Cellular and Molecular Bioengineering, Vol. 14, No. 1, February 2021 (© 2020) pp. 31-47

https://doi.org/10.1007/s12195-020-00650-z

Original Article

l‘)

Check for
updates

BIOMEDICAL
ENGINEERING
SOCIETY

CaliPro: A Calibration Protocol That Utilizes Parameter Density
Estimation to Explore Parameter Space and Calibrate Complex
Biological Models

Louis R. JosLyN

,1"2 Denise E. KIRSCHNER,2 and JENNIFER J. LINDERMAN'

"Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-
2136, USA; and *Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W Medical
Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620, USA

(Received 13 April 2020, accepted 2 September 2020, published online 15 September 2020)

Associate Editor Michael R. King oversaw the review of this article.

Abstract

Introduction—Mathematical and computational modeling
have a long history of uncovering mechanisms and making
predictions for biological systems. However, to create a
model that can provide relevant quantitative predictions,
models must first be calibrated by recapitulating existing
biological datasets from that system. Current calibration
approaches may not be appropriate for complex biological
models because: 1) many attempt to recapitulate only a single
aspect of the experimental data (such as a median trend) or 2)
Bayesian techniques require specification of parameter priors
and likelihoods to experimental data that cannot always be
confidently assigned. A new calibration protocol is needed to
calibrate complex models when current approaches fall short.
Methods—Herein, we develop CaliPro, an iterative, model-
agnostic calibration protocol that utilizes parameter density
estimation to refine parameter space and calibrate to
temporal biological datasets. An important aspect of CaliPro
is the user-defined pass set definition, which specifies how the
model might successfully recapitulate experimental data. We
define the appropriate settings to use CaliPro.

Results—We illustrate the usefulness of CaliPro through four
examples including predator-prey, infectious disease trans-
mission, and immune response models. We show that
CaliPro works well for both deterministic, continuous model
structures as well as stochastic, discrete models and illustrate
that CaliPro can work across diverse calibration goals.
Conclusions—We present CaliPro, a new method for cali-
brating complex biological models to a range of experimental
outcomes. In addition to expediting calibration, CaliPro may
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be useful in already calibrated parameter spaces to target and
isolate specific model behavior for further analysis.

Keywords—Mathematical modeling, Parameter estimation,
Highest density region, Alternative density subtraction,
Parameter space.

ABBREVIATIONS
ODE Ordinary differential equation
LHS Latin hypercube sampling
HDR Highest density region
ADS Alternative density subtraction
SIR Sample importance resampling
TB Tuberculosis

INTRODUCTION

As part of a systems biology approach, mathemat-
ical and computational modeling can interrogate bio-
logical theories and provide context to better
understand complex phenomena across multiple scales.
In particular, the explosion of data from genomics,
transcriptomics, proteomics and metabolomics cou-
pled with the introduction of data from new cytometry
and imaging techniques have revealed an opportunity
for systems modeling approaches to predict and reveal
mechanistic relationships between various biological
agents, 5 11:12.2829.39.4042.50-52.60  owever  before
making useful predictions, a model must be able to
replicate particular experimental outcomes and/or
temporal dynamics of the related biological system.
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Model calibration is the process of altering model
inputs, e.g. initial conditions and parameters, until
model outputs satisfy one or more biologically-related
criteria. Often, these criteria include matching model
outputs to experimental data across time. For simple
models with relatively few parameters, calibration can
be trivial. However, complex models often face a more
difficult calibration process for three reasons. First, the
number of parameters in these models can be large.
Second, initial parameter estimates can be discovered
via experimental studies (or other models) but still may
contain a large degree of uncertainty. For example, if a
parameter estimate is derived from multiple studies,
estimates could vary greatly between them and a
modeler will understandably have less confidence in
the true value of this parameter. Third, some param-
eters are, by construction, intended to represent a
group of biological processes. If a process(es) is mod-
eled more phenomenologically, then parameter values
may be very difficult, if not impossible, to measure
directly via experiments.

A large body of work covers the calibration of
complex models to biological data (see Read ez al.*’ for
a thorough review of various calibration techniques in
biological modeling). Popular calibration algorithms
such as simulated annealing,® genetic algorithms,*®>
gradient descent’ and others™-*° leverage the power of
optimization schemes to refine parameter space in an
iterative fashion. As Read et al. acknowledge, many, if
not all, of these calibration techniques use a single
metric (often called an ‘objective function’) to define
the difference between experimental and simulated
outcomes. The general aim is to minimize these dif-
ferences across each iteration. However, not all models
can or should be fit to experimental data through the
minimization of a single metric for each outcome.

In fact, new experimental technologies (e.g., single-
cell measurements, flow cytometry, advanced imaging)
have allowed for the identification of greater biological
variability, often across scales ranging from genomic to
population-level information. In fact, many experi-
mental techniques now allow for the observation of
greater biological variability. For example, at the ge-
netic scale, advanced imaging techniques, single cell
sequencing and mass cytometry have catalyzed the
Human Cell Atlas Project,*® an effort to map the
variability across every human cell type. Additionally,
the introduction of functional assay screening® and
targeted immunotherapy strategies'® within cancer
precision medicine have embraced heterogeneity across
the population and provide a path toward patient-
specific clinical therapies.

In response, mathematical and computational
models have been built to address questions from fields
as diverse as cell-signaling,>* wound healing,*’ sepsis'”
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and drug treatment in tuberculosis,*’ among many

others. As systems biology approaches attempt to re-
veal sources of variability, models must first be able to
recapitulate biological variance and therefore should
not be fit to a median trend line or a single metric. By
calibrating to and thereby capturing a distribution of
outcomes, modeling can assess and provide explana-
tions of variability between individuals, species or
other modelled biological agents.

