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Abstract
Objective: Differentiating benign from dangerous causes of 
dizziness or vertigo presents a major diagnostic challenge 
for many clinicians. Bedside presentations of peripheral ves-
tibular disorders and posterior fossa strokes are often indis-
tinguishable other than by a few subtle vestibular eye move-
ments. The most challenging of these to interpret is the head 
impulse test (HIT) of vestibulo-ocular reflex (VOR) function. 
There have been major advances in portable video-oculog-
raphy (VOG) quantification of the video HIT (vHIT), but these 
specialized devices are not routinely available in most clini-
cal settings. As a first step towards smartphone-based diag-
nosis of strokes in patients presenting vestibular symptoms, 
we sought proof of concept that we could use a smartphone 
application (“app”) to accurately record the vHIT. Methods: 
This was a cross-sectional agreement study comparing a 
novel index test (smartphone-based vHIT app) to an accept-
ed reference standard test (VOG-based vHIT) for measuring 
VOR function. We recorded passive (examiner-performed) 
vHIT sequentially with both methods in a convenience sam-
ple of patients visiting an otoneurology clinic. We quantita-

tively correlated VOR gains (ratio of eye to head movements 
during the HIT) from each side/ear and experts qualitatively 
assessed the physiologic traces by the two methods. Re-
sults: We recruited 11 patients; 1 patient’s vHIT could not be 
reliably quantified with either device. The novel and refer-
ence test VOR gain measurements for each ear (n = 20) were 
highly correlated (Pearson’s r = 0.9, p = 0.0000001) and, qual-
itatively, clinically equivalent. Conclusions: This preliminary 
study provides proof of concept that an “eyePhone” app 
could be used to measure vHIT and eventually developed to 
diagnose vestibular strokes by smartphone.

© 2020 The Author(s)
Published by S. Karger AG, Basel

Introduction

Stroke is the leading vascular cause of serious misdiag-
nosis-related harms [1]. Dizziness and vertigo are the 
symptoms most tightly linked to missed stroke [2]. How-
ever, only 3–5% of the 4.4 million patients with acute diz-
ziness or vertigo each year in the USA have stroke as a 
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cause, presenting a major diagnostic challenge for front-
line clinicians in the emergency department [3].

Expert bedside examination using a trio of eye move-
ment tests collectively known as “HINTS” (Head Im-
pulse, Nystagmus, Test of Skew) outperforms neuroim-
aging for diagnosing stroke in acute, continuous dizzi-
ness and vertigo with nystagmus known as the “acute 
vestibular syndrome” [4]. In high-risk patients, one eye 
movement alone, the head impulse test (HIT) of vestibu-
lo-ocular reflex (VOR) function, which takes less than a 
minute to assess at the bedside, is vastly more accurate 
than CT and slightly more accurate than MRI with diffu-
sion-weighted images [5] (the latter is currently consid-
ered the gold standard test for acute stroke in a living pa-
tient). Unfortunately, assessing this vestibular eye move-
ment is often difficult for frontline clinicians to learn, so, 
consequently, most providers lack comfort and confi-
dence in using it clinically [6].

It has been roughly a decade since advances in portable 
video-oculography (VOG) technology made it possible to 
quantitatively measure VOR responses during the HIT 
[7]. Quantitative video HIT (vHIT) currently relies on 
VOG devices worn on the head like goggles that use sen-
sors to measure head movements and a video camera to 
record and measure eye movements. Despite some suc-
cesses in deploying such VOG devices to support remote, 
subspecialty “Tele-Dizzy” consultations in the emergency 
department [8, 9], these devices are not yet routinely 
available in most emergency departments, never mind 
other relevant clinical (or nonclinical) settings. Broad 
scaling of eye movement diagnosis to ambulances, urgent 
care clinics, primary care offices, or even patients’ homes 
will almost certainly require more ubiquitous technology, 
such as mobile phones.

