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Abstract
Introduction: Motor abnormalities have been shown to be a 
distinct component of schizophrenia symptomatology. 
However, objective and scalable methods for assessment of 
motor functioning in schizophrenia are lacking. Advance-
ments in machine learning-based digital tools have allowed 
for automated and remote “digital phenotyping” of disease 
symptomatology. Here, we assess the performance of a com-
puter vision-based assessment of motor functioning as a 
characteristic of schizophrenia using video data collected re-
motely through smartphones. Methods: Eighteen patients 
with schizophrenia and 9 healthy controls were asked to re-
motely participate in smartphone-based assessments daily 
for 14 days. Video recorded from the smartphone front-fac-
ing camera during these assessments was used to quantify 
the Euclidean distance of head movement between frames 

through a pretrained computer vision model. The ability of 
head movement measurements to distinguish between pa-
tients and healthy controls as well as their relationship to 
schizophrenia symptom severity as measured through tradi-
tional clinical scores was assessed. Results: The rate of head 
movement in participants with schizophrenia (1.48 mm/
frame) and those without differed significantly (2.50 mm/
frame; p = 0.01), and a logistic regression demonstrated that 
head movement was a significant predictor of schizophrenia 
diagnosis (p = 0.02). Linear regression between head move-
ment and clinical scores of schizophrenia showed that head 
movement has a negative relationship with schizophrenia 
symptom severity (p = 0.04), primarily with negative symp-
toms of schizophrenia. Conclusions: Remote, smartphone-
based assessments were able to capture meaningful visual 
behavior for computer vision-based objective measurement 
of head movement. The measurements of head movement 
acquired were able to accurately classify schizophrenia diag-
nosis and quantify symptom severity in patients with schizo-
phrenia. © 2021 The Author(s)
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Introduction

Motor abnormalities have been shown to be a charac-
teristic trait of schizophrenia, are present even in antipsy-
chotic-naive patients, predate the onset of psychosis, and 
have been demonstrated in at-risk populations and in un-
affected relatives [1–6]. Indeed, psychomotor retardation 
underlies core negative symptomatology of schizophre-
nia, such as the demonstration of blunted facial affect and 
emotional withdrawal [7–11]. Though there have been 
many attempts to diagnose schizophrenia and quantify 
symptom severity using neurobiology and behavior [12–
14], little work has been done to objectively measure mo-
tor dysfunction to characterize the disorder in clinical re-
search [15–17], which could be of particular relevance in 
the assessment of negative symptoms.

Recent advances in the mechanistic understanding of 
negative symptomatology have led to a number of prom-
ising pharmacological and cognitive treatments for nega-
tive symptoms of schizophrenia [18–21]. Such initiatives 
are important given the lack of FDA-approved treatments 
for negative symptoms [22]. However, reliable and 
change-sensitive measures of negative symptomatology 
to assess the efficacy of these treatments are sparse [23–
26]. With motor dysfunction being an underlying factor 
of negative symptomatology, accurate measurement of 
motor functioning can allow for assessment of treatment 
efficacy during the evaluation of novel investigational 
treatments.

Several groups have successfully and accurately mea-
sured motor functioning as a characteristic of schizo-
phrenia, though only in laboratory settings [27–31]. 
While laboratory-based methodologies increase sensitiv-
ity and reduce subjectivity in the measurement of motor 
functioning compared to traditional assessments, they 
are limited in their utility as measurement tools in clinical 
research given the burden imposed on both patients and 
clinicians.

The use of “digital phenotyping” or measurement of 
disease symptomatology using digital tools has shown 
significant promise towards objective, scalable, and re-
mote measurement of central nervous system function-
ing [32, 33]. In schizophrenia, observable behavior as-
sociated with the disorder has been successfully quanti-
fied using advancements in machine learning. Examples 
of this include using digital signal and natural language 
processing methods to measure changes in verbal pros-
ody and speech characteristics, such as volume, funda-
mental frequency, pause characteristics, and sentiment, 
and computer vision to quantify changes in facial ex-

pressivity and the presence of blunted facial affect, a core 
negative symptom of schizophrenia [34–38]. The use of 
visual data such as videos of patient behavior presents a 
promising avenue for digital phenotyping given the 
ubiquitous availability of smartphone cameras alongside 
advances in computer vision methodologies that can au-
tomate the processing and analysis of visual informa-
tion. Despite recent advances in head pose estimation 
[39, 40], there are a lack of studies utilizing these meth-
ods to quantify head movement abnormalities in schizo-
phrenia.

