
Original Article J Epidemiol 2021;31(3):172-179

Differential Effect of Polymorphisms on Body Mass Index Across
the Life Course of Japanese: The Japan Multi-Institutional
Collaborative Cohort Study
Madoka Iwase1,2, Keitaro Matsuo1,3, Masahiro Nakatochi4, Isao Oze1, Hidemi Ito5,6, Yuriko Koyanagi5,
Tomotaka Ugai1, Yumiko Kasugai1, Asahi Hishida7, Kenji Takeuchi7, Rieko Okada7, Yoko Kubo7,
Chisato Shimanoe8, Keitaro Tanaka9, Hiroaki Ikezaki10, Masayuki Murata10, Toshiro Takezaki11,
Daisaku Nishimoto12, Nagato Kuriyama13, Etsuko Ozaki13, Sadao Suzuki14, Miki Watanabe14, Haruo Mikami15,
Yohko Nakamura15, Hirokazu Uemura16, Sakurako Katsuura-Kamano16, Kiyonori Kuriki17, Yoshikuni Kita18,
Naoyuki Takashima19, Masato Nagino2, Yukihide Momozawa20, Michiaki Kubo21, and Kenji Wakai6

1Division of Cancer Epidemiology and Prevention, Aichi Cancer Center Research Institute, Nagoya, Japan
2Department of Surgical Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
3Division of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
4Department of Nursing, Nagoya University Graduate School of Medicine, Nagoya, Japan
5Division of Cancer Information and Control, Aichi Cancer Center Research Institute, Nagoya, Japan
6Division of Descriptive Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
7Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
8Clinical Research Center, Saga University Hospital, Saga, Japan
9Department of Preventive Medicine, Faculty of Medicine, Saga University, Saga, Japan
10Department of General Internal Medicine, Kyushu University Hospital, Fukuoka, Japan
11Department of International Island and Community Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
12School of Health Sciences, Faculty of Medicine, Kagoshima University, Kagoshima, Japan
13Department of Epidemiology for Community Health and Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
14Department of Public Health, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
15Cancer Prevention Center, Chiba Cancer Center Research Institute, Chiba, Japan
16Department of Preventive Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
17Laboratory of Public Health, University of Shizuoka, Shizuoka, Japan
18Faculty of Nursing Science, Tsuruga Nursing University, Fukui, Japan
19Department of Public Health, Faculty of Medicine, Kindai University, Osaka, Japan
20Laboratory for Genotyping Development, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
21RIKEN Center for Integrative Medical Sciences, Yokohama, Japan

Received November 7, 2019; accepted February 24, 2020; released online March 7, 2020

ABSTRACT

Background: Obesity is a reported risk factor for various health problems. Genome-wide association studies (GWASs) have
identified numerous independent loci associated with body mass index (BMI). However, most of these have been focused on
Europeans, and little evidence is available on the genetic effects across the life course of other ethnicities.

Methods: We conducted a cross-sectional study to examine the associations of 282 GWAS-identified single nucleotide
polymorphisms with three BMI-related traits, current BMI, BMI at 20 years old (BMI at 20), and change in BMI (BMI change),
among 11,586 Japanese individuals enrolled in the Japan Multi-Institutional Collaborative Cohort study. Associations were
examined using multivariable linear regression models.

Results: We found a significant association (P < 0.05=282 = 1.77 × 10−4) between BMI and 11 polymorphisms in or near FTO,
BDNF, TMEM18, HS6ST3, and BORCS7. The trend was similar between current BMI and BMI change, but differed from that
of the BMI at 20. Among the significant variants, those on FTO were associated with all BMI traits, whereas those on TMEM18
and HS6SR3 were only associated with BMI at 20. The association of FTO loci with BMI remained, even after additional
adjustment for dietary energy intake.