Recent technological advances have now made quan-
titative vHIT using mobile phones possible. We sought to 
demonstrate proof of concept that we could use a hand-
held smartphone and a video-only approach to quantify 
the vHIT in a similar fashion to commercial VOG devic-
es. Such an approach could ultimately be a “game chang-
er” for remote diagnosis of vestibular strokes.

Methods

Design
This was a cross-sectional agreement study comparing a novel 

index test (smartphone-based vHIT) to an accepted reference 
standard test (VOG-based vHIT) for measuring VOR function. 
We recruited a convenience sample of adult patients visiting an 
otoneurology clinic for vertigo, dizziness, or related balance symp-
toms; no sample size calculation was performed for this initial pilot 

study. All patients agreed to participate and signed a consent form 
for eye movement recording research approved by the Johns Hop-
kins Institutional Review Board (IRB). This report follows EQUA-
TOR/GRRAS guidelines for reporting reliability and agreement 
studies [10].

vHIT Recordings
In each patient, during a single visit, we sequentially recorded 

vHIT data first using commercially available VOG “goggle” de-
vices and then using our novel smartphone application (“app”). 
We initially attempted simultaneous recordings, but there was in-
terference between the goggles and the iPhone while recording eye 
movements.

We used one of two US Food and Drug Administration (FDA)-
approved VOG goggles, both deployed routinely in our subspe-
cialty vestibular clinic and laboratory – either the ICS Impulse 
(Otometrics, Natus Medical, Inc., Pleasanton, CA, USA) or the 
EyeSeeCam (Interacoustics, Middelfart, Denmark). Each provides 
a laptop-based software platform for real-time analysis of the 
vHIT.

The smartphone app was running on an iPhone Xs (Apple, 
Inc., Cupertino, CA, USA). We developed the app using Apple’s 
ARKit framework. ARKit is a framework designed to create aug-
mented reality experiences on Apple devices. Within ARKit we 
used the face-tracking configuration that utilizes the TrueDepth 
camera to create a 3D mapping of the user’s face to track head and 
eye movements (using a proprietary Apple algorithm that com-
bines natural light and infrared sensors). ARKit provides a con-
tinuous recording at 60 samples per second that includes the 3D 
orientation of the head, relative to the phone or gravity, the 3D 
position of the head relative to the phone, the horizontal and verti-
cal orientation of the eye, and various measurements of eye clo-
sure. The results (e.g., VOR gains) were analyzed offline (see be-
low). Note that the iPhone Xs model used in this study has a front-
facing (“selfie”) camera allowing for video frame rates surpassing 
200 Hz, but the current implementation of ARKit is limited to 60 
Hz.

For the HIT, patients were asked to sit in a chair facing a wall 
approximately 2 m away, and to fixate their gaze on a red dot 
placed at eye level on the wall. A trained examiner (either a ves-
tibular laboratory technician or experienced investigator [A.K.]) 
stood behind the patient and, using standard VOG HIT technique, 
manually rotated the head passively in the horizontal semicircular 
canal plane (chin tucked forward 30°) at velocities of approximate-
ly 100–300°/s. We performed ∼10–15 HITs to the right and ∼10–
15 HITs to the left, first using the VOG device and then repeating 
the same with the iPhone. In the latter case, a second individual 
held the phone by hand in front of the patient at a distance of 
∼25–50 cm (the distance was confirmed in real time by the app) 
without blocking the patient’s view of the distance target.

vHIT Data Processing
Both goggle software platforms provide an automatic postpro-

cessing algorithm that filters each individual vHIT recording (for 
insufficient head velocity or eye movement artifacts [11, 12]), de-
saccades the remaining VOR curves (i.e., seeks to remove covert 
refixation saccades [13] occurring during each HIT), and then cal-
culates vHIT gain for expert interpretation. The software is “off the 
shelf” and no programming is required to utilize either platform. 
Though the software permits it, we did not filter the automated 
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results manually or recalculate gains. The complete algorithms are 
proprietary and not made publicly available, but it is known that 
the OTOsuite software (ICS Impulse) uses an area under the curve 
(AUC) method for VOR gain calculations, while the EyeSeeCam 
software uses an instantaneous velocity method. These two meth-
ods of VOR gain calculation yield slightly different values, but the 
differences are not clinically significant [14].

