance group were generally more prognostic of survival than the 

Fusobacterium co-abundance group (Figure 5G). We found over a dozen Bacteroides spp. 
that were prognostic of survival, including B. cellulosilyticus and several unclassified 

Bacteroides spp. (Figures 5H and S5L). These findings demonstrate the utility of TCMA for 

the identification of prognostic microbial biomarkers relevant to CRC and other cancers.

Microbial presence in CRC tissue is predictive of host immunogenic response, 
inflammatory cancer pathways, and cell-cell adhesion

Next, we explored whether the 37 species that we identified as significantly associated with 

either tumor or normal tissue samples had identifiable effects on host gene expression or 

related biological pathways. Comparing normalized abundances of these species with 

matched mRNA expression data from 159 CRC tumor samples, we computed correlations 

and found transcriptional patterns that were associated with both tumor- and normal tissue-

associated species (Figures 6A and S6A). Given the observed differences in the 

transcriptional correlations of tumor- and normal tissue-associated bacteria, we subsequently 

performed gene-set enrichment analysis (Subramanian et al., 2005) to identify biological 

pathways associated with the abundance of these species.

Pathway analysis revealed that (1) genes correlated with the abundance of bacterial species 

were consistently enriched for the activation of immune system pathways and processes, 

irrespective of their association with tumor or normal tissue (Figures 6B and S6B) and (2) 

processes related to inflammatory cancer pathways and cell-cell adhesion were enriched 

among genes correlated with tumor-associated and normal tissue-associated species, 

respectively (Figures 6C, 6D, S6C, and S6D). Specifically, both tumor- and normal tissue-

associated species were enriched for processes relating to intestinal IgA production, antigen 

presentation, natural killer cell-mediated cytotoxicity, cytokine signaling, and primary 

immunodeficiency, suggesting near-universal activation of an immunogenic transcriptional 

response to the presence of these bacteria (Figures 6B and S6B).

We also found that pathways including DNA replication, DNA repair, oxidative 

phosphorylation, p53 signaling, and ribosome activity were all negatively enriched among 

normal tissue-associated species, and positively enriched among tumor-associated species, 

particularly for Fusobacterium spp. (Figures 6C and S6C). Conversely, genes involved in the 

regulation of cellular adhesion were positively enriched among normal tissue-associated 

species and negatively enriched among tumor-associated species (Figures 6D and S6D). 

Together, these results indicate that within this cohort of CRC tumor samples, tumor-
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associated species may be associated with proinflammatory, neoplastic transformations and 

loss of epithelial integrity.

Microbial presence in CRC blood samples indicate mucosal barrier injury

As shown in Figures 1B and S1B, bacteria were significantly more abundant and diverse in 

blood samples from CRC patients than from BC patients (p < 0.01). The presence of 

transient, endogenous microbial DNA in the bloodstream has been reported in primary CRC 

patients, often before diagnosis, and may even be predictive of tumor stage and location 

(Abdulamir et al., 2011; Poore et al., 2020). Loss of mucosal barrier function is a common 

feature of CRC and other chronic inflammatory conditions and may lead to microbial 

translocations from CRC tumors to the lamina propria and bloodstream (Oshima and Miwa, 

2016; Yu, 2018).

To explore this possibility, we examined the abundance of subsets of bacterial species and 

genera designated as common commensal (n = 407) or MBI-associated (n = 693) (CDC, 

2019). Examining MBI-associated species among decontaminated blood samples within the 

CRC cohort, we found that species associated with MBI were considerably more prevalent 

than those that were not (p = 2.42e–7; Figure 6E). We then compared the abundance of 

MBI-associated genera with that of common commensals and discovered that genera 

associated with MBI were frequently more abundant in the blood of CRC patients than BC 

patients (Figures 6F and S6E). These results point toward the potential utility of bloodborne 

bacterial DNA from MBI-associated organisms as a potential biomarker for CRC.

Contamination-adjusted tissue microbiome profiles for all gastrointestinal cancers in 
TCGA

Having successfully identified the CRC tissue-associated microbial component in the TCGA 

dataset, we analyzed samples from other cancer types to search for tissue-resident 

microbiota. All sequencing datasets contained some bacterial reads but as expected, they 

were most abundant in gastrointestinal cancers (Figure 7A). In particular, tissue samples 

from head and neck cancer (HNSC), colon cancer (COAD), rectal cancer (READ), 

esophageal cancer (ESCA), and stomach cancer (STAD) had the greatest number of 

bacterial reads prior to decontamination, whereas uveal melanoma (UVM), lung squamous-

cell (LUSC), and glioblastoma had the fewest.