Conclusions: Previously reported BMI-associated loci discovered in Europeans were also identified in the Japanese population.
Additionally, our results suggest that the effects of each loci on BMI may vary across the life course and that this variation may
be caused by the differential effects of individual genes on BMI via different pathways.
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INTRODUCTION

Obesity is a known risk factor for various diseases1–3 and has
increased globally in recent decades. Studies in twins and families
suggest the existence of genetic factors for obesity.4–7 In recent
years, genome-wide association studies (GWASs) have identified
genes for common traits and enabled the identification of
numerous obesity-related genetic variants.8–11 Among obesity-
related traits, body mass index (BMI) is a well-established
measure for evaluating obesity,12,13 and BMI-associated GWASs
have reported a substantial number of related polymorphisms.
Among these studies, the largest population meta-analysis study
included 339,224 individuals and identified 97 BMI-associated
loci.14

One recent GWAS conducted in a Japanese population using
data from the BioBank Japan (BBJ) project reported 112 new
BMI-associated loci15 and indicated genetic differences between
European and East Asians. Apart from this study, however,
most GWASs have been conducted in participants of European
ancestry, and findings in non-Europeans are not currently
sufficient.16,17 In addition, not only does BMI vary among
ethnicities, but it also changes over the life course. For example,
weight changes markedly in adulthood, and weight gain in early
to middle adulthood is common.18,19 Numerous BMI-associated
GWASs have been conducted using BMI determined at a single
point in a person’s life, and it remains unclear at what age BMI
is most likely to be affected by genetic variants or how these
variants affect weight gain.

Therefore, the aims of this study were to identify BMI-
associated loci in the Japanese population and to investigate how
genetic factors affect BMI through the life course.

METHODS

Study population
The study was conducted using data from the Japan Multi-
Institutional Collaborative Cohort (J-MICC) Study. Details of
the J-MICC study have been described elsewhere.20 Briefly, the
J-MICC study was launched in 2005 to investigate gene-
environment interactions of lifestyle-related diseases. The subjects
of the present study were volunteers aged 35 to 69 years who
provided blood samples and information on their lifestyle via
a questionnaire. The J-MICC study had recruited 102,145
participants by June 2018. Written informed consent was obtained
from all participants. A total of 14,539 participants were randomly
selected to be genotyped from a total of 47,163 participants
from the 12 original participating sites: Aichi, Chiba, Fukuoka,
Kagoshima, KOPS, Kyoto, Okazaki, Sakuragaoka, Saga,
Shizuoka-Daiko, Takashima, and Tokushima. Genotyping was
performed at the RIKEN Center for Integrative Medicine using
a HumanOmniExpressExome-8 v1.2 BeadChip array (Illumina
Inc., San Diego, CA, USA). Quality control (QC; described
below) was conducted for the remaining 14,539 participants, and
422 participants whose genotyping data did not meet the QC filters
were excluded. Among the remaining 14,091 participants, 32 were
excluded due to a lack of questionnaire data.

In addition, participants were excluded from the study if they
had missing or extreme values for self-reported weight at baseline
(<30 kg), weight at age 20 (<30 kg), height (<130 cm), and
current BMI (>60) and BMI at 20 (>60) (n = 413). Patients with
cancer at baseline were also excluded from the analysis

(n = 2,114). Fifty-four patients with both being outlier and
cancer were included in these numbers, so a total of 2,473
participants were excluded. The remaining 11,586 subjects were
analyzed (eFigure 1).

Quality control and genotype imputation
Participants with inconsistent baseline information on sex
between the questionnaire and genotyping results were excluded
(n = 26). The identity-by-descent method implemented in PLINK
software21,22 identified 388 close relationship pairs (pi-hat
>0.1875); one sample of each pair was excluded. According to
principal component analysis with the 1000 Genomes reference
panel (phase 3),23 34 subjects with non-Japanese ancestry were
detected and excluded.24 The remaining samples met the sample-
size genotype call rate criterion (≥0.99). Single nucleotide
polymorphisms (SNPs) with genotype call rate <0.98, a Hardy-
Weinberg equilibrium extract test P-value <1 × 10−6, a minor
allele frequency of <0.01, or a departure from the allele frequency
computed from the 1000 Genomes Project phase 3 EAS samples
were removed. Non-autosomal SNPs were also removed. This
QC filtering left 14,091 individuals. Genotype imputation was
performed using SHAPIT225 and Minimac326 software based on
the 1000 Genomes reference panel (phase 3). After genotype
imputation, we excluded variants with an imputation quality score
r2 < 0.3, resulting in 12 617 547 variants (J-MICC data set
ver. 20180111).