For each HIT performed with the iPhone, the data from ARKit 
were recorded and exported out of the phone for visualization and 
analysis in MATLAB (MathWorks, Inc., Natick, MA, USA) using 
a custom software developed for postprocessing. To use the soft-
ware, familiarity with MATLAB programming is ideal, but the user 
interface to analyze and filter vHIT traces applies a “point-and-
click” approach for the end user. After iPhone data export, filtering 
of HITs with insufficient head velocity or typical eye movement 
artifacts (blinking, squinting, or noise from eye makeup [11]) was 
performed manually by one of the investigators (T.M.P.). The 
identification of eye closure-related artifacts was aided by cross-
referencing the video and facial coefficient data provided by the 
iPhone (i.e., 0-to-1 spectrum value of how much one squinted dur-
ing the test). As with the goggle technology, manual filtering of 
traces with artifacts present requires general familiarity with nor-
mal VOR tracings, abnormal VOR tracings, and artifacts. After 
filtering, we calculated horizontal head and eye velocity as well as 
VOR gain values for each HIT using an AUC method (in an effort 
to mirror the OTOsuite calculation). Note that we did not attempt 
to manually de-saccade the VOR curves in MATLAB, but ensured 
that saccades did not artificially inflate VOR gain values by trun-
cating our AUC calculation at 60 ms after the onset of the HIT 

(which was defined as head velocity rising and reaching 50°/s). We 
confirmed that no covert refixation saccades were included in 
these VOR gain calculations.

VOR Comparisons
We compared the results obtained using the smartphone-based 

app to those obtained using the standard VOG devices. Each de-
vice measured unilateral VOR gain (ratio of eye to head move-
ments during the HIT, normally ∼0.8–1.0 in healthy individuals) 
and provided physiologic traces on a per-ear (side) basis. We 
quantified the statistical correlation using linear regression with-
out an intercept between the measured VOR gain from both meth-
ods and offer a Bland-Altman plot to identify systematic differ-
ences between techniques [15]. Experts qualitatively assessed the 
physiologic traces by the two methods. Statistical calculations were 
performed using MATLAB.

Results

We recorded eye movements from 11 patients accord-
ing to the protocol described above. Ten had usable re-
sults presented here (online suppl. Table 1; see www. 
karger.com/doi/10.1159/000511287 for all online suppl. 
material; the eye movements of 9 patients were recorded 
with ICS Impulse and those of 1 patient with EyeSee-
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Fig. 1. Correlation between HIT gain measured by smartphone 
and VOG goggles. The left panel shows a scatter plot of VOR gains 
for each method on a per-ear (right or left) basis for those 10 of 11 
patients undergoing the protocol who had usable data. The right 
panel shows a Bland-Altman plot of the same data to better visual-
ize possible systematic deviations between the two methods, with 
positive values indicating a larger gain for the goggles and negative 
values indicating a larger gain for the smartphone. The results sug-

gest that the smartphone app tends to systematically yield higher 
gain values than the goggles, despite the strong correlation be-
tween the results of each measurement method. Circles corre-
spond to data collected using the ICS Impulse and squares those 
collected using the EyeSeeCam. Numbers indicate the number of 
the participant (online suppl. Table 1). HIT, head impulse test; 
VOG, video-oculography; VOR, vestibulo-ocular reflex.