In the current investigation, we examined the ability of 
head movement measured using computer vision from 
videos recorded during remote smartphone-based assess-
ments to differentiate individuals with schizophrenia 
from healthy controls and determine disease severity by 
comparison of head movement with the Positive and 
Negative Syndrome Scale (PANSS), a commonly used 
clinical assessment tool for the measurement of schizo-
phrenia severity and the current “gold standard” for as-
sessment of antipsychotic treatment efficacy [41].

Methods

Participants
Patients meeting DSM-5 criteria for schizophrenia at Mount 

Sinai Health System Outpatient Psychiatry Clinics (n = 18; age µ = 
48.1 years, σ = 13.1; 11 females) and healthy individuals from the 
community (n = 9; age µ = 39.8 years, σ = 10.4; 5 females) were 
consented to participate in a 2-week observational study under ap-
proval of the Mount Sinai Program for the Protection of Human 
Subjects and its Institutional Review Board. Participants in the 
schizophrenia group were on a stable regimen of psychotropic 
medications, had no recent clinically meaningful change in schizo-
phrenia symptomatology, and were clinically stable in that they 
were not expected to show significant changes in symptomatology 
over the course of the 2-week observational study.

Data Collection
Positive and Negative Syndrome Scale (PANSS)
The PANSS was administered in-person by the study team on 

both patients with schizophrenia and healthy control subjects. 
Healthy individuals were assessed to confirm an absence of schizo-
phrenia symptomatology. From the PANSS, subscale scores were 
recorded for the positive symptom subscale (P Total), the negative 
symptom subscale (N Total), and general symptom subscale (G 
Total) in addition to all individual items within those subscales.

Remote Smartphone-Based Video Assessments
All participants were asked to download the AiCure app (www.

aicure.com) on either their personal smartphone or a smartphone 
provided to them by the study team. They were then trained by the 
study team on how to use the app to participate in remote assess-
ments. The remote assessments triggered the participants to per-
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form a brief and standardized 1-min task where they were asked 
open-ended questions to which they responded freely while a vid-
eo of their response was captured using the front-facing camera on 
the smartphone. The open-ended questions were neutral in nature 
and simply meant to elicit a free verbal response (e.g., “What have 
you been doing for the past few hours?” and “What are your plans 
for the rest of the day?”). All participants were shown the same 
prompts and stimuli to ensure standardization and reproducibil-
ity of the manner in which all data were collected. Dependent on 
the length of the participant’s responses, the videos collected 
would have been of different lengths, hence introducing variabil-
ity. However, all observations reported in this manuscript reflect 
average movement behavior over the course of those videos, and 
hence the length of the video is not a factor in any analyses. The 
assessments were scheduled every day for the 14 days of the study. 
The videos collected during these assessments were used to quan-
tify head movement during the participants’ responses.

Measurements of Head Movement
The software library OpenFace [42–44] was used to measure 

framewise head movement from the videos collected through the 
remote smartphone-based assessments. For each frame, the 
head’s position relative to the camera was calculated using pre-
trained convolutional neural network-based computer vision 
models. The software provides a confidence score for every frame 
of video denoting the likelihood that it is accurately detecting a 
face; only frames with a confidence score of 80% or higher were 
used for downstream analyses. Framewise measurements of 
change in Euclidean head position in the x, y, and z planes were 
calculated in millimeters as shown in the equation below. From 
the framewise measurements, the mean head movement was cal-
culated across all videos collected from a participant over the 
course of the study. All measurements of head movement were 
normalized between 0 and 1 before subsequent data analysis. 
Head movement in frame:

( ) ( ) ( )2 2 2

1 1 1n n n n n nn       x x y y z z ,- - -= - + - + -  
where

xn = head position in the x plane during the current frame,
yn = head position in the y plane during the current frame, and
zn = head position in the z plane during the current frame.