Definition of BMI
BMI was calculated by dividing body weight in kilograms by the
square of height in meters. We examined three BMI traits: (i)
current BMI, defined as the BMI calculated based on the self-
reported current weight and current height; (ii) BMI at 20, defined
as the BMI calculated based on the self-reported weight at 20
years old and current height; and (iii) BMI change (per year),
defined as (current BMI − BMI at 20)=(age − 20).

Measurement of lifestyle factors
Lifestyle factors, including smoking status and dietary intake, and
medical information were evaluated using a self-administered
questionnaire. Information on dietary intake of total energy was
estimated using a food frequency questionnaire containing 47
food items27 based on the Standard Tables of Food Composition
in Japan.28

SNP selection
We selected BMI-associated SNPs based on a previous Japanese
study and GWAS catalog.29 First, we selected SNPs shown to be
associated with BMI in a previous BBJ study that included
Japanese-specific loci.15 We extracted loci in both trans-ethnic
and Japanese specific, which are total of 261 significant loci
reported by the BBJ study as the first group. Among these, SNPs
on the X chromosome (n = 5) were excluded. Second, we
selected 35 SNPs reported to be associated with “childhood body
mass index” using the GWAS catalog29 as the second group.
Third, we selected 45 SNPs reported to be associated with
“longitudinal BMI measurement” in the GWAS catalog29 as the
third group. Because 10 SNPs were duplicated in two or more
groups, the total number of extracted SNPs was actually 326. We
excluded SNPs with no available genotyping information in our
J-MICC database (n = 10) and additionally excluded SNPs with
a MAF less than 5% (n = 34), leaving 282 loci for analysis
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(eFigure 2, eTable 1, and eTable 2). Linkage disequilibrium
(LD) was evaluated between SNPs on the same chromosome
that showed a significant association with BMI by using both
LDlink30 based on 1000 Genomes Project phase 3 (JPT) and our
dataset. We defined two loci are in LD when R2 is above 0.80.

Statistical analysis
The relationship between each BMI-related phenotype and SNPs
was analyzed using a crude and multivariable linear regression
model to calculate the regression coefficient (β) and to evaluate
the significance of the association (P-value). The adjusted model
adjusted for age at baseline (continuous), age-squared (continu-
ous), sex (men or women), birth year (continuous), and first five
principal components (PCs) (continuous) in current BMI; sex,
birth year, and five PCs in BMI at 20; age, age-squared, sex, birth
year, first five PCs, and BMI at 20 in BMI change. At this level,
we screened SNPs based on threshold P-values. Next, to evaluate
the robustness of the association with the selected SNPs, we
conducted a sex-stratified analysis and never-smokers only
analysis. We also assessed heterogeneity among sex. To examine
the potential effect of dietary energy intake on current BMI, we
added total dietary energy intake to the adjusted model. Energy
intake was defined as the individual total dietary energy intake
divided by current weight.

All statistical analyses were conducted using Stata version 15.1
software (Stata Corp., College Station, TX, USA). P-values in
both main analysis and stratified analyses were considered
statistically significant at P < (0.05=282 = 1.77 × 10−4) follow-
ing Bonferroni correction. We considered P-value <0.05 as
significant only in assessing heterogeneity among sex.

Heritability analysis for each of three BMI phenotypes
was performed with the use of genomic restricted maximum
likelihood (GREML) method implemented in GCTA software.31

The analysis estimates the percentage of phenotypic variance
explained by common SNPs. To estimate the heritability, we used
the data set comprising the 11,586 subjects (5,169 males and
6,417 females) adopted for the association analysis as well as
the 570,162 directly genotyped SNPs used for imputation. The
phenotypic values for current BMI were adjusted for age at
baseline, age-squared, birth year, sex, and first five principal
components. The phenotypic values for BMI at 20 were adjusted
for birth year, sex, and first five principal components. We
applied two types of model to estimate the heritability of BMI
change. The covariates in model 1 comprised age at baseline,
age-squared, birth year, sex, and first five principal components.
The covariates in model 2 included those of model 1 as well as
BMI and BMI at 20. The estimation of the heritability was
also performed using male and female subjects, separately. To
estimate the genetic correlations among three BMI phenotypes,
bivariate GREML32 was conducted using GCTA software. The
estimate of heritability by GCTA is composed of two steps. At
first, the genetic relationship matrix (GRM) between pairs
of individuals was estimated from a set of SNPs using the
GCTA option “--make-grm --thread-num 40”. This process is
computationally intensive, so the process was performed by
multi-thread computing with 40 CPU cores. Next, the heritability
was estimated using the estimated GRM and the GCTA option
“--reml”. We calculated the genetic correlations employing the
same data sets, which were used to estimate the heritability. The
genetic correlation was calculated using the same GRM and the
GCTA option “--reml-bivar”. The phenotypic values for each of
current BMI and BMI change were adjusted for age at baseline,
age-squared, birth year, sex, and first five principal components.
The phenotypic values for BMI at 20 were adjusted for birth year,
sex, and first five principal components.