Parker et al.Digit Biomark 2021;5:1–84
DOI: 10.1159/000511287

Cam); in 1 case results could not be recorded accurately 
with either VOG goggles or the iPhone due to artifacts, 
likely due to heavy makeup and shadows around the eyes, 
which is a known technical problem [11]. Quantitatively, 
the VOR gains were strongly correlated between the two 
recording methods (Fig.  1, left) (Pearson’s r = 0.8, p < 
0.0001) with a tendency for the smartphone data to report 
higher gains (Fig. 1, right). Qualitatively, the results were 
effectively equivalent (Fig. 2–4). Figures 2–4 show side-
by-side comparisons of vHIT traces recorded using com-
mercial VOG systems and our custom “eyePhone” app in 
the same patients; these demonstrate that the physiologic 
traces are visually similar and interpretively identical (i.e., 
same clinical conclusion) for both normal (Fig. 2) and ab-
normal (Fig. 3, 4) VOR responses.

Discussion

These preliminary results demonstrate proof of con-
cept that it should eventually be possible to accurately 
measure vHITs using smartphones. This is important be-
cause (1) the vHIT is the single most useful test in distin-
guishing inner ear disease from stroke in the acute ves-
tibular syndrome [7], (2) it is a very challenging test for 
frontline clinicians to perform and interpret correctly [6], 
and (3) VOG devices are rarely available. Because we were 
able to do this without special phone attachments or 
equipment, only with the phone held by hand in front of 
the patient, the potential for broad scalability of this ap-
proach is established. However, readers should note that 
these pilot study results will need to be validated, and the 
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Fig. 2. Patient #4 with normal VOR gains. The left panels show the 
eye and head velocity during head impulses to the left (top) and 
right (bottom) recorded with ICS Impulse goggles. The right pan-
els show the equivalent data recorded with the new, custom iPhone 
application. During the HIT, the eyes and the head move by an 
equal amount (VOR gain ∼1.0), so green traces (reflecting eye 

movements) are superimposed on head movements (orange and 
blue). Note that the testing is performed sequentially, so some dif-
ferences may be real; others, however, may be artifactual (e.g., 
iPhone “wiggly” eye traces from 100–200 ms, likely from noisy 
measurement). HIT, head impulse test; VOR, vestibulo-ocular re-
flex.
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app will need to be further developed to incorporate real-
time, autonomous quantification of results. Thus, wide-
spread clinical dissemination is still likely years away.

When fully developed, this approach could initially 
help support remote teleconsultation by specialists [8]. 
and eventually be combined with real-time diagnostic de-
cision support, as is currently under development for tra-
ditional VOG devices [16, 17]. We envision a future in 
which such tools will be routinely used as a method of 
initial screening and triage for patients with acute dizzi-
ness and vertigo for out-of-hospital care, even in low-re-
source settings. This could include immediate diagnosis 
and on-site treatment of common, benign vestibular dis-

orders or care escalation for suspected stroke, which is 
often missed in patients with dizziness [2].

Furthermore, the vHIT approach has the potential for 
even broader applications in the bedside assessment of 
patients with inner ear disease (e.g., vestibular neuritis, 
Ménière’s disease, and bilateral vestibulopathy), whether 
for diagnosis and management in the clinic, or for re-
search. Finally, when paired with phone-based video re-
cordings or nystagmography for intermittent vertigo 
with nystagmus [18], this approach has the potential to 
transform care for all patients with dizziness and vertigo, 
making in-home telediagnosis and treatment a real pos-
sibility. Because minority populations more often use 
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Fig. 3. Patient #1 with unilateral VOR loss on the right side. The 
left panels show the eye and head velocity during head impulses to 
the left (top) and right (bottom) recorded with EyeSeeCam gog-
gles. During head impulses towards the right, the eyes do not move 
as quickly as the head does during the first 100 ms. Subsequent 
corrective eye movements (catch-up saccades) compensate for the 
deficient VOR response during the HIT. These corrective eye 

movements appear as spikes that occur shortly after the head has 
finished moving (“overt” saccades). Note that the testing is per-
formed sequentially, so some differences may be real; others, how-
ever, may be artifactual (e.g., the iPhone-measured velocities of 
overt saccades are systematically low). It is unclear whether the 
differences in the leftward responses (top row) are real or artifac-
tual. HIT, head impulse test; VOR, vestibulo-ocular reflex.
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smartphones as their primary tool for engaging in health-
related activities [19], this is a way to place equity first in 
stroke and vestibular care.