Data Analysis
Using head movement data collected from all participants in 

both groups, a multiple logistic regression with maximum likeli-
hood estimation was conducted to model the probability of an in-
dividual having a schizophrenia diagnosis based on measurements 
of head movement, with age and gender as additional predictors 
in the regression. Using data only from individuals with schizo-
phrenia, separate linear regressions were conducted to determine 
the relationship between head movement and the PANSS subscale 
scores in addition to individual items in each of those subscales, 
with age and gender as confounding variables. The linear regres-
sions were an exploratory analysis to determine the relationship 
between head movement and individual items on the PANSS, and 
hence multiple comparisons correction was not conducted. Addi-
tionally, a t test was conducted using the average rate of head 
movement between the individuals with schizophrenia and healthy 
controls.

Data Availability
The raw video analyzed in this manuscript is considered pro-

tected health information. It was not consented for public use and 
cannot be published. However, the first level of non-identifiable 
raw abstractions from that data as well as the derivations used to 
conduct all analyses will be provided alongside the code. 

Code Availability
Code for all methods and analysis presented in this manuscript 

is publicly available on GitHub (https://github.com/anzarabbas/
ms_headmov_scz).

Results

The rate of head movement in participants with schizo-
phrenia (1.48 mm/frame) and those without differed sig-
nificantly (2.50 mm/frame; p = 0.01), as is shown in Fig-
ure 1. 

Logistic Regression
Data from 9 healthy controls and 17 individuals with 

schizophrenia was used for the logistic regressions, 1 in-
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Table 1. Results from multiple logistic regression of head move-
ment, age, and gender with schizophrenia diagnoses

Variable Coefficient SE z p value

Constant –0.456 2.051 –0.222 0.824
Head motion –5.290 2.393 –2.210 0.027
Age (years) 0.074 0.046 1.611 0.107
Gender –0.416 1.030 –0.404 0.686

Fig. 1. The rate of head movement in participants with schizophre-
nia (SCZ) was significantly less than in healthy individuals (HC).
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dividual being excluded due to missing PANSS scores. 
Head movement, age, and gender were able to signifi-
cantly differentiate healthy controls and individuals with 
schizophrenia (log likelihood = –12.13; Pseudo r2 = 0.29; 
p = 0.018) with head movement as the only significant 
predictor (odds ratio = 0.04, 95% CI 0.00–0.48; z = –2.21; 
p = 0.027) and age demonstrating a marginal effect (odds 
ratio = 1.07, 95% CI 0.99–1.18; z = 1.61; p = 0.1; Table 1). 

Linear Regression
In the data collected from individuals with schizo-

phrenia (n = 18), separate linear regressions were con-
ducted with head movement, age, and gender as predic-
tors of each individual item on the PANSS. The results 
from all of these regressions are detailed in online supple-
mentary Tables 1, 2, and 3 (for all online suppl. material, 
see www.karger.com/doi/10.1159/000512383). A subset 
of the results from those regressions are outlined in Ta-
bles 2 and 3.

When correcting for age and gender, head movement 
had a significant negative association with the N Total 
and G Total scores (p = 0.041 and p = 0.015, respectively) 
but not the P Total score (p = 0.257; Table 2). Further-
more, when correcting for age and gender, head move-
ment was negatively associated with several individual 
items on the PANSS (Table 3): blunted affect (p = 0.040), 
emotional withdrawal (p = 0.020), poor rapport (p = 
0.043), motor retardation (p = 0.004), uncooperativeness 
(p = 0.049), poor attention (p = 0.049), and lack of judge-
ment and insight (p = 0.003).

Discussion

In the current investigation, we sought to test the hy-
pothesis that motor functioning as measured by the 
amount of head movement during free behavior, quanti-
fied through convolutional neural network-based com-
puter vision models, would serve as a digital marker of 
schizophrenia symptomatology. We further assessed the 
ability of digital tools, that is, remote smartphone-based 
assessments that capture video of individuals’ behavior, 
to measure schizophrenia symptomatology in an accu-
rate, scalable, and objective manner.