Bayesian calibration approaches are a collection of
calibration techniques that utilize Bayesian statistics to
leverage information about the distribution of model
outputs, information about the distribution of
parameters and assumptions that relate model
parameters to outputs.1’4’17’21’33’38’43’49’57’62 Sample
Importance Resampling (SIR) is one example of a
Bayesian calibration approach that draws a large
number of parameter combinations from a prior
parameter distribution, executes the model to create
simulation outcomes, then uses outcomes to estimate a
likelihood for each parameter set compared to the
experimental data. The approach requires resampling
from the original parameter space with replacement,
where likelihood values are assigned as sampling
weights.*® This approach, refined and modified over
the years '®***% has yielded success in calibrating
models for which the distribution of both parameter
values and experimental outcomes can be sufficiently
derived from available data.

However, if the distribution of values within
experimental datasets or model parameters cannot be
approximated, Bayesian calibration approaches may
not be the best strategy. Furthermore, some models
should be calibrated with an emphasis on finding a
robust parameter space—defined as a continuous re-
gion of parameter space wherein the vast majority of
model runs will pass within the bounds of experimental
data for the particular outcomes of interest—instead of
a single global optimum or a vast parameter space
wherein some areas are weighted more than others.
Finding a robust parameter space for a complex bio-
logical model is often a user-intensive process that,
when performed manually, can take weeks due to a
lack of automated protocols. Here, we describe a cal-
ibration protocol, CaliPro, that quickly identifies a
robust parameter space where a range of distinct and
biologically reasonable simulation results are repre-
sented when both model parameter and experimental
data distributions cannot be approximated. We high-
light the ability of CaliPro to identify a robust
parameter space for multiple model types, including
simple, complex, deterministic and stochastic biologi-
cal models. We apply this approach to a variety of
model types to show the flexibility of this protocol to
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calibrate different types of systems to multiple data-
sets.

or lower response. Models do have the potential to
elucidate this behavior when properly calibrated to the

entire range of experimental outcomes.” If the modeler
seeks to identify model simulations that fit within the
range of the experimental data (blue simulation lines in
Fig. 1d), the outcome space (Fig. Ic) becomes very
difficult, if not impossible, for these algorithms to
Many traditional model-fitting techniques and evaluate. As the model simulations either fall within
the elevated region, or far below it, this binary classi-
fication of model simulations does not provide a
heuristic or meta-heuristic process with enough infor-
mation to estimate the next parameter combination
approach that is not guaranteed to find the single decision. Figures 1c and 1d outlines one such theo-
global, or even local, optimum as it is commonly de- retical case where CaliPro can calibrate the model, by
fined. embracing the binary classification of model simula-
tion outcomes and represent the full range of experi-
mental outcomes.

We envision the use of CaliPro in situations such as
those shown in Fig. 1 but, more specifically, for cali-
bration to meet three criteria: (1) the termination of
model calibration is not a single parameter set that can
recapitulate one aspect of the experimental dataspace

METHODS

Defining the Appropriate Use for CaliPro

strategies discover the global, or local, optimum within
the outcome landscape. These techniques belong to a
class of optimization procedures called metaheuris-
tics.” Unlike these procedures, CaliPro is an empirical

Both hill-climbing (a heuristic procedure ?) and
simulated annealing (a metaheuristics process ©) algo-
rithms will find the global optimum of a smooth,
peaked landscape (Figs. la and 1b) given ample time
and computational resources. However, if a modeler
wishes to fit to only the median of the data, they may
potentially ignore important events that cause a higher

(b)

FIGURE 1. Calibrating a model to a range of plausible outcomes requires a new calibration approach. (Panel a and b) panel a
represents an example of a smooth model outcome landscape defined by a biologically relevant hypercube of parameter space.
Each (x, y, 2) point in this hypothetical 3D mapping of outcome space is defined by a single set of parameter inputs. (b) The teal
curve represents a single model outcome within the full landscape in (a), that is, the teal curve corresponds to a single (x, y, 2)
point in (a). The blue dots are available experimental datasets, and the black curve represents a hypothetically known optimal for
fitting the model to that experimental data (this corresponds to the white peak in a). Ultimately, in the situation outlined by panel a
and b, the modeler seeks to minimize the difference (shown as arrows) between the simulation and median line by defining an
objective function and using either hill-climbing or simulated annealing (or another similar technique) to select the next parameter
combination. (Panel ¢ and d) If the optimal within outcome space is a set of simulations that encompass various aspects of the
experimental data, the landscape in (a) looks much more like the landscape in (c). Here, the optimum is now an elevated region of
space that may include many outcomes. Panel d now includes a set of simulations (shown in royal blue) that reasonably
recapitulate different aspects of the experimental data and each individual simulation maps to different points on the elevated
region in (c). One failed simulation (shown in red) does not reasonably portray the experimental data (light blue dots), and would

map to the lower regions in outcome space in (c).
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(such as the median), but rather a set of parameter
ranges that represent a continuous and robust
parameter space able to recapitulate the broad range of
outcomes captured within the experimental data. (2)
The objective function cannot be easily defined as
many model simulations may lie within the experi-
mental dataspace and those that lie outside of that
dataspace may not necessarily provide an optimization
procedure with information for its next parameter
choice. (3) The distribution of experimental outcomes
is indistinguishable, or should not be approximated.
CaliPro provides a method for which models with
these criteria can be calibrated to experimental data
that might encompass a broad range of outcomes but
whose distribution might not be easily distinguished.

General Overview of CaliPro

CaliPro is utilized following a model building pro-
cess, when a modeler already has (1) a model in hand
and (2) a series of datasets that exhibit behavior that
the model is partially designed to replicate. Figure 2
displays the general overview process of CaliPro. Step
1 of Fig. 2 shows the multiple data types that are input
to CaliPro.