RESULTS

The baseline characteristics of the study subjects are shown in
Table 1. All participants were Japanese and the 12 study sites
were widely distributed throughout the western part of Japan. The
study comprised 5,169 men (44.6%) and 6,421 women (55.4%),
with an average age of 54.1 years. The averages of respective
BMI phenotypes were as follows: 23.1 kg=m2 in current BMI,
20.9 kg=m2 in BMI at 20, and 0.069 kg=m2=year in BMI change.

Among the 282 candidate loci, we identified a total of 11 SNPs
with a statistically significant association with one or more BMI
phenotypes in the adjusted analyses after applying the Bonferroni
threshold. Table 2 shows the allele frequency of the significant
SNPs and β estimates for the association with BMI. Among
these loci, which were located near transmembrane protein 18
(TMEM18) (rs939584, rs13021737, and rs4854349), in brain-
derived neurotrophic factor (BDNF ) (rs11030100, rs6265, and
rs11030104), and fat mass and obesity-associated gene (FTO)
(rs1421085, rs11642015, rs1559302) showed LD with R2 ≥ 0.90

Table 1. Baseline characteristics of study subjects

Number of subjects 11,586

Age, years, mean (SD) 54 (9.4)

Sex, n (%)
Male 5,169 (44.6)
Female 6,417 (55.4)

Smoking status, n (%)
Never smoker 6,865 (59.3)
Ever smoker

Former smoker 2,331 (20.1)
Current smoker 2,382 (20.6)

Unknown 8 (0.1)

Area, n (%)
Chiba 845 (7.3)
Aichi Cancer Center 695 (6.0)
Okazaki 956 (8.3)
Shizuoka+Daiko 1,883 (16.3)
Takashima 457 (3.9)
Kyoto 958 (8.3)
Fukuoka 715 (6.2)
Saga 1,753 (15.1)
Kagoshima 1,085 (9.4)
Tokushima 641 (5.5)
KOPS 1,112 (9.6)
Shizuoka=Sakuragaoka 490 (4.2)

Birth year, mean (SD) 1,953 (10.1)

BMI phenotype, kg=m2, mean (SD)
Current BMI 23.1 (3.3)
BMI at 20 20.9 (2.4)
BMI change 0.069 (0.098)

BMI, body mass index; KOPS, Kyusyu Okinawa Population Study; SD,
standard deviation.
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in both our dataset and LDlink (one locus on chromosome 16
(rs1559302) was not available in LDlink). In the non-stratified
adjusted model, there was a significant association of 7 loci
identified in the current BMI, 6 identified in the BMI at 20, and 6
identified in the BMI change. The allele frequency at each locus
was consistent with that in the Japanese population in the 1000
Genome project (phase 3) database.33 Loci located in FTO were
significantly associated with all BMI phenotypes, while loci
located near TMEM18 and HS6ST3 were only associated with
BMI at 20. Loci near TMEM18 and in BDNF were inversely
associated, and loci in or near the remaining genes showed a
positive association with each of the BMI phenotypes. Figure 1
shows the Manhattan plots for each BMI phenotype. We failed to
identify any of the newly identified loci reported in a previous
Japanese study among the significant SNPs in our adjusted
models.15

In sex-stratified analysis, several loci showed sex-specific
association between BMI and genotype, but they did not show
any heterogeneity in the 11 significant SNPs (eTable 3). In
addition, to eliminate the disease-related weight change which
derived from diabetes, we performed same analysis as original in
current BMI with excluding participants with history of diabetes
mellitus. The tendency of association between current BMI and
significant SNPs were similar even after excluding those with
diabetes (eTable 4). Given that smoking behavior has a strong
effect on body weight,34–36 we conducted an analysis that focused
on never smokers. In these subjects, the significant SNPs were
similar to those in the adjusted models for the entire population
(Table 3). We also examined the effect of food intake by
adjusting for energy intake in the analysis of 7 significant loci
(located in 3 genes) identified in the current BMI. After adjusting
for energy intake, polymorphisms in FTO remained significant
SNPs (Table 4).