The findings demonstrate that head movement dur-
ing free responses to scripted prompts delivered over a 
smartphone and recorded through the front-facing 
camera significantly differentiated healthy controls 
from individuals with schizophrenia (Table 1). Further-
more, the exploratory results suggest that slowed head 
movement is a marker of negative symptomatology of 
schizophrenia, including blunted affect, motor retarda-
tion, poor rapport, and emotional withdrawal (Table 2). 
Additionally, we found preliminary evidence that head 
movement is associated with uncooperativeness, poor 
attention, and lack of insight. While the interpretation 
of this relationship is less straightforward, this may re-
flect underlying cognitive deficits in schizophrenia as-
sociated with negative symptomatology. Our findings 
align with previously reported motor slowing in indi-
viduals with schizophrenia [45–48] and are consistent 
with the notion that different types of motor symptoms 

Table 2. Results for the linear regressions conducted with head movement, age, and gender as predictors of PANSS subscale scores

Variable Predictor Coefficient SE t p value F R2 Adj. R2 p value

P total
Constant
Head motion
Age (years)
Gender

0.5152
–0.3032

0.0007
0.2057

0.190
0.257
0.003
0.092

2.711
–1.181

0.204
2.248

0.002
0.257
0.842
0.041

2.013 0.301 0.152 0.158

N total
Constant
Head motion
Age (years)
Gender

0.5649
–0.6383

0.0037
0.2107

0.211
0.284
0.004
0.101

2.683
–2.245

0.955
2.078

0.002
0.041
0.356
0.057

3.055 0.396 0.266 0.0634

G total
Constant
Head motion
Age (years)
Gender

0.6209
–0.5193

0.0025
0.2338

0.139
0.188
0.003
0.067

4.457
–2.760

0.967
3.485

0.001
0.015
0.350
0.004

6.200 0.571 0.479 0.0067
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may correlate with different aspects of psychotic symp-
toms [49].

Furthermore, the results demonstrated that motor 
functioning can be objectively measured using data cap-
tured remotely, in the absence of a clinician or a clinical 
environment, and without the need for any specialized 
equipment or hardware beyond a smartphone. Video 
captured of an individual’s behavior during remote 
smartphone-based assessments was sufficient for mea-
surement of head movement as a behavioral symptom of 
schizophrenia, and may be sufficient for computationally 

based measurement of other behavioral symptoms such 
as changes in facial expressivity, vocal acoustics, and 
characteristics of speech. With tools emerging that are 
able to measure all such behavioral symptomatology us-
ing computer vision, digital signal processing, and ma-
chine learning [34–38, 50–55], these behaviors may be 
measurable in the same manner that movement behavior 
was assessed in this investigation.

Abnormalities in motor functioning underlie observ-
able symptomatology in several neurological and neuro-
psychiatric disorders, including major depressive disor-

Table 3. A subset of the results for the linear regressions conducted with head movement, age, and gender as predictors of individual 
PANSS items