Given the abundance of microbial reads in gastrointestinal cancer types, we used our 

prevalence-based approach to determine whether tissue-resident microbiota were present and 

estimate the fraction of contaminant reads in each sample type (Figure 7B). In addition to 

COAD and READ, we found a strong signature of tissue-resident species in HNSC, STAD, 

and ESCA projects by comparing species prevalence in tissue with blood and brain samples 

(Figures 7C and 7D), and we estimated the fraction of minimally detectable species that 

were tissue-resident or contaminants (Figure 7E). For each of these cancer types, we applied 

our decomposition model to isolate tissue-resident populations and establish TCMA. Few 

statistically significant tissue-resident populations in bladder (BLCA), breast (BRCA), 

uterine (UCEC), cervical (CESC), or prostate (PRAD) cancers could be detected (Figures 

S7A and S7B). The microbial biomass in these tissues is known to be magnitudes less than 

Dohlman et al. Page 13

Cell Host Microbe. Author manuscript; available in PMC 2022 February 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



that of gastrointestinal tissues despite similar levels of contamination (p = 0.56), hence it 

may be more challenging to distinguish the few tissue-resident species from the over-

whelming proportion of contaminants.

Discussion

By comparing and integrating data from multiple NGS platforms and various sample types, 

we isolated and experimentally validated the tissue-resident component of these datasets, 

thus producing a public resource of computationally decontaminated microbial profiles in 

TCGA tissue samples. This examination of equiprevalence provides a blueprint for future 

analyses of sequencing data for metagenomic profiling of tissue-resident microbiota. 

Putative contaminant species are more likely to originate from a single source and are also 

expected to demonstrate a lesser degree of intraspecies genetic variation, meaning that 

additional analyses of gene- and nucleotide-level prevalence may be helpful for controlling 

contamination, as we demonstrated for mixed-evidence cases such as E. coli. Prevalence-

based analyses are likely to supplement standard batch-correction tools, which control 

technical variation but do not explicitly model contamination. More statistically rigorous 

tools that leverage prevalence and other technical variables to explicitly define observed 

metagenomic data as some linear combination of endogenous and contaminant read counts, 

may therefore be warranted.

The ability to retroactively remove contaminant species from NGS sequencing datasets will 

greatly expand the breadth and accessibility of metagenomic profiles for downstream 

analyses. Multi-institutional initiatives such as TCGA and GTEx have collected tens of 

thousands of tissue samples for sequencing, many of which are from internal organs and 

tissue types known to harbor microbiota. Most of these samples have been characterized 

extensively along genetic, epigenetic, transcriptional, and proteomic axes or provide detailed 

clinical profiles on patient donors. Meanwhile, a growing body of evidence suggests that 

alterations to the microbiome are associated with cancer development, progression, and drug 

response (Gopalakrishnan et al., 2018; Sivan et al., 2015; Viaud et al., 2013). Therefore, 

obtaining robust profiles of the microbial composition of human tissues in these sequencing 

databases will provide new insights into multi-omic host-microbe interactions in human 

tissue samples that would otherwise be difficult to acquire and analyze.

As proof-of-principle, we used TCMA to identify two dominant clusters of tissue-resident 

bacteria in CRC samples, as well as their associated molecular expression patterns and 

prognostic significance. Pathway analysis of matched transcriptional data demonstrated that 

tumor-associated species were positively correlated with cancer-related inflammatory 

pathways and negatively associated with cellular adhesion machinery. Specifically, 

enrichment of ribosome, p53 signaling, DNA repair, oxidative phosphorylation, and cellular 

adhesion pathways may point to a previously described mechanism wherein inflammatory 

cytokines downregulate p53 by stimulating ribosome biogenesis in colonic epithelial cells, 

leading to downregulation of E-cadherin and epithelial-mesenchymal transition (Brighenti et 

al., 2014). Given the established ability of many of these species to induce inflammation 

(Kostic et al., 2013), stimulate cytokine activity (Gemmell and Seymour, 1993), and 
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modulate E-cadherin (Rubinstein et al., 2013) in colonocytes, the contribution of these 

species to this inflammatory cancer pathway necessitates further exploration.

Beyond CRC, the TCMA database will allow interrogations of pan-cancer relationships 

between the microbiome and tumor development. In most cases, the role of microbiota in 

cancer is context-specific. For example, H. pylori is known to advance gastric cancers but 

seemingly offer a protective effect in esophageal adenocarcinoma (Islami and Kamangar, 

2008). However, certain pathogenic processes, such as chronic inflammation, altered 

metabolic states, and abrogation of viral latency display commonality across cancers (Plottel 

and Blaser, 2011). Since TCGA samples were collected and analyzed with common 

methodologies, the decontaminated metagenomic profiles for thousands of tissue samples 

presented here provide an ideal platform for examining host-microbe relationships that span 

cancer types, in contrast to meta-analyses, which must integrate data from disparate sources. 

Thus, in addition to providing a methodology for comprehensively identifying and removing 

contamination, TCMA represents an unprecedented resource for exploring the role of tissue-

resident microbiota in various cancer types and identifying predictive microbial biomarkers.