Determining initial parameter ranges can be a diffi-
cult process as even parameters discovered via experi-
mental studies (or other models) may contain
uncertainty as to their exact value(s). However, by
examining multiple values from the literature, the
modeler should assign the widest range that are bio-
logically feasible, which includes all previous estimates
that have been derived. It is also important to note that
some parameters are fairly well-constrained, either
biologically or by design, and are thus easier to assign
an initial range. Following initial parameter range
assignment, in Step 2 the modeler performs a stratified
sampling of the parameter space using such algorithms
as Latin Hypercube Sampling (LHS), Sobol sampling,
Monte Carlo, etc. The model is then executed for each
of the parameter combinations.

Step 3 in Fig. 2, Model Evaluation, is a crucial step.
If the experimental datasets for calibration at each
timepoint can be approximated as a distribution
(Gaussian, Poisson, or otherwise) we suggest following
Bayesian calibration approaches by creating a likeli-
hood to compare model parameters and simulation
outcomes with the experimental data. Subsequently,
there are many techniques to refine parameter space,
including SIR. However, should the experimental data
be uniform or indistinguishable, then we suggest
specifying a pass set definition (Supplementary Mate-
rial: Box 1). This is a user-intensive step of CaliPro, as
the pass set definition is entirely up to the modeler.
Within CaliPro this model evaluation step can also be
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automated and defined computationally a priori.
Model simulations that satisfy the pass set definition
are gathered together into one matrix and thereby
constitute a pass run set (Supplementary Material:
Box 1). All model runs that do not satisfy the pass set
definition are placed within the fail run set (Supple-
mentary Material: Box 1).

Next, CaliPro creates two density plots for each
parameter within the pass and fail parameter sets
(Supplementary Material: Box 1) to display the regions
of parameter space that are more inhabited by the pass
or fail run set (Step 4 in Fig. 2). Once the density plots
have been created, the initial parameter ranges can be
refined using one of two methods (Step 4 in Fig. 2,
methods below). Following parameter range refine-
ment, these parameters will be sampled again in an
iterative fashion. Steps 2—4 will be repeated until the
termination criteria (Supplementary Material: Box 1) is
met.

Highest Density Region Estimation to Identify
Parameter Subranges

Calculating the highest density region (HDR) is one
approach to summarize a probability distribution.
HDR satisfies the following criteria: (1) the region that
summarizes the probability distribution must occupy
the smallest possible volume in the sample space and
(2) every point within the region has a probability
density larger than every point outside the region.”’
HDR is defined by letting f{x) be the density function
of random parameter X. Then the 100(1 — )%
HDR is the subset R(f,) of the sample space for
parameter X such that R(f,) = {x : f(x) > f,}where f,
is the largest constant such that
Pr(X € R(f;)) > 1 — «.*” A modeler specifies o, which
represents the size of the region, as a percentage of the
density function, f{(x).

We apply this method to the distribution created by
the pass parameter set across a one-dimensional
parameter space, for each parameter (Step 4 in Fig. 2).
When used within the CaliPro pipeline, HDR serves to
refine parameter space by identifying subranges within
each individual parameter range toward the region
that has the highest density of simulations that satisfy
the pass set definition. While HDR can identify several
disjoint regions for multimodal distributions, within
the CaliPro pipeline, if disjoint regions are identified,
the parameter range for the next iteration will be
bounded by the minimum value and the maximum
value across the disjoint regions.
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FIGURE 2. Overview of CaliPro. The model building process begins by incorporating biological theory and experimental
estimates to inform rules, mechanisms, and model structure. Once the model is built, there is (an often prolonged) period of
calibration, wherein the model outcomes and general behavior are compared to a set of experimental outcomes across time to
identify the best fit. Here, we have provided a protocol, called CaliPro, for calibrating complex biological models. This begins with
Step 1: Inputs. Several inputs including the experimental data, the model itself, and the model parameters—given as a range of
initial values for each parameter. Step 2: Sampling. Here, we utilize an Latin Hypercube Sampling (LHS) scheme (see Ref. 34 for an
in-depth review of LHS and uncertainty/sensitivity analysis) where each parameter is sampled uniformly or normally, but sampling
could be performed using any sampling scheme (Sobol sampling, Monte Carlo, etc.). Step 3: Model Evaluation. At this stage in the
calibration process, the modeler will execute the model for each of the parameter combinations created via sampling parameter
space, and begin to evaluate the model by comparing it to the experimental data. If the form of the experimental data can be
approximated by a likelihood, or the modeler is comfortable assigning a distribution to the experimental data, they should proceed
with Bayesian calibration approaches such as Sample Importance Resampling, approximate Bayesian computing or other
techniques. However, if the modeler cannot distinguish a distribution for experimental datasets, or if that distribution is uniform at
each timepoint, then we suggest narrowing the parameter space via our CaliPro techniques. Still as part of the model evaluation in
step 3, the modeler chooses a pass set definition (Supplementary Material: Box 1) to identify a subset of model simulations that
they consider the pass run set (blue simulation lines). All other runs constitute the fail run set (red simulation lines). Step 4:
Redefine Parameter Space. Transitioning from evaluating the model, the modeler creates two density plots for each parameter, one
for the pass parameter set and the other for the fail parameter set (blue, red lines density plot lines, respectively) across the original
parameter range (the x-axis) for each parameter. Like any other density plot, the y-axis represents the probability density function.
If a modeler prefers, the y-axis could be transformed to become a percentage (normalized from 0 to 100). The modeler then narrows
the parameter ranges using either Highest Density Region (HDR) or Alternative Density Subtraction (ADS) selection (see more on
these approaches in methods). Each parameter will be sampled again from this new parameter subrange (purple bounded region
identified on the x-axis) at Step 2 in an iterative fashion. Steps 2—4 are repeated until the termination criteria (Supplementary
Material: Box 1) has been met. At this point, the modeler has a well-calibrated model.