Limitations
This study is limited by the small sample of patients, the 

gestalt method of comparing physiologic VOR traces dur-
ing vHITs, and the lack of gold standard scleral search coil 
eye movement recordings to assess whether the observed 
differences were errors of VOG versus smartphone-based 
testing. Additional app development is needed to address 
technical challenges (see below). The extent to which these 

methods will be smartphone (brand/camera) specific is 
unknown. It is also unknown whether this technique can 
be completed alone without a second person (i.e., with the 
patient using a tripod or hand-held phone and active [20] 
[self-initiated] head impulses). Future research is required 
to validate these preliminary findings and confirm that 
smartphone-based approaches can accurately and reliably 
record eye movements in frontline clinical care settings, 
in the hands of untrained examiners, and in the context of 
intrusive eye movements, such as nystagmus.

In addition to the study limitations above, specific 
technical issues remain for an app-based approach. Cur-
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Fig. 4. Patient #10 with bilateral VOR loss. The left panels show the 
eye and head velocity during head impulses to the left (top) and 
right (bottom) recorded with ICS Impulse goggles. Note how dur-
ing head impulses towards either side the eyes do not move as 
quickly as the head. Then, subsequent corrective eye movements 
(catch-up saccades) compensate for the deficient VOR response 
during the HIT. These corrective eye movements appear as spikes 

that occur during the head movement (“covert” saccades) and af-
terwards (“overt” saccades). Note that the testing is performed se-
quentially, so some differences may be real; others, however, may 
be artifactual (e.g., iPhone “wiggly” eye traces from 100–200 ms, 
likely from noisy measurement). HIT, head impulse test; VOR, 
vestibulo-ocular reflex.
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rent ARKit recordings are limited to 60-Hz sampling, but 
higher frame rates might permit more accurate vHIT 
quantification and assessment. Processing algorithms to 
filter, de-saccade, and calculate VOR gains automatically 
are still needed; these will likely require additional testing 
and analysis of artifacts (see Fig. 2–4). For example, some 
smartphone vHIT traces had head velocities that devi-
ated from those of the goggles (e.g., Fig. 4). Because we 
could not do simultaneous recordings, these may be real 
differences (i.e., the examiner used different head veloci-
ties), but they could also be artifactual; if so, it could be 
because the iPhone’s face-tracking mechanism lacks a 
special calibration mechanism (Apple discloses little 
about their FaceID algorithm). Despite our choice to use 
a similar method of calculation to that of the OTOsuite 
software (used for 9 of the 10 patients reported on), our 
AUC methods of calculating VOR gain may not have ex-
actly matched those from the goggles, whose algorithms 
are proprietary. More testing is needed to determine 
which method of calculating VOG gains on the iPhone 
provide the most accurate results (e.g., when compared 
to the gold standard of scleral search coils). Furthermore, 
additional work is needed to confirm the test-retest reli-
ability of the method, estimate the number of head im-
pulses required for a stable, valid measurement of VOR 
gain, and assess its relationship to manual filtering of ar-
tifacts; for goggles, there is diminishing marginal utility 
over 20 HITs [12].

Conclusions

This small pilot study used a video-only smartphone-
based approach to measure the vHIT, a key bedside diag-
nostic test whose use is still mostly restricted to vestibular 
specialists. Technical challenges remain for ongoing 
“eyePhone” app development, and more research is need-
ed to validate these preliminary findings. Nevertheless, 
this small study provides encouraging early evidence that 
this line of inquiry might ultimately help reduce the im-
portant public health problem of missed posterior circu-
lation strokes among patients with acute dizziness and 
vertigo [3].
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