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Abstract

Concerns are heightened from detecting environmentally persistent man-made per- and 

polyfluoroalkyl substances (PFAS) in drinking water systems around the world. Many PFAS, 

including perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), remain in the human 

body for years. Since 1999–2000, assessment of exposure to PFOS, PFOA, and other select PFAS 

in the U.S. general population has relied on measuring PFAS serum concentrations in participants 

of the National Health and Nutrition Examination Survey (NHANES). Manufacturers have 

replaced select chemistries (“legacy” PFAS) with PFAS with shorter biological half-lives (e.g., 

GenX, perfluorobutanoate [PFBA]) which may efficiently eliminate in urine. However, knowledge 

regarding exposure to these compounds is limited. We analyzed 2,682 urine samples for 17 legacy 

and alternative PFAS from 2013–2014 NHANES participants ≥6 years of age. Concentrations of 

some of these PFAS, measured previously in paired serum samples from the same NHANES 

participants, suggested universal exposure to PFOS and PFOA, and infrequent or no exposure to 

two short-chain PFAS, perfluorobutane sulfonate and perfluoroheptanoate. Yet, in urine, PFAS 

were seldom detected; the frequency of not having detectable concentrations of any of the 17 

PFAS was 67.5%. Only two were detected in more than 1.5% of the population: PFBA (13.3%) 

and perfluorohexanoate (PFHxA, 22.6%); the 90th percentile urine concentrations were 0.1 μg/L 

(PFBA), and 0.3 μg/L (PFHxA). These results suggest that exposures to short-chain PFAS are 

infrequent or at levels below those that would result in detectable concentrations in urine. As such, 

these findings do not support biomonitoring of short-chain PFAS or fluorinated alternatives in the 

general population using urine, and highlight the importance of selecting the adequate 

biomonitoring matrix.
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Introduction

Per- and polyfluoroalkyl substances (PFAS) encompass thousands of environmentally 

persistent man-made compounds with a wide range of chemical functionalities and variable 

length carbon chains containing the perfluoroalkyl moiety (CnF2n+1–) (Buck et al., 2011). 

PFAS have been used since the 1950s in many industrial and consumer products, including 

soil, stain, grease, and water resistant coatings on textiles and carpet; in the automotive, 

mechanical, aerospace, chemical, electrical, medical, and building/construction industries; in 

personal care products; in cookware non-stick coatings; and in aqueous film-forming foams 

(ATSDR, 2015;Dewitt, 2015).

Manufacturing of long-chain PFAS, including two of the most studied PFAS, 

perfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA), their precursors and 

related compounds, changed in the United States in the 2000s (ATSDR, 2015;Dewitt, 2015). 

As a result, the market share of short-chain PFAS (e.g., perfluorobutane sulfonate [PFBS]) 

and PFAS with different chemical functional groups including perfluoroalkyl ether 

carboxylic acids, such as GenX (ammonium salt of 2,3,3,3,-tetrafluoro-2-(1,1,2,2,3,3,3-

heptafluoropropoxy)-propanic acid), may have changed as well (Sunderland et al. 

2019;Wang et al. 2019). PFBS, a replacement for PFOS, is used in consumer products 

including carpeting and carpeting cleaners, floor wax, and food packaging; GenX was 

developed to manufacture high-performance fluoropolymers without the use of PFOA (US 

EPA, 2018). The increased use of these other PFAS, many of which are unregulated (Pan et 

al., 2019), in consumer markets can result in human exposure (Sunderland et al. 2019;Wang 

et al. 2019).

While PFOS, PFOA and other long-chain PFAS persist in humans (ATSDR, 2015;Dewitt, 

2015), short-chain PFAS (e.g., PFBS, perfluorohexanoate (PFHxA)), and other PFAS such 

as GenX, used to replace long-chain PFAS, have shorter elimination half-lives in animals 

(Gannon et al., 2016;Gannon et al., 2011;Olsen et al., 2009) and people (Nilsson et al., 

2010;Olsen et al., 2009), and eliminate in urine (Gannon et al., 2016;Gannon et al., 

2011;Olsen et al., 2009). Exposure to some PFAS has been related to adverse health effects 

(ATSDR, 2015;Dewitt, 2015;Gomis et al., 2018). Therefore, the detection of PFAS in 

surface water and drinking water (Gebbink et al., 2017;Heydebreck et al., 2015;Kabore et 

al., 2018;Pan et al., 2017;Sun et al., 2016;Wei et al., 2018) and in the blood of people from 

communities exposed to contaminated drinking water (Daly et al., 2018;Fromme et al., 

2017;Graber et al., 2019;Hoffman et al., 2011;Holzer et al., 2009;Ingelido et al., 

2018;Landsteiner et al., 2014;Stubleski et al., 2017) in many parts of the world has raised 

concerns about the potential health implications from human exposure to PFAS.