STAR★methods

Resource availability

Lead contact—Further information and requests for resources should be directed to and 

will be fulfilled by the lead contact, Xiling Shen (xiling.shen@duke.edu).

Materials availability—The Cancer Genome Atlas (TCGA) collected biospecimens and 

associated clinical information from human subjects, under informed consent and 

authorization of local institutional review boards. All TCGA sequencing data were accessed 

from the Genomic Data Commons (GDC) portal in accordance with the TCGA Data Use 

Certification Agreement and under authorization of Duke’s campus institutional review 

board. Original TCGA tissue and plasma samples were acquired from Indivumed, a third-

party vendor. Healthy patient samples used for validation analyses were collected and 

analyzed under authorization of Duke’s campus institutional review board. Primers used 

from 16S sequencing were acquired from IDT. This study did not generate new unique 

reagents.

Data and code availability—The TCMA database can be accessed via the website 

(https://tcma.pratt.duke.edu). The accession number for the data reported in this paper is 

https://doi.org/10.7924/r4rn36833. The TCGA sequencing data and associated aliquot, 

sample, and patient metadata on which this work was based were accessed from the GDC 

API. Molecular profiling data and clinical endpoints used for the survival analysis were 

obtained from the PanCanAtlas publication page. Scripts used for this work are available on 

request. More detailed information about data and code can be found in the Key resources 

table.
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Method details

Acquisition and metagenomic profiling of TCGA sequencing data—The raw 

TCGA bam files and metadata associated with each sequencing run were obtained from the 

NCI Genomic Data Commons (GDC) via the GDC’s application programming interface 

(API). Specifically, WXS data were accessed from the GDC data repository and WGS data 

were accessed from the GDC’s legacy archive. Overall, we acquired bam files from 19,409 

sequencing runs (WGS: n = 4,608; WXS: n = 15,066) for all TCGA cancer types with WGS 

or WXS data available. Sample-specific metadata were obtained from the GDC web portal, 

and patient-specific metadata were obtained from the PanCanAtlas publication page.

All WGS and WXS data from TCGA samples were screened for microbial content using the 

PathSeq pipeline (Kostic et al., 2011), which is made available as part of the Broad 

Institute’s Genome Analysis Toolkit (GATK 4.0). The PathSeq analysis was performed 

using prebuilt human and microbial reference genomes and the NCBI taxonomy database 

from the PathSeq resource bundle, which were accessed via ftp from the Broad Institute in 

December 2017. PathSeq was used with default settings, with the exception of the minimum 

clipped read length, which was set to 50 to minimize the false positive rate. All sequencing 

data were analyzed on a local high-performance computing (HPC) cluster, which is 

comprised of 60 compute nodes, 1,512 CPU cores, and approximately 15TB of RAM.

Unambiguously aligned sequencing reads for bacteria at each taxonomic level were 

aggregated for available WGS and WXS data from 22 TCGA sequencing projects 

representing a total of 19,409 sequencing runs (4,608 WGS and 15,066 WXS). Total read 

counts for TCGA input bam files and PathSeq output bam files were calculated using 

SAMtools’ flagstats function for RPM normalization. Total bacterial abundance values were 

then normalized to the total read count (in millions) of the input bam files. Aggregated 

PathSeq results and associated metadata for each sequencing run were then deposited as 

phyloseq objects (McMurdie and Holmes, 2013) for downstream analyses in R.

Decomposition of observed TCGA microbial profiles into tissue-resident and 
contaminant fractions—The classification of tissue-resident microbiota for each TCGA 

project was performed at the species-level using WGS sequencing data. To assess whether a 

species deviated significantly from equiprevalence and identify a tissue-resident population, 

we found the most generalizable criteria combined a statistical test of proportions with a 

hard cutoff on blood prevalence. Species were defined as tissue-resident if they were 

prevalent in fewer than 20% of blood samples and significantly more prevalent in tissue than 

blood by a one-sided Fisher exact test (q < 0.05).

Fisher’s test offered two major benefits: (1) it performs well for low prevalence cases, 

meaning that it naturally removed low-prevalence species which could not be statistically 

distinguished from contamination, and (2) it is sensitive to the group sample sizes provided 

(tissue and blood), making it sufficiently generalizable across sequencing projects which had 

varying numbers of tissue and blood samples. Because of the very large total number of 

detectible species (n = 11,745 in CRC), we used FDR-correction to adjust for multiple tests 

(q < 0.05). The second filter was hard cutoff on blood prevalence (<20%). This was effective 

for classifying high-prevalence species, which were statistically more prevalent in tissue 
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than blood but still detectible in more blood samples than was plausible for endogenous 

blood-borne bacteria. Ultimately, for CRC data the second cutoff was only relevant for four 

species from the Enterobacteriaceae family, which likely represent mixed-evidence species. 