To further examine potential heterogeneity of susceptibility
loci across multiple BMI-related traits, we estimated the
heritability of each BMI phenotype (Table 5). In all participants,
the heritability was 27.2% in current BMI, and 21.6% in BMI at
20. Of note, the estimated heritability was quite different between
sex especially in current BMI (male: 42.2% vs female: 25.9%),
and the proportion of effects of genetic factor in male were clearly
changed from BMI at 20 to current BMI, but more stable in
females than males. In addition, the pair-wise genetic correlation
analysis among three BMI-related traits showed that current BMI
and BMI change had higher correlation (75.7%) in contrast to
BMI at 20 and BMI change (13.0%) (Table 5).

DISCUSSION

Our cross-sectional study within a prospective cohort study in
a Japanese population showed that there was a significant
association between BMI traits and polymorphisms in or near
FTO, BDNF, TMEM18, HS6ST3, and BORCS7. All of these
significant loci or genes have previously been reported in other
ethnicities and are well-known BMI-associated polymor-
phisms.37–47 Our findings confirm the robustness of these
associations in the Japanese population. Among the three BMI-
related phenotypes examined in this study (current BMI, BMI at
20, and BMI change), the trend of association was similar in
current BMI and BMI change, but differed from that in the BMI
at 20. Interestingly, while FTO variants were associated with all
BMI traits, TMEM18 and HS6ST3 were only associated with BMITa
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at 20. Our results indicate that the effects of individual
polymorphisms on BMI may vary across the life course.

A few studies have identified heterogeneities in genetic effects
across age using both cross-sectional and longitudinal designs.

Given that FTO loci reportedly explain the majority of the inter-
individual variance among previously confirmed BMI-related
loci,41 several studies have focused on FTO variants to explore
the potential differential effects across the life course.48–51 One

Table 3. Eleven identified SNPs associated with any of the BMI phenotypes in never-smokers

SNP Chr.a
Position
(bp)a

REF=ALT Candidate gene(s)

Current BMI BMI at 20 BMI change

Adjustedd Adjustede Adjustedf

βb SE P-valuec βb SE P-valuec βb SE P-valuec

rs939584 2 621558 C=T LOC105373352, TMEM18 −0.287 0.088 1.03E-03 −0.246 0.065 1.60E-04 −0.006 0.003 3.12E-02
rs13021737 2 632348 A=G LOC105373352, TMEM18 −0.288 0.087 9.63E-04 −0.254 0.065 9.05E-05 −0.005 0.003 3.40E-02
rs3800229 6 108996963 G=T FOXO3 −0.254 0.063 5.96E-05 −0.087 0.047 6.37E-02 −0.006 0.002 1.25E-03
rs143665886 7 115368366 T=C SNORA25B, TFEC 0.037 0.053 4.85E-01 0.151 0.039 1.31E-04 −0.001 0.002 5.27E-01
rs4409766 10 104616663 T=C BORCS7-ASMT 0.236 0.058 4.26E-05 0.075 0.043 8.11E-02 0.006 0.002 3.72E-04
rs11030100 11 27677586 G=T BDNF-AS −0.266 0.054 7.93E-07 −0.117 0.040 3.50E-03 −0.006 0.002 1.77E-04
rs6265 11 27679916 C=T BDNF −0.265 0.054 8.14E-07 −0.097 0.040 1.49E-02 −0.006 0.002 8.03E-05

rs11030104 11 27684517 A=G BDNF-AS −0.261 0.054 1.14E-06 −0.090 0.040 2.37E-02 −0.006 0.002 6.35E-05
rs1421085 16 53800954 T=C FTO 0.358 0.067 7.39E-08 0.164 0.050 9.61E-04 0.007 0.002 1.41E-04
rs11642015 16 53802494 C=T FTO 0.361 0.067 5.74E-08 0.163 0.050 1.00E-03 0.008 0.002 1.07E-04
rs1558902 16 53803574 T=A FTO 0.365 0.067 4.45E-08 0.164 0.050 9.24E-04 0.008 0.002 9.54E-05