Alternative Density Subtraction to Identify Parameter
Subranges

Another option for narrowing the initial parameter
range of each parameter is Alternative Density Sub-
traction (ADS). ADS leverages information from the
probability density of both the pass parameter set and

fail parameter set across each parameter range. ADS is
defined by letting p(x) be the density function of the
pass parameter set for the random parameter X and by
letting d(x) be the density function of fail runs for the
same random parameter X. Then ADS is the subset of
the sample space of X such that {x: p(x) — d(x) > 0}.
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When used within the CaliPro pipeline (Step 4 in
Fig. 2), ADS refines parameter space by identifying
regions within each individual parameter range that
have a higher density of simulations that satisfy the
pass set definition than those that fail to satisfy the pass
set definition. If disjoint regions are identified, the
parameter range for the following iteration will be
bounded by the minimum value and the maximum
value across the disjoint regions.

Computational Platform

CaliPro can be implemented within any program-
ming language. In the examples we list below, we have
implemented CaliPro in R (version 3.5.3) and Matlab
(R2016) environments. R packages used include plyr,
dplyr and tidyr for data organizing and reformatting.
We used ggplot2 and scales for plotting and hdrcde to
identify highest density regions when that option was
exercised within CaliPro.

On our lab website (webpage address: http://malth
us.micro.med.umich.edu/CaliPro), we provide a
directory that includes all Matlab scripts for running a
fully automated version of CaliPro, including model
execution of the predator—prey model example de-
scribed below. We suggest modelers wishing to utilize
the CaliPro framework use these scripts as a starting
point for their own implementation. Additionally, all
equations are listed in the Supplementary Material.

RESULTS

To show how to apply CaliPro, we provide four
examples of model formulations with datasets for
calibration. We show that CaliPro is model agnostic
and works well for these types of model structures:
ordinary differential equations (ODEs) (deterministic,
continuous) and agent-based models (stochastic, dis-
crete). The number and type of experimental datasets
will likely differ for potential CaliPro users: therefore,
we also illustrate this diversity in our examples.

Example 1: CaliPro Finds Parameter Ranges That
Satisfy a Predator—Prey Test Problem

We first test CaliPro using a classic ODE system of
deterministic population dynamics: a predator—prey
(or Lotka-Volterra) model. The Lotka-Volterra model
is a two-equation model that was developed indepen-
dently by Lotka (1925) and Volterra (1926) to repre-
sent predator—prey interactions across time and has
been studied in thousands of papers since its first
publication.

The model has two state variables (H(¢) and L(z) as
a vector of values corresponding to each time point)
and several parameters that represent predator and
prey interactions across time. H(f) represents the
number of prey per time, L(¢) represents the number of
predators per time, o represents reproduction rate
constant of prey, f is the rate constant of predation, ¢
is the death rate of predators and ¢ is the reproduction
rate constant of predators:

dH

L = oH () - BH()L()
dL

5 = L0+ SH(OL(0)

At this point, a modeler could calibrate this model
to a single trend line for each of the two species using
traditional calibration techniques (e.g. least square
regression). However, we use this model to test whe-
ther CaliPro can identify a parameter space that sat-
isfies a range of experimental outcomes. For simplicity,
we built a small test problem using a synthetic experi-
mental dataset that has a range of outcome values at
each time point. To build this synthetic experimental
dataset, we selected a narrow range of values for each
of the four parameters in the model
(Table 1—synthetic data range). Then, we simulated
the model 500 times, sampling from this narrow
parameter space. The minimum and maximum value
of those 500 simulations for 21 timepoints are shown
as black data points in Fig. 3 and make-up our syn-
thetic experimental dataset. These synthetic experi-

TABLE 1. Initial Parameter Ranges and Calibrated Parameter Ranges for the predator—prey test case problem

Parameters Synthetic data range First iteration range CaliPro final range
Alpha 0.5-0.7 0.1-0.9 0.53-0.66
Beta 0.02-0.035 0.01-0.1 0.03-0.042
Sigma 0.6-0.9 0.1-0.99 0.7-0.88

Delta 0.02-0.03 0.001-0.1 0.02-0.027

For each of the four parameters, the first iteration range was assigned to be much larger than the range of parameters used to create the
synthetic dataset. Following five CaliPro iterations, the final sampling space was satisfactorily close to the synthetic data range, with 98% of
model realizations lying with the minimum and maximum bounds of experimental datasets.

BIOMEDICAL
ENGINEERING
SOCIETY


http://malthus.micro.med.umich.edu/CaliPro
http://malthus.micro.med.umich.edu/CaliPro

CaliPro: A Protocol for Calibrating Biological Models 37

x10°

First Iteration 2

L3
leoe838800,,.0828380000

0
x10*

20 0 5 10 15 20

Second Iteration

Third Iteration 1

= .
.
Fourth Iteration .o e o N
o .
00:. *esece *ecse
0 4 10 15 20 0 5 10 15 20
x10
10
.
* e
. .
Fifth Iteration 5 Taee R
oo ... ...a
0 X X4 *esece LR 2
0104 5 10 15 20 0 5 10 15 20
X
10
4 e
. .
Calibrated 5 Y LN
Sampling e 3 B
0 e *taele’  “ecse
0 5 10 15 20 0 5 10 15 20
Prey Predator

FIGURE 3. Example 1—predator—-prey model: CaliPro identifies best fit parameter space using HDR. Prey (blue) and predator
(gold) model simulation populations overlaid on synthetic experimental data (black data points) at each timepoint (minimum and
maximum values shown). Termination criteria: 90% of runs must belong to pass run set. Pass set definition: (Iterations 1 and 2)
Simulation values, at each timepoint, lie within the range bounded by two times the maximum experimental data point and half the
value of the minimum experimental data point for each species. (lterations 3-6) For each time point, the simulation value must fall
within the 1.25 times the maximum experimental data point and the value of the minimum experimental data point divided by 1.25
for both predator and prey. In the final iteration, 98% of the 500 simulations belong to the pass run set, exceeding our termination

criteria.

mental data points serve as the data for calibration
within this test-case CaliPro example.