Dependent variable Predictor Coefficient SE t p value F R2 Adj. R2 p value

Blunted affect
Constant
Head motion
Age (years)
Gender

0.5832
–0.8133

0.0038
0.2040

0.264
0.356
0.005
0.128

2.221
–2.284

0.789
1.590 

0.046
0.040
0.444
0.136

2.565 0.372 0.227 0.099

Emotional withdrawal
Constant
Head motion
Age (years)
Gender

0.5527
–0.7386

0.0086
0.1933

0.206
0.27
0.004
0.100

2.681
–2.654

2.294
1.927

0.019
0.020
0.039
0.076

4.849 0.528 0.419 0.017 

Poor rapport
Constant
Head motion
Age (years)
Gender

0.6081
–0.8332
–0.0005

0.1107

0.275
0.372
0.005
0.134

2.208
–2.241

0.100
0.826

0.046
0.043
0.922
0.424

1.830 0.297 0.135 0.191

Motor retardation
Constant
Head motion
Age (years)
Gender

0.5972
–1.1118

0.0062
0.0757

0.233
0.315
0.004
0.113

2.563
–3.534

1.447
0.668

0.024
0.004
0.172
0.516

4.862 0.529 0.420 0.017

Uncooperativeness
Constant
Head motion
Age (years)
Gender

0.7059
–0.6860
–0.0019

0.1316

0.234
0.315
0.004
0.114

3.023
–2.176
–0.438

1.159

0.010
0.049
0.669
0.267

2.034 0.319 0.162 0.159

Poor attention
Constant
Head motion
Age (years)
Gender

0.4311
–0.5696

0.0001
0.3322

0.194
0.262
0.004
0.094

2.224
–2.177

0.031
3.523

0.044
0.049
0.976
0.004

5.454 0.557 0.455 0.012

Lack of judgement and  
insight Constant

Head motion
Age (years)
Gender

0.5480
–1.0518

0.0075
–0.1455

0.212
0.286
0.004
0.103

2.587
–3.677

1.950
–1.412

0.023
0.003
0.073
0.181

6.892 0.614 0.525 0.005
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der [56, 57], Parkinson’s disease [58], and autism spec-
trum disorder [59–61], among others. Given the 
transdiagnostic nature of motor symptomatology, re-
mote and scalable methods for its measurement may have 
utility for the assessment of treatment response and/or 
motor side-effects of treatment in both clinical care and 
clinical research beyond just schizophrenia. With ad-
vancements in computationally based measurement of 
other observable behavioral symptomatology, such as fa-
cial expressivity, speech, and physiology, digital measure-
ments could bring immense utility in the monitoring and 
diagnosis of mental and physical health using remote 
tools.

It is important to note the key limitations of this study, 
in particular the multiple comparisons conducted on the 
modest sample size. With the primary objective of this 
study being to test the hypothesis that head movement is 
negatively correlated with schizophrenia diagnosis, the 
logistic regression provided compelling evidence towards 
rejection of the null hypothesis. The subsequent linear 
regressions conducted between head movement and all 
PANSS items served as a secondary and exploratory aim, 
allowing for determination of a relationship between 
head movement and specific schizophrenia symptom-
atology. With results from the analysis indicating rela-
tionships as would be hypothesized based on prior re-
ports, we present them as preliminary findings with the 
ultimate goal of expanding such an experiment to a wider 
patient population, allowing for a more fine-grained 
analysis of head movement as a digital biomarker of 
schizophrenia symptomatology.

Additionally, the sample size inhibited the ability to 
age-match the 2 populations, which would have been an 
important step in alleviating age-related variability in 
head movement beyond simply correcting for it in the 
regression. Furthermore, given patients were on a wide 
range of antipsychotics, it was difficult to assess the ef-
fects of individual medications, including antipsychot-
ic-induced motor abnormalities such as tardive dyski-
nesia, which have the potential to influence head move-
ment measurements. However, involuntary movement 
behavior would have only increased the head movement 
intensity observed in the individuals with schizophre-
nia. Given we were able to reject the null hypothesis, it 
is possible that antipsychotic-induced head movement 
did not contribute very strongly as a confounding vari-
able.

Finally, this investigation utilized open-source Py-
thon-based software, available to all researchers. As an 
additional measure, the code that implemented the open-

source software for this investigation and subsequent 
analyses of results have been provided by the authors in 
the Methods section. This allows for the expansion of the 
experiment to a wider patient population as mentioned 
above and the independent validation of the computer 
vision-based measurement of head movement itself and 
its implementation in this investigation by other re-
searchers in academic and clinical research, following an 
open-science framework for the development of digital 
tools for objective, accurate, and scalable measurement of 
disease symptomatology in both mental and physical 
health. Adaptation of such technology will allow for its 
implementation in larger patient populations, potentially 
leading to future research that would be able to train ma-
chine learning-based classifiers that use head movement 
along with other quantifiable features to identify the pres-
ence and severity of neuropsychiatric disorders such as 
schizophrenia.

Conclusions

In this investigation, we demonstrated that head 
movement measured using computer vision from video 
captured remotely via smartphones demonstrates valid-
ity as a marker of schizophrenia and is a promising met-
ric for negative symptom severity. Use of such technol-
ogy in clinical care and clinical research settings could 
allow for accurate measurement of disease symptom-
atology and treatment response in a scalable and acces-
sible manner, which can support the development of 
novel treatments for schizophrenia and other mental 
and physical disorders that involve motor symptomatol-
ogy.
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