Finally, we defined “detectible” as having more than one sequencing read aligning to a given 

taxon (≥2 reads). Singletons (taxa with a single read) are known to frequently be sequencing 

artifacts or false positives and are commonly removed to reduce noise in downstream 

metagenomic analyses.

Many reads are not aligned at the species level. For example, unambiguous genus-level 

alignments are not necessarily equal to the sum of unambiguous species-level alignments 

from species within that genus. Therefore, in order to preserve read counts at taxonomic 

ranks above species-level, we adjusted read counts to reflect that a given clade could be 

comprised of a combination of contaminant and tissue-resident species. The decomposition 

of observed metagenomic data (K) into tissue-resident (T) and contaminant (C) components 

for a given taxon in a given sample can be described using a mixture with two components 

of the form K = mT + nC, where m and n represent the estimated fractions of tissue-resident 

or contaminant sequencing reads belonging to a given taxon, respectively (such that m + n = 

1). For all taxa above the species-level, we assigned m and n using the relative fractions of 

unambiguously aligned sequencing reads from species classified as tissue-resident or 

contaminant within the corresponding clade. For taxa with fewer than 5 unambiguously 

assigned reads, we imputed mixtures from other sequencing runs processed on the same 

plate or center. Defining these mixtures thus allowed us to propagate the classification of 

tissue-resident species to higher taxonomic ranks on a sample-by-sample basis while 

preserving read counts that were unambiguously aligned above the species level.

Gene-level sequencing analysis of representative species—For each of bacterial 

genomes of interest, the fasta sequences and gff3 files were downloaded from GenBank. The 

gff3 files were converted to gtf using GffRead (Pertea and Pertea, 2020). The fasta and gtf 

files were then analyzed with STAR (Dobin et al., 2013) genomeGenerate to make genome 

files for the alignment process. For each sequencing run, the output bam file from PathSeq 

was used to align to annotated bacterial genomes. Using subread’s featureCounts (Liao et 

al., 2014), the output from the STAR aligner was then used to determine the read counts for 

each gene. For the genome coverage analysis, outputs from STAR were sorted and converted 

to bam files using SAMtools (Li et al., 2009). Deeptools (Ramírez et al., 2014) 

bamCoverage function was then used to generate the bedgraph files using RPKM 

normalization. The files were intersected using bedtools (Quinlan and Hall, 2010). The log10 

read counts of each of the samples were summed and divided by the total number of samples 

per track. These genome tracks were then plotted using the Circos software (Krzywinski et 

al., 2009). For visualization of cadA and ldcC alignments, counts from each sample and bin 

(10bp) were summed and divided by the total number of samples per track. The bedgraph 

files were converted to bigwig using UCSC bedGraphToBigWig, then bigwigs were plotted 

using The Integrated Genomics Viewer (IGV) (Thorvaldsdóttir et al., 2013). Each track was 

scaled to the max bin height within the viewable region.
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Nucleotide-level analysis of bacterial sequence variants—For each bacterial 

genome in the PathSeq reference, we screened each BAM file from the PathSeq output 

(COAD-READ, WGS) for sequence variants using the GATK HaplotypeCaller pipeline 

(Poplin et al., 2017). Variant calling and quality filtering parameters were chosen according 

to previously described methodology for bacterial sequencing data (Bush et al., 2020). The 

output VCF files were then converted to TSV format and were aggregated across sequencing 

runs. We defined each sequencing variant as a unique combination of genome accession ID, 

nucleotide position, reference base, and alternative base, producing a total of 3,445,630 

unique variants across all genomes and sequencing datasets. For downstream analysis, this 

total was further filtered to select 143,215 (4%) features that were present in at least three 

sequencing runs. Strain-level genome accession IDs were then mapped to NCBI taxonomy 

IDs and associated lineage using the ete3 python package, then aggregated by species and 

genus for comparative prevalence analysis.

Acquisition and analysis of original TCGA tissue and plasma samples—For 

validation of TCMA we obtained original, matched tissue and plasma samples from a total 

of five CRC patients from Indivumed, an original TCGA tissue provider. Plasma samples 

from three healthy subjects were obtained from patients at Duke University Hospital. For 

tissue samples, microbial DNA was extracted from tissue samples using the MoBio 

PowerMag Soil DNA isolation kit (Qiagen Cat# 27000-4-KF), following the Earth 

Microbiome Project (EMP) protocol (http://www.earthmicrobiome.org/) (Marotz et al., 

2017). Microbial DNA was extracted from plasma using the QIAamp UCP Pathogen Mini 

Kit (Qiagen Cat# 50214) following a protocol developed by Jiang et. al (Jiang, 2018). 