Exposure to long-chain PFAS in the United States is widespread as suggested by nearly 

universal detection of these chemicals in serum among the U.S. general population (CDC, 

2019). The Centers for Disease Control and Prevention (CDC) have quantified serum 

concentrations of select PFAS in U.S. National Health and Nutrition Examination Survey 

(NHANES) participants starting with NHANES 1999–2000. Although the data suggest 

downward trends in exposure for several PFAS, including PFOS and PFOA, these 

compounds were detected even in persons born after the changes in production in the 2000s 
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(CDC, 2019;Ye et al., 2018). By contrast, although short-chain PFAS are increasingly used 

to replace long-chain PFAS (Brendel et al., 2018), short-chain PFAS (e.g., PFBS, 

perfluoroheptanoate (PFHpA)) were seldom detected in NHANES participants, and, when 

detected, concentrations were rather low (CDC, 2019;Ye et al., 2018), perhaps because these 

PFAS have relatively short half-lives (i.e., days to weeks) and may efficiently eliminate in 

urine.

Information on urinary concentrations of PFAS in humans is limited, yet, it may be 

important to understand exposure to short-chain and alternative PFAS. To address this 

knowledge gap, we developed an analytical method suitable for population-based 

biomonitoring programs, such as NHANES, to concurrently quantify in 50 μL of urine 14 

C4-C11 PFAS, and three fluorinated alternatives including GenX (Kato et al., 2018), and 

applied the method to obtain U.S.-nationally representative population data.

We present here the urinary concentrations of 17 PFAS in 2,682 2013–2014 NHANES 

participants 6 years of age and older, and evaluate the potential usefulness of urine as a 

biomonitoring matrix for assessment of PFAS exposure in the general population. When 

available, we compare these urinary concentrations to previously obtained serum 

concentrations from the same NHANES participants (CDC, 2019;Ye et al., 2018).

Methods

Study Population

NHANES, conducted continuously since 1999 by the National Center for Health Statistics 

(NCHS) at the CDC, includes direct household interviews with demographic, 

socioeconomic, dietary, and health-related questions, physical examinations, and collection 

of biological samples. Some of these samples are used to assess exposure to environmental 

chemicals (CDC, 2013).

For this study, we analyzed 2,682 spot urine samples collected from a random one-third 

subsample of 2013–2014 NHANES participants six years of age and older. The NCHS 

Research Ethics Review Board reviewed and approved the study protocol. To participate in 

the survey, all respondents gave informed written consent, parents or guardians provided 

written permission for participants younger than 18 years, and children 7–17 years old 

provided assent.

Quantification of PFAS Concentrations

The urine specimens were collected, aliquoted, and shipped on dry ice to the CDC`s 

National Center for Environmental Health where they were stored at −70 ⁰C until analysis. 

We quantified PFBS, perfluorohexane sulfonate (PFHxS), perfluoro-1-heptanesulfonate 

(PFHpS), linear PFOS (n-PFOS), mixture of perfluoro-5-methylheptane sulfonate (Sm-

PFOS) and perfluoro-5-methylheptanoic acid (Sb-PFOA) isomers, perfluorobutanoate 

(PFBA), perfluoropentanoate (PFPeA), PFHxA, PFHpA, linear PFOA (n-PFOA), 

perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid 

(PFUnDA), 2,3,3,3,-tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoate (HFPO-

DA), dodecafluoro-3H-4,8-dioxanoate (DONA), and 9-chlorohexadecafluoro-3-
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oxanonane-1-sulfonate (9Cl-PF3ONS) (Table 1). The analytical method, described in detail 

before (Kato et al., 2018), relies on an enzymatic hydrolysis of urinary conjugates of the 

target biomarkers in 50 μL urine, followed by online solid phase extraction, separation by 

reversed phase high-performance liquid chromatography, and detection by isotope dilution-

electrospray ionization tandem mass spectrometry (Supporting Information). Calibration 

standards, reagent blanks, and NHANES study samples were analyzed with matrix-based 

quality control (QC) materials (Supporting Information). The limit of detection (LOD), 

defined as the concentration at which a measurement has a 95% probability of being greater 

than zero (CDC, 2019), was calculated as three times the standard deviation obtained from 

five repeated measurements of low-level standards spiked onto human urine (Kato et al., 

2018). The LOD was 100 parts-per trillion or ppt (i.e., 0.1 μg/L) for all analytes. The method 

accuracy, determined from five repeated measurements of human urine spiked with high