Beginning with CaliPro to calibrate this model, we
sample from our initial parameter range: a larger range
of values for each parameter that encompass the
smaller range used to create the synthetic experimental
dataset (Table 1—first iteration range). Figure 3 (top
row) shows the predator (gold) and prey (blue) out-
comes following this initial sampling of parameter
space. As part of the CaliPro process, we define a
termination criterion that 90% of runs must belong to
pass run set. Additionally, we outline a pass set defi-
nition where simulation values must fall within ranges

bounded by two times the maximum experimental data
point and one-half of the value of the minimum
experimental data for both predator and prey popu-
lations for every time point. This pass set definition was
selected because it encapsulates the synthetic experi-
mental data while ensuring there are enough simula-
tions within the pass run set to inform the next
iteration. Altogether, a given model simulation must
satisfy each of those criteria (above the minimum, but
below the max for each of the 21 timepoints for each
species) in order to belong within the pass run set. If
even one simulation value does not reside within this
range for one time point in one species, the simulation
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is designated as part of the fail run set. Following
initial sampling, < 1% of the 500 model simulations
satisfy the pass set definition, so we narrow this
parameter space using the HDR method with a cov-
erage of 0.85 as described in ‘Methods’. The second
iteration in Fig. 3 reveals the results of sampling this
parameter space, wherein ~ 35% of runs are now
classified as part of pass run set.

Now, there may be modeling instances wherein the
termination criteria for CaliPro could be satisfied fol-
lowing the results of this second iteration, as the model
outcomes do capture the full spread of experimental
outcomes and generally capture the behavior of the
experimental data across both predator and prey
(Fig. 3, second iteration). However, the goal is to
identify a more refined parameter space for this test
problem as the range of outcomes is slightly too broad
for our satisfaction.

We continue using CaliPro via iteration, but refor-
mulate our pass set definition to be stricter than the
previous iterations (see Matlab files for automated
implementation at http://malthus.micro.med.umich.ed
u/CaliPro) since our pass parameter set is sufficiently
large. Now, we impose a new pass set definition speci-
fying a narrower range for both predators and prey for
every time point. We use HDR again to narrow the
parameter space following iteration 2 and resample
this space 500 times. Following the third iteration,
16% of the 500 model simulations satisfy the new pass
set definition. We narrow and resample parameter
space three more times before our termination criteria
is met (see Fig. 3). Out of 500 total model simulations
at the final iteration, 98% of model simulations belong
to the pass run set. Figure 3 shows model outcomes
against the synthetic experimental dataset; and Fig. 4
displays the iterative refining of the parameter space
for each parameter in this model. We display the pass
and fail parameter density plots for each parameter at
each iteration in Fig. 4. These parameter density plots
reveal where, across the range of sampled values, the
majority of simulations did or did not satisfy the pass
set definition. For example, in the initial sampling of
the ¢ parameter range in column 4 of Fig. 4, the runs
that satisfy the pass set definition clearly reside along
the region bounded between 0 and 0.04. Through
iteratively defining the next parameter range for sam-
pling (the purple range band along a portion of the x-
axis on each subplot in Fig. 4), we satisfy our termi-
nation criterion that 90% of the runs satisfy the pass
set definition by iteration 6. CaliPro is able to find a
range of values for each parameter that satisfies our
test problem of relatively simple predatory—prey
dynamics (Table 1).
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Example 2: CaliPro Identifies Parameter Ranges
for ODE Granuloma Lesion Model within Non-human
Primate Lung

For a larger example, we apply CaliPro to a system
of 16 non-linear ODEs (see Supplementary Material)
that capture bacterial, T cell, macrophage and cytokine
dynamics within a single granuloma lesion that forms
within a non-human primate (NHP) lung as an im-
mune response to infection with Mycobacterium
tuberculosis.°" As a roughly spherical mass of immune
cells acting to contain bacteria to a local region within
the lung, the granuloma is typically a few millimeters in
size and is the hallmark of tuberculosis. We use Cali-
Pro to explore parameter space of this more detailed
non-linear ODE model with 108 parameters and
identify parameter ranges that replicate NHP single
granuloma experimental datasets.

Unlike Example 1 above, in this example we cali-
brate this system of ODEs to three separate experi-
mental datasets, rather than a synthetic dataset, shown
as orange data points across time in Fig. 5. There are
628 data points in the bacterial burden dataset and 26
data points in the T cell and macrophage dataset. Each
separate data point represents experimental data gen-
erated on outcomes from an individual NHP granu-
loma. Thus, while these datasets are not strictly
temporal in nature, since the data are gathered at the
time of NHP necropsy, the outcomes taken together
can be treated as a single dataset, although it is a
collection of data.

We begin the CaliPro process on this system by
defining our initial parameter range of values for 80 of
the 108 parameters in the model. We determined initial
parameter ranges by examining experimental values
from literature as well as other previous mod-
els,!3:14:20:24.35.56.60.63.64 14 jg important to note that
values of some parameters were fairly well-constrained
(e.g. extensive data in the literature gives rates of
bacterial killing) while others are less so. The remain-
ing 28 parameters are death or decay rates, ratios or
weights for scaling, or other parameters that are con-
strained by the biology and are therefore not varied.
We specify the pass set definition such that the simu-
lations must fall within the range bounded by an order
of magnitude on either side of the minimum and
maximum experimental data point for every time point
across each of the three experimental outcomes. The
experimental data range includes over four orders of
magnitude, therefore our pass set definition was se-
lected because it encapsulates the general behavior of
the experimental datasets we are using for calibration,
and will not remove simulations that are within the
same order of magnitude as experimental data points.
Additionally, we know that the long-term behavior of
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FIGURE 4. Example 1—parameter density plots at each CaliPro iteration. The density plots for pass (blue) and fail (red) parameter
sets are shown for each parameter (columns) and at each iteration (rows). Ranges along the x-axis where the pass parameter
density is larger than the fail parameter density suggest regions in parameter space where simulations are more likely to satisfy the
pass set definition. The purple range band along the x-axis of each density plot denotes the region of parameter space identified by
HDR (HDR coverage set at 0.85) that will become the parameter range for sampling in the next iteration. 6th iteration is not shown
as sampling from the purple band along the x-axis in the fifth iteration results in a calibrated parameter space.