ALT, alternative allele; BMI, body mass index; bp, base pair; Chr., chromosome; REF, reference allele; SE, standard error; SNP, single nucleotide
polymorphism.
aPositions are based on Human Genome version 19 (hg19), build 37.
bAlternative alleles were treated as effect alleles.
cSignificant P-values (P ≤ 1.77E-04) are shown in bold.
dAdjusted model in current BMI were adjusted for age (continuous), age-squared (continuous), sex (male or female), birth year (continuous), and the first five
principal components (continuous).
eAdjusted model in BMI at 20 were adjusted for sex (male or female), birth year (continuous), and the first five principal components (continuous).
fAdjusted model in BMI change were adjusted for age (continuous), age-squared (continuous), sex (male or female), birth year (continuous), the first five
principal components (continuous), and BMI at 20 (continuous).

Figure 1. Manhattan plots of the association between candidate loci and each BMI phenotype in the adjusted model. The X-axis
represents chromosomal position and the Y-axis represents %log10(P-value). The grey solid horizontal line indicates
significance level (P = 1.77 ' 10%4).
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study revealed that the FTO variant identified by a GWAS in
adults also showed a significant association in children and
adolescents.48 This is consistent with our findings, suggesting that
the FTO loci affect BMI across the life course. Another study
showed that while there are consistent trends in the association of
BMI with FTO loci, the effect size varies across life epoch.50 This
study reported that among the four distinct phases of adulthood
(18 to over 70 years), the strongest association between FTO loci
and BMI was observed in young adults (18–25 years) relative to
each life epoch.50 Similarly, another cohort study that conducted a
longitudinal observation reported that the association between
FTO polymorphisms and BMI strengthened with age, peaking at

age 20 years, before weakening in later adult years.49 While the
available evidence on TMEM18 loci is scarcer than that for FTO
loci, several GWASs have reported an association between
TMEM18 loci and BMI in both adults and children.14,38,43,52

Moreover, one study showed that there was no TMEM18 loci
heterogeneity across the life course.50 In contrast, we found that
TMEM18 variants were only associated with BMI at 20.
However, the variants reported in previous life course studies
differed from the loci examined in our study, which may explain
the discordance in results. Importantly, our findings may suggest
that the effect of some genes on BMI can differ across age while
of other genes can be kept across age. In addition, each gene
variant may exhibit different patterns of association with BMI,
such that while one gene may have congenital effects, another
may exhibit effects through an acquired pathway. Our findings in
the current BMI and BMI change were similar, which supports
the speculation that these associated significant genes affect BMI
through an acquired pathway.

In particular, we think that dietary intake, for which habits are
acquired after birth, may be the most important acquired pathway
for obesity. Many obesity-related genes are expressed or are
known to act in the central nervous system, especially in the
hypothalamus, and the association between the expression of these
genes and BMI may explain increases or decreases in appetite,
such as via regulation of the feeding center in the hypothal-
amus.38,41 However, even after adjusting for total energy intake,
FTO loci remained significantly associated with current BMI and
BMI change. This may be because weight regulation by genetic
factors is not simply dependent on feeding behavior, but also on
other metabolic pathways and factors. For example, FTO loci are
associated with an adipocyte thermogenesis regulation pathway
involving IRX3 and IRX5,53 and BDNF is associated with physical
activity.54,55 Given that the mechanism governing the effects of
genes on obesity remains poorly understood, further studies are
required to clarify the genetic associations with obesity.