Briefly, plasma samples were pre-treated with proteinase K, followed by lysing and spin-

down through QIA amp UCP spin column. After washing with AW1 and AW2 buffers, 

microbial DNA was eluted in 50uL buffer AVE for downstream 16S library preparation and 

sequencing.

Bacterial compositions of isolated DNA samples were determined by amplification of the 

V4 variable region of the 16S rRNA gene by polymerase chain reaction using the forward 

primer 515 and reverse primer 806, following the EMP protocol. These primers were 

obtained from IDT and carry unique barcodes that allow for multiplexed sequencing. 

Equimolar 16S rRNA PCR products from all samples were quantified and pooled prior to 

sequencing. Sequencing was performed on a 250bp PE MiSeq lane at the Duke University 

Center for Genomic and Computational Biology sequencing core. The 16S sequencing 

results were analyzed using QIIME2 (Bolyen et al., 2019). Paired-end sequencing reads 

(250bp) were demultiplexed, denoised, and forward reads were trimmed at 10bp from the 

left and at 240bp on the right, while reverse reads were trimmed at 10bp from the left and at 

220bp on the right. Taxonomic assignments were performed using the GreenGenes database 

with 99% OTUs at all taxonomic levels (DeSantis et al., 2006). Read counts for all observed 

taxa were summed over all assigned operational taxonomic units.

Estimation of bacterial co-abundance groups and associated molecular 
signatures—Compositional effects in microbiome data often complicate the calculation of 

correlations between microbiota; we therefore used SparCC (Friedman and Alm, 2012) to 
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estimate taxa that are coabundant. This method relies on a bootstrapping procedure to 

control for spurious results common in microbiome survey data. Following the filtering 

criteria recommended in the SparCC paper, we removed samples with fewer than 500 reads 

and taxa with an average abundance of fewer than 2 reads per sample prior to calculating 

correlations. We ran SparCC with default parameters on decontaminated CRC tissue 

sequencing data for 100 iterations to identify coabundant taxa. The results of MicroPattern 

(Ma et al., 2017) pathway and disease-association enrichment analysis were obtained by 

identifying the top 20 genera most correlated with each of Fusobacterium and Bacteroides.

To estimate molecular signatures associated with these co-abundance groups, we collected 

batch-normalized molecular profiling data from the PanCanAtlas publication page, including 

RPPA, miRNA-seq, mRNA-seq, and Methylation 27K experiments performed on matched 

TCGA samples. Prior to calculating Pearson correlations between matched samples, we 

performed preliminary normalizations on both molecular profiling data and decontaminated 

tissue profiles. A log10 transform was used to ensure RNA-seq and miRNA-seq expression 

profiles were normally distributed. The RPPA and Methylation 27K data were left 

unchanged. The relative abundances of decontaminated CRC tissue profiles were normalized 

using pseudocaounts and a centered log-ratio (CLR) transform.

Identification of tumor- and normal tissue-associated microbiota—Microbes 

associated with tumor samples or matched normal tissue were calculated in R, using a 

custom paired analysis function written for metacoder (Foster et al., 2017). We filtered 

decontaminated microbial compositions in TCMA by selecting taxa using filtering criteria 

suggested by the PhyloSeq preprocessing tutorial. Such filters are standard when preparing 

for downstream metagenomic analyses as they remove low-abundance and low-prevalence 

taxa which frequently have small means and large coefficients of variation, contributing 

unnecessary noise for downstream differential abundance comparisons. After adding 

pseudocounts, we calculated the relative abundance of microbiota for each sequencing run. 

Across all patients with matched tumor and normal tissue, we then calculated the median 

log2 ratio between the relative abundance of each taxa in each tissue type. Significance 

values were calculated using Wilcoxon’s rank-sums test and corrected for false discovery 

rate. Taxa with significant p-values (p < 0.05) were selected for downstream analysis.

Survival analysis—We performed our survival analyses using a log-rank test, using the 

lifelines survival analysis python package (Davidson-Pilon et al., 2020). Relative 

abundances of decontaminated bacterial compositions for all tissue samples belonging to a 

given patient were used for both models. Data on patient survival, disease-free interval, and 

progression-free interval were collected from the PanCanAtlas’ clinical follow-up data (Liu 

et al., 2018). For log-rank tests, patients were segregated into two groups: one with taxa 

relative abundance below the bottom quartile (“low” or “absent”), and one with above the 

top quartile (“high”). In many cases, particularly for species-level alignments, the bottom 

quartile was zero and therefore may include more than a quarter of patients. To ensure 

quartiles were non-equal, taxa that were present in fewer than 25% of samples were 

excluded from the analysis. The CPH test was performed with default parameters and 10-

fold cross-validation.
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Pathway analysis of species associated with tumors or adjacent normal tissue
—We used GSEA (Subramanian et al., 2005) to analyze gene expression pathways 

associated with species of interest. For each species, we defined a continuous phenotype 

(cls) using CLR-transformed abundance values of decontaminated TCMA data. Using RNA-

seq expression data from the PanCanAtlas as the expression dataset and gene lists obtained 

from MSigDB v7.1 (KEGG, GO Biological Process, GO Molecular Function), we ran 

GSEA for 1000 iterations. Analysis was performed for 158 matched tumor samples, as well 

as for each subset with pathological stage (I: n = 33; II: n = 60; III: n = 44; IV: n = 19) 

within this cohort.