bacterial numbers in granulomas is fairly stable with- Example 3: CaliPro Identifies Continuous Parameter
out intervention,’® *? so we set an upper bound at Space for a Transmission Model of Infectious Disease
36,000 bacteria for days 90-200. If the simulation value without Assigning Likelihoods or Informative Priors

for bacterial numbers eclipses this bound within those
days, the simulation is immediately assigned as part of
the fail run set. We sample this initial parameter space
to create 500 model simulations and show the simu-
lation outcomes overlaid with experimental data
(Fig. 5). Of this sampling, only 6.8% of the runs satisfy
the pass set definition. We then use ADS to narrow the
parameter space and resample, finding that 46.8% of
the runs satisfy the pass set definition during the second
iteration. We iterate this process until the final itera-
tion yields 91% of the total model runs belong to the
pass run set, which is above our termination criterion
of 75%. Additionally, the simulation outcomes are
consistent with other information about this biological
system: we know that bacterial levels of individual
granulomas should peak prior to day 50, and should
stabilize after day 100, whereas T cell and macrophage
cell numbers should increase until they stabilize or
drop around day 75.>* Thus, CaliPro is able to
simultaneously calibrate a complex, non-linear ODE
system to a series of diverse experimental outcomes
and calibration goals.

In a review of Bayesian calibration approaches,
Menzies et al.*® present an ODE model of a generic
sexually-transmitted disease that includes six state
variables, representing non-susceptible, susceptible,
early diseased, late diseased, treated, and dead popu-
lations. Eleven parameters govern the rates of trans-
mission between these populations, and the model is
evaluated for 30 years. See Menzies et al. for a model
schematic and further model details.*® The equations
for this model are available in Supplementary Mate-
rial.

Additionally, the authors present three sets of
“calibration targets”, or experimental datasets that are
used to calibrate the model—disease prevalence,
treatment volume, and average survival in years.
Menzies et al. assign functions to approximate likeli-
hoods of modeled outcomes to the original datasets
and use an SIR technique to probe parameter space
and calibrate the model to these targets (calibration
technique and results recreated herein—Fig. 6a).
However, as Menzies et al. point out, care must be
taken when deciding to approximate likelihoods, de-
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FIGURE 5. Example 2—Single Granuloma ODE: CaliPro identifies calibrated parameter space using ADS. 500 model simulations
are shown (blue lines) overlaid on experimental data (orange data points) for bacterial numbers (Bacterial Burden), total numbers
of CD3+ T cells and total numbers of macrophages. The 5th, 50th, and 95th percentiles of model simulations are shown as black
lines. Termination criteria: 75% of runs must belong to pass run set. Pass set definition: (all lterations) Simulation values, at each
timepoint, lie within the range bounded by an order of magnitude above the maximum experimental data point and an order of
magnitude below the value of the minimum experimental data point for each experimental dataset. Additionally, for days 90-200,
the simulation value for bacterial numbers cannot eclipse 36,000. In the final iteration, 91% of the 500 simulations belong to the

pass run set, exceeding our termination criteria.

fine summary statistics, or assign distributions to
experimental outcomes.*® Additionally, we suggest
that any approximations or estimations derived from
low sample sizes may introduce unnecessary assump-
tions into the calibration process.

Therefore, in this example, we use CaliPro to cali-
brate their ODE model to the same calibration targets,
but do not impose likelihoods nor assume any prior
known distributions of the experimental datasets.
Unlike Menzies et al., and in an effort to further test
CaliPro, we set our initial parameter range to create a
parameter space that is uninformative—we uniformly
sampled each of the seven varied parameters according
to an LHS scheme. These initial parameter ranges were
assigned to the widest values that Menzies et al. se-
lected when they sampled with normal (or beta)
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parameter distributions. We generated 500,000 sam-
ples within this uninformative parameter space.

Of these samples, we outline a pass set definition as
simulations that include average survival, treatment
volume, and disease prevalence outcomes within the
range bounded by 75% of the minimum and 125% of
the maximum experimental data point for every
experimental time point across each of the three out-
comes. This pass set definition was selected because it
encapsulates the general behavior of the calibration
targets. Following each iteration, we refine parameter
space by defining the new parameter ranges for each
parameter using HDR with a coverage of 0.75 of the
density created by the pass parameter set. After the
first iteration, subsequent samplings generated 10,000
simulations (fewer samples were necessary to identify
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FIGURE 6. Example 3—disease transmission: SIR and CaliPro calibrations. (a) We recreated the results of Menzies et al.® by
using SIR to calibrate the ODE transmission model (individual model simulations shown as green lines and median trend line
shown in black) to three experimental outcomes: disease prevalence, average survival (in years), and treatment volume. The
average survival graph also shows the posterior distribution of average survival across all the parameter combinations.
Experimental data are shown as black data points. (b) Model simulation and experimental outcomes following CaliPro using HDR.
The 5th—-95th percentile is represented by the blue region (50th percentile—dark blue line). Termination criteria: 75% of runs must
belong to pass run set. Pass set definition: (iterations 1-3) For each time point, simulation values lie within 1.25 times the
maximum experimental data point and 0.75 times the value of the minimum experimental data point for all calibration targets.
(Iteration 4) Changed the lower bound of pass set definition to be an exact match to the experimental data at each timepoint.