Table 5. Heritability of each phenotype and genetic correlation between phenotypes

(i) Heritability

All participants Male Female
(n = 11,586) (n = 5,169) (n = 6,417)

Heritability SE P-valuee Heritability SE P-valuee Heritability SE P-valuee

Current BMIa 0.272 0.030 0.00E+00 0.422 0.065 1.64E-11 0.259 0.053 4.99E-07
BMI at 20b 0.216 0.029 4.22E-15 0.254 0.064 2.35E-05 0.322 0.053 1.99E-10
BMI changec 0.158 0.030 3.34E-08 0.239 0.066 1.90E-04 0.166 0.052 1.05E-03
BMI change (without adjustment for BMI at 20) 0.116 0.029 4.64E-05 0.131 0.065 2.95E-02 0.163 0.052 1.19E-03

(ii) Genetic correlation (n = 11,586)

Genetic
correlation

(rG)
SE

P-valuee

(one-tailed,
rG = 1)

P-valuee

(one-tailed,
rG = 0)

Current BMIa=BMI at 20b 0.753 0.063 9.72E-05 3.33E-16
Current BMIa=BMI changed 0.757 0.063 3.07E-03 5.89E-08
BMI at 20b=BMI changed 0.130 0.148 5.84E-04 1.77E-01

BMI, body mass index; SE, standard error.
aThe covariates in current BMI were age (continuous), age-squared (continuous), birth year (continuous), sex (male or female), and first five principal
components (continuous).
bThe covariates in BMI at 20 were adjusted for sex (male or female), birth year (continuous), and the first five principal components (continuous).
cThe covariates in BMI change were age (continuous), age-squared (continuous), sex (male or female), birth year (continuous), the first five principal components
(continuous), and BMI at 20 (continuous).
dThe covariates in BMI change were age (continuous), age-squared (continuous), sex (male or female), birth year (continuous), and the first five principal
components (continuous).
eSignificant P-values were defined as P ≤ 0.05.

Table 4. Seven identified SNPs associated with the current BMI
adjusted for total energy intake

SNP
Candidate
gene(s)

Current BMI

Adjusted modela
Adjusted model +

total energyd=weighte

βb P-valuec βb P-valuec

rs4409766 BORCS7-ASMT 0.181 4.96E-05 0.036 2.93E-01
rs11030100 BDNF-AS −0.199 1.68E-06 −0.082 8.95E-03
rs6265 BDNF −0.203 1.00E-06 −0.071 2.26E-02

rs11030104 BDNF-AS −0.203 1.01E-06 −0.067 3.18E-02
rs1421085 FTO 0.335 1.24E-10 0.174 8.02E-06
rs11642015 FTO 0.334 7.36E-11 0.173 8.41E-06
rs1558902 FTO 0.331 8.65E-11 0.174 7.69E-06

BMI, body mass index; SNP, single nucleotide polymorphism.
aAdjusted models were adjusted for age (continuous), age-squared
(continuous), sex (male or female), birth year (continuous), and the top 5
principal components (continuous).
bAlternative alleles were treated as effect alleles.
cSignificant P-values (P ≤ 1.77E-04) are shown in bold.
dTotal energy was estimated using a self-reported food frequency
questionnaire.
eWeight indicates self-reported current weight.
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Results of heritability and genetic correlation also supported
our speculation that genes which affect current BMI and BMI at
20 are heterogeneous. The estimated heritability in current BMI
was higher than in BMI at 20 especially in males, and genetic
correlation between BMI change and BMI at 20 were only 13% in
contrast to 75% of consistency in current BMI and BMI change.
These results can make it reasonable to suppose that the degree of
dependent on BMI by genetic factors are different by age and
genetic effects vary across life course.

This study has limitations that warrant mention. First, the
statistical power may have been limited because of the sample
size and strict application of the Bonferroni threshold. This may
explain the few significant variants obtained in this study
compared to a previous Japanese study.15 However, the variants
that we identified as being significant under these conditions are
likely strongly associated with BMI in the Japanese population
and may code potential target genes for the development of
measures against obesity in the future. Second, because the
analysis was restricted to individuals of Japanese ancestry, our
results may not be generalizable to other ethnic populations.
Third, although we assumed that BMI is changed monotonically
through the life course, the actual change may vary depending on
the time. As a result, genetic effects over a period of time may be
underestimated, whereas those in another period overestimated.

In conclusion, previously reported BMI-associated genes
discovered in European populations were also identified in a
Japanese population. Additionally, some of the significant
variants identified in this study were associated with BMI at
20, but not with current BMI or BMI change. This indicates that
the genetic effects on BMI may vary across the life course via
different pathways. Further studies are needed to identify changes
in effect sizes across the life course and the mechanisms of
genetic effects on obesity in various ethnicities.
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