Quantification and statistical analysis—All statistical tests between unmatched 

groups were performed using a Wilcoxon rank-sums test (p-value), and all statistical tests 

between matched groups were performed using a Wilcoxon signed-rank test (p-value) unless 

otherwise specified. Statistical tests of prevalence were performed using a one-sided Fisher’s 

exact test. Statistical tests of variance for microbial compositions were performed using 

PERMANOVA. Statistical tests for survival analyses were performed using the log-rank test. 

For multiple tests, the false discovery rate (FDR; q-value) was calculated using the 

Benjamini-Hochberg method. All analyses were performed in python 3.7.1 and R 3.6.1. P-

values are indicated as follows: *, <0.05; **, <0.01; ***, <0.001.
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Highlights

• Decontaminated microbial compositions for 3,689 gastrointestinal cancer 

samples

• Resolved “mixed-evidence” species with gene and nucleotide resolution

• Identified prognostic species and blood signatures of mucosal barrier injury

• Enabled matched multi-omic, pan-cancer analyses of host-microbe 

interactions
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Figure 1. WGS and WXS harbor colorectal bacterial reads distinct from blood and brain
See also Figure S1

(A) Matched analysis of bacterial sequencing reads per million (RPM) in normal tissue 

(yellow), tumor tissue (blue), and blood (red) from CRC and BC patients in TCGA. 

Significance is given by paired, one-sided t tests.

(B) Abundance data from (A) but comparing solid tissue (pooled tumor and normal) with 

blood samples from BC (green) and CRC (brown) patients. Significance is given by one-

sided t tests.

(C) Comparison of bacterial species prevalence in WGS data for CRC blood and CRC tissue 

samples reveals populations of tissue-enriched species (blue) and species that are 

equiprevalent in blood and tissue (red). Black circles denote species associated with MBI.

(D) Comparison of bacterial species prevalence in WGS data for CRC and BC samples 

reveals populations of CRC-enriched species (brown) and species that are equiprevalent in 

CRC and BC (green).

(E) Relative abundance of bacterial phyla in WGS data for tissue (top) and blood (bottom) 

samples from CRC (left) and BC (right) patients.

(F and G) Heat tree comparing relative abundance of bacteria in WGS data for (F) matched 

blood samples (red) versus tissue samples (blue) and (G) CRC tissue (brown) versus BC 

tissue (green).
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Figure 2. Most equiprevalent taxa are common contaminants and associated with particular 
sequencing centers
See also Figure S2

(A) Genera commonly found in negative controls of metagenomic sequencing experiments 

(Eisenhofer et al., 2019) are highly prevalent in blood samples.

(B) Prevalence of common contaminants in blood correlates with absolute abundance.

(C) Genome size and temperature tolerance of equiprevalent species are differential (pW, 

Wilcoxon’s test) and more variable (pL, Levine’s test) than tissue-enriched species.

(D) PCoA of WGS data for CRC samples reveals considerable variation between blood 

samples and tissue samples along the first axis of variation and batch effects along the 

second axis.

(E) Heatmap clustering of bacterial species’ abundance in blood samples demonstrates the 

presence of center-specific contamination. The left vertical axis shows each species’ 

prevalence (gray).

(F) The fraction of all bacterial reads that is contamination in normal (yellow), tumor (blue), 

and blood (red) samples from CRC patients.

(G) The fraction of bacterial reads that is contamination in WGS data of normal (yellow), 

tumor (blue), and blood (red) from CRC patients, broken down by the five most prevalent 

phyla.
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(H) Correlations between centered log ratio (CLR)-transformed relative abundances of WGS 

and WXS data for the five most prevalent phyla in tissue samples. Phyla contributing the 

most contaminant reads have the lowest correlation between assays.
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Figure 3. Detecting tissue-resident and contaminant species with gene-level resolution
See also Figure S3

(A–C) Prevalence of genes belonging to B. vulgatus (A; tissue-resident), A. junii (B; 

contaminant), and E. coli (C; mixed-evidence) in blood versus tissue. The large dot indicates 

species-level prevalence.

(D–F) Kernel-density estimate of gene prevalence in blood (red) and tissue (blue) for B. 
vulgatus (A), A. junii (B), and E. coli (F).

(G–I) Coverage of WGS reads aligning to genomes of B. vulgatus (G), A. junii (H), and E. 
coli (I) in blood (red) and tissue (blue).