the pass run set). Following the third iteration, the
distribution of the pass parameter set was trending
toward the minimum values of the calibration target
data for average survival time. Thus, we adjusted the
lower bound of our pass set definition to be an exact
match to the experimental data at each timepoint for
the fourth iteration. After four iterations, 97% of
model simulations satisfy the parameter set definition.
Figure 6 shows the 95% confidence interval and
median line of all the simulations in the calibrated

parameter space. CaliPro is able to calibrate this model
to the calibration targets outlined by Menzies et al.
despite an uninformative prior and without assigning a
likelihood function to the datasets. We propose that
CaliPro is a useful calibration tool for a situation
where the modeler is unable to assign priors or likeli-
hoods (e.g. small sample sizes).
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Example 4: CaliPro Successfully Calibrates Stochastic
Models: Using an Agent-Based Model of Granuloma
Outcomes as an Example

While CaliPro displays a promising ability to iden-
tify robust parameter space for ODE models of vary-
ing complexity, stochastic models are notoriously
difficult to calibrate.®® We posit that CaliPro is
agnostic to model formulation and therefore unboth-
ered by new complexities that stochastic models raise
in traditional calibration settings. Thus, we apply Ca-
liPro to a stochastic agent-based model of granuloma
formation, GranSim.

GranSim is a two-dimensional hybrid agent-based
model of granuloma formation during Mycobacterium
tuberculosis infection. GranSim captures the environ-
mental, cellular, and bacterial dynamics at the site of
infection across molecular, cellular, and tissue-scale
events. The spatial environment of this model is a 4
mm by 4 mm section of lung tissue. Agents (cells)
populate this environment and constitute various im-
mune cells as well as bacteria. The cells interact with
one another across time according to rules that dictate
movement, speed, proliferation, and change of phe-
notype. Chemokines and cytokines also exist on the
lattice, but are represented as continuous values in-
stead of individual agents, making the model a hybrid
formulation. As an established model, GranSim has
been modified and calibrated across 15 years exten-
sively to data from the NHP model of tuberculo-
sis!?14:20-36.37.53.60.64 4 4 see GranSim website for more
details:  http://malthus.micro.med.umich.edu/GranSi
m). Herein, we present a single calibration effort of
this model using CaliPro.

Our data for single granuloma formation is the
same as the experimental data we used to calibrate the
granuloma ODE model (example 2). However, for this
calibration, we use bacterial numbers as the primary
measure to sort pass and fail simulations, then use the
immune response metrics (T cell and macrophage
counts) and visual confirmation of granuloma forma-
tion (via agent-based model snapshots) as validation
measures. This adds a new spatial criterion that must
be met in addition to the temporal dataset criteria.

For comparison, we select the initial parameter
ranges to be the same as a previous manual calibration
effort performed in the lab—where 52 of 131 parame-
ters in GranSim are varied within reasonable bounds
according to values from literature and previous ver-
sions of the model.'>1%%-¢* We sampled this parameter
space 1000 times according to an LHS scheme with
three replicates each to create 3000 unique in silico
granulomas (Fig. 7). For the first iteration, we speci-
fied the pass set definition to include simulations where
total bacterial numbers in the simulation were less than
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the maximum experimental value (36000) at day 85.
This pass set definition was selected because we wanted
to isolate the simulations whose bacterial values
decreased after peaking near day 40. After the first
iteration, 62% of the runs satisfy the pass set definition.
We refine the parameter space using the ADS method
and resample to create another set of 3000 granulomas.
At iteration 2, we redefined our pass set definition so
that simulations must have less than 10* bacteria at
day 175—an additional criterion that was implemented
so that simulation bacterial numbers remain
stable across time. Of the 3000 simulations, 67.5%
satisfy this new pass set definition. Again, we refined
the parameter space using ADS, and resampled.
However, this time 83% of simulations satisfy the pass
set definition, eclipsing our preset termination criteria
of 75%. As a validation step, we checked the immune
response of these calibrated simulations to ensure the
majority fell within the bounds created by the T cell
and macrophage experimental data (Fig. 7). NHP
granulomas have a distinct formation and, while there
is variation, there are generally well-accepted spatial
structures.'®* So, as a secondary validation step, we
manually inspected screenshots of the agent-based
model to ensure that they recapitulated known gran-
uloma spatial characteristics. This introduces modeler
bias, however, as with most experimental studies, these
kinds of assumptions and decisions are necessary. We
are currently working on a way to automate visual
discrimination of both simulated and experimental
granulomas. Thus, CaliPro is able to calibrate a com-
plex, stochastic and discrete hybrid model to a set of
diverse experimental outcomes, calibration goals, and
validation datasets.

DISCUSSION

Increasingly, mathematical and computational
models are utilized to interrogate complex biological
systems, provide context to understand interactions,
and make predictions. Model calibration is a crucial
step that ensures models reasonably portray biological
complexities in the real system and can thus make
reliable inferences or predictions of future system
state(s). However, traditional calibration approaches
are not always appropriate for complex biological
models due to one of two drawbacks: 1) many cali-
bration approaches minimize an objective function in
order to recapitulate only a single aspect of the
experimental data (such as a median trend) or 2)
Bayesian calibration techniques require specification of
parameter priors and likelihoods of experimental data
which cannot always be confidently assigned if there
are low numbers of experimental samples or if distri-
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FIGURE 7. Example 4—agent-based model: CaliPro finds calibrated parameter space using ADS. Model simulations (blue lines)
and experimental data (black data points representing total bacterial numbers, total Macrophage cell counts, and total CD3+ T cell
counts) across time in days. The 5th, 50th, and 95th percentiles of model simulations are shown as dark blue lines for the final
iteration. In simulations where bacterial burden sterilizes, the macrophage count drops below 10. Termination criteria: 75% of runs
must belong to pass run set. Pass set definition: (Ilteration 1) Simulations with total bacterial numbers less than the maximum
experimental value (36,000) at day 85. (lteration 2 and 3) Simulations with total bacterial numbers less than 10* at day 175.

butions across samples are indistinguishable. As such,
we have developed CaliPro, an iterative calibration
protocol that utilizes parameter density estimation to
refine model parameter spaces and to calibrate models
to temporal biological datasets.

By assigning model simulations to a pass or fail run
set upon each sampling of parameter space, CaliPro
provides an automated framework through which the
goals of calibration are clearly defined and standard-
ized. Further, as the definition of pass vs. fail is a user-
intensive step, the roles of both modelers’ expertise and
biologists’ intuitions are more explicitly integrated into
CaliPro. As such, specifying a pass set definition is
perhaps the most crucial step in CaliPro. However, it
can easily be defined by considering the accept-
able criteria under which the modeler might be satisfied
when calibration is considered complete. For example,

there may be multiple calibration goals, as we outlined
in Example 2, where model simulations must match the
general dynamics outlined by the three separate
experimental datasets. Additionally, by imposing an
upper-bound for bacterial numbers at later time
points, we explicitly integrated the intuition of the
biology into the calibration process. We believe that
CaliPro’s incorporation of explicit definitions of intu-
ition are an important contribution of this method that
is typically overlooked within other calibration pro-
cedures.

Relatedly, the modeler can toggle the pass set defi-
nition according to bounds defined by the datasets
available. If the datasets are sparse or are estimated
across a wide range of studies, then a modeler can
assign a pass set definition that is more lenient. Con-
versely, if a modeler is certain that datasets represent

BIOMEDICAL
ENGINEERING
SOCIETY



44 JOSLYN et al.

an absolute maximum or minimum value that could
ever be observed experimentally, then the modeler
should define a very strict adherence to dataset(s). Like
others,> we tend to subscribe to the notion that a
model likely captures more biological variability than
the heterogeneity observed from the naturally limited
sample sizes procured from experimental datasets.

If CaliPro fails to identify a robust calibrated
parameter space, the user should evaluate their input
prior to attempting other methods of calibration. Pri-
marily, we suggest evaluating the pass set definition.
This is a crucial step within CaliPro, and as our results
section shows, iteration successions do not require the
same pass set definition. In general, we have found the
number of CaliPro iterations should have an inverse
relationship with the leniency of the pass set definition.
Thus, the pass set definition should become more
strictly aligned with the experimental datasets as Ca-
liPro progresses through iterations.

The method of refining the model parameter space is
another user input that can dictate the success of cal-
ibration. HDR more quickly narrows parameter space
between iterations. If the range of experimental data is
very narrow, HDR may be the correct choice (such as
the predator—prey model and transmission ODE model
examples). However, if the range of experimental data
varies greatly within one time point, ADS might be the
more appropriate choice. In general, we suggest that
modelers use ADS as this method accounts for infor-
mation from all aspects of parameter space (pass and
fail sets) whereas HDR only includes information from
a subset of space (only pass sets).

While we have shown that CaliPro works for both
stochastic and deterministic models, CaliPro may not
be the correct approach for every calibration situation.
For example, there is a vast literature of calibration
solutions targeted at recapitulating just one dynamic in
a mathematically rigorous manner. Further, CaliPro is
only able to identify a parameter space where system
outcomes recapitulate the dynamics of the experi-
mental dataset. In the predator—prey model (Example
1), it is well-known that the system can exhibit chaotic
behavior.”® However, because the synthetic experi-
mental dataset for that example does not exhibit this
chaotic behavior, CaliPro does not identify a param-
eter space that captures that system behavior. More
generally, when applying CaliPro to any modeling
system, CaliPro is unlikely to find behavior that exists
outside the ranges of calibration datasets, and thus
may “‘miss” potentially interesting behaviors that
could be predictions of the model for other parameter
ranges.
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Additionally, if the modeler is comfortable specify-
ing likelihood functions to relate the model and
experimental datasets in-hand, we suggest employing
one of the suites of Bayesian calibration approaches,
such as SIR. Further, in our experience, calibrating
agent-based models that exhibit oscillations (such as
agent-based models of predator—prey dynamics) with
CaliPro is a difficult task. Identifying the pass run set
in such a situation is complicated as the timing of the
oscillations may differ between model simulation and
experimental data, resulting in a failed run even when
frequency and peak-to-trough values of simulations
and experiments are identical. For agent-based models
that exhibit oscillations, one could perform a Fourier
transform on simulation outcomes and compare to
experimental data within the frequency domain to
evaluate the model as one solution.

In addition to enabling models to reasonably
approximate biological processes, we believe a great
strength of CaliPro is the potential to extend beyond
the calibration protocol itself. In particular, the
parameter density plots (as we showed in Fig. 4) that
are created for the pass and fail parameter sets within
every iteration provide a large amount of information
to the modeler. In general, we advise using the
parameter density plots as a quick and easy method to
identify and focus on certain behavior in the model.
For example, if a subset of runs exhibit interesting
behavior near the end of a simulation, the modeler can
consider this subset the pass run set and then compare
the parameter densities of the pass parameter set to
those of the fail parameter set—those that do not ex-
hibit the behavior. Moreover, after the final iteration,
when the model has been calibrated to the experi-
mental datasets, a modeler could use the parameter
density plots (Fig. 4) in order to identify the ideal prior
distribution of each parameter (instead of uniform or
normal) for future model simulations. Finally, beyond
the scope of this paper—but an important considera-
tion for any calibration or modeling process—we be-
lieve the parameter density plots offer a possible
method for identifying highly correlated parameters by
isolating parameters whose density plots are near
identical across model behavior (see Reference ° for
an excellent framework to address parameter identifi-
ability).
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