(J) Top 25 E. coli genes most significantly enriched in tissue.

(K) Comparison of the prevalence of E. coli genes, cadA and ldcC, in blood (red) and tissue 

(blue).

(L) Results of GO pathway analysis of tissue-enriched E. coli genes.

*Indicates tissue-enriched E. coli genes
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Figure 4. Decontamination removes sequencing center artifacts and original TCGA tissue and 
blood samples validate tissue-resident microbial compositions and equiprevalent species as 
contaminants, see also Figure S4; Table S1
(A) Abundance of WGS bacteria before and after decontamination. Samples with no 

reduction in bacterial reads lie along the gray line. Experiments with low microbial biomass 

a priori are disproportionally affected by decontamination.

(B) Relative abundance of bacterial phyla in tissue samples before and after 

decontamination, sorted by their a priori abundance of Actinobacteria.

(C) PCoA of the decontaminated, tissue-resident microbial component reveals retention of 

variation related to sample type but not sequencing center.

(D) PCoA of the contaminant microbial component reveals retention of variation related to 

sequencing center but not sample type.

(E and F) Prevalence of bacterial species in tissue samples sequenced at Baylor versus 

Harvard (E) before and (F) after removing contamination.

(G) Comparison of weighted UniFrac distances before and after removing contamination 

among all tissues (left) and specifically matched tissues sequenced at both Baylor and 

Harvard (right).

(H) Design of the validation experiment. Data are represented as mean ± 95% CI.
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(I) Bacterial diversity of 16S rRNA-seq results from tissue (blue), plasma (red), and controls 

(bottom panel).

(J) Relative abundances in 16S results for tissue compared with tissue samples sequenced 

using WGS at Harvard and Baylor, before and after contamination.
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Figure 5. Colorectal tissue microbiomes cluster into Fusobacterium and Bacteroides co-
abundance groups predictive of host tissue molecular environment
See also Figure S5; Table S2

(A) Heatmap clustering of correlations between bacterial genera reveals anticorrelated 

clusters of genera, characterized by Bacteroides and Fusobacterium (purple triangles). Axes 

are colored according to species’ association with tumor (blue) or matched adjacent normal 

tissue (yellow).

(B and C) (B) Bacteroides- and (C) Fusobacterium-associated co-abundance networks. Node 

size is proportional to the prevalence of the genera in tissue samples, and node hue is 

proportional to abundance.

(D and E) Co-abundance groups are predictive of gene expression (D; RNA-seq) and protein 

expression (E; RPPA).

(F) Heat tree comparing bacterial taxa abundance in tumor samples (blue) or matched 

normal tissue (yellow).

(G) Survival analysis p values of species in the Bacteroides and Fusobacterium co-

abundance groups.

(H) OS curves for Bacteroides spp.
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Figure 6. Microbial presence in CRC tissue is predictive of host gene expression pathways and 
MBI See also Figure S6
(A) Correlation between host gene expression (columns) and CLR-transformed species 

abundances (rows). Rows are colored according to each species’ association with tumor 

(blue) or normal tissue (yellow).

(B–D) Comparison of differentially abundant species and their association with tissue type 

(x axis) versus enrichment score (y axis) for KEGG terms (A) “natural killer cell-mediated 

cytotoxicity” (B), “DNA replication” (C), and “cell adhesion molecules” (D).

(E) Bacterial species implicated in MBI are more prevalent in decontaminated blood 

samples than other species.

(F) Bacterial genera implicated in MBI (red) are more abundant in CRC blood (brown) than 

BC blood (green), in contrast to some commensal species (blue).
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Figure 7. Contamination-adjusted tissue microbiome profiles for all gastrointestinal cancers in 
TCGA
See also Figure S7

(A) Pan-cancer abundance of bacteria in solid tissue samples from TCGA projects prior to 

decontamination. Data are represented as mean ± 95% CI.

(B) Estimated fraction of contaminant reads for sequencing experiments on tumor (blue), 

normal (yellow), and blood (red) samples for each sequencing project in TCMA.

(C) Classification of tissue-resident (blue) and contaminant (red) species across TCGA 

gastrointestinal tissues by comparison of prevalence in blood and tissue.

(D) Labeling of tissue-resident (blue) and contaminant (red) species across gastrointestinal 

tissues by comparison of prevalence in brain tissue and disease-specific tissue, using 

classification from (C).

(E) Estimated proportions of tissue-resident (blue) and contaminant (red) species for each 

TCGA project.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological Samples

Original TCGA tissue and plasma samples Indivumed N/A

Healthy plasma samples Duke Hospital N/A

Critical Commercial Assays

MagAttract PowerSoil DNA KF Kit Qiagen Cat# 27000-4-KF

QIAamp UCP Pathogen Mini Kit Qiagen Cat# 50214

Deposited Data

TCGA WGS bam files GDC API https://api.gdc.cancer.gov/

TCGA WXS bam files GDC API https://api.gdc.cancer.gov/

TCGA sequencing metadata GDC API https://api.gdc.cancer.gov/

TCGA sample metadata (biotab) GDC web portal https://portal.gdc.cancer.gov/

TCGA patient metadata PanCanAtlas https://gdc.cancer.gov/about-data/publications/
pancanatlas

TCGA clinical data resource outcomes PanCanAtlas https://gdc.cancer.gov/about-data/publications/
pancanatlas

Human and microbe reference genomes PathSeq bundle ftp://gsapubftp-anonymous@ftp.broadinstitute.org/
bundle/pathseq/

Human and microbe reference genomes PathSeq bundle ftp://gsapubftp-anonymous@ftp.broadinstitute.org/
bundle/pathseq/

Species and genera designated as commensal or MBI-
associated (NHSN Organism List)

(CDC-NHSN, 2019) https://www.cdc.gov/nhsn/pdfs/pscmanual/
pcsmanual_current.pdf (Chapter 4 p.33)

Genera designated as common contaminants (Eisenhofer et al., 2019) Table 1

Genome for B. vulgatus GenBank CP000139.1

Genome for A. junii GenBank NZ_CP019041.1

Genome for E. coli GenBank U00096.3

Genome for C. provencense GenBank NZ_CP024988.1

Genome for F. nucleatum GenBank AE009951.2

Pks gene cluster (colibactin) GenBank AM229678.1

Greengenes classifier (gg-13-8-99-515-806-nb-
classifier.qza)

(DeSantis et al., 2006) https://docs.qiime2.org/

TCGA mRNA-seq data PanCanAtlas https://gdc.cancer.gov/about-data/publications/
pancanatlas

TCGA miRNA-seq data PanCanAtlas https://gdc.cancer.gov/about-data/publications/
pancanatlas

TCGA RPPA data PanCanAtlas https://gdc.cancer.gov/about-data/publications/
pancanatlas

TCGA DNA Methylation 27K data PanCanAtlas https://gdc.cancer.gov/about-data/publications/
pancanatlas

PARADIGM Pathway inference matrix PanCanAtlas https://gdc.cancer.gov/about-data/publications/
pancanatlas

Gene sets for GSEA (KEGG, GO) MSigDB v7.1 https://www.gsea-msigdb.org/gsea/msigdb/
genesets.jsp
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REAGENT or RESOURCE SOURCE IDENTIFIER

TCMA tissue-resident profiles (COAD, READ, HNSC, 
ESCA, STAD)

This paper https://doi.org/10.7924/r4rn36833

16S sequencing results This paper N/A

Oligonucleotides

Primers for 16S analysis
FWD:GTGYCAGCMGCCGCGGTAA
REV:GGACTACNVGGGTWTCTAAT

IDT N/A

Software and Algorithms

GATK 4.0.3 (PathSeq & HaplotypeCaller) (Kostic et al., 2011; Poplin 
et al., 2017)

https://github.com/broadinstitute/gatk/

SAMtools 1.9 (Li et al., 2009) http://samtools.sourceforge.net/

phyloseq 1.30.0 (McMurdie and Holmes, 
2013)

https://github.com/joey711/phyloseq

metacoder 0.3.3 (Foster et al., 2017) https://grunwaldlab.github.io/
metacoder_documentation/

gffread 0.11.6 (Pertea and Pertea, 2020) https://github.com/gpertea/gffread

STAR 2.7.3a (Dobin et al., 2013) https://github.com/alexdobin/STAR/

subread 1.6.4 (Liao et al., 2014) http://subread.sourceforge.net/

deepTools 3.3.0 (Ramírez et al., 2014) https://github.com/deeptools/deepTools

bedtools 2.29.0 (Quinlan and Hall, 2010) https://github.com/arq5x/bedtools2

circos 0.69.8 (Krzywinski et al., 2009) http://circos.ca/software/download/

IGV 2.4.14 (Thorvaldsdottir et al., 
2013)

http://software.broadinstitute.org/software/igv/

QIIME2 2019.7 (Bolyen et al., 2019) https://qiime2.org/

SparCC (Friedman and Alm, 2012) https://bitbucket.org/yonatanf/sparcc/src/default/

MicroPattern (Ma et al., 2017) http://www.cuilab.cn/micropattern

lifelines 0.23.8 (Davidson-Pilon et al., 
2020)

https://github.com/CamDavidsonPilon/lifelines/
tree/0.24.6

GSEA 4.0.3 (Subramanian et al., 2007) https://www.gsea-msigdb.org/gsea/

Other

Patient metadata for TCGA validation samples This paper Table S1

Tumor- and normal tissue-associated taxa This paper Table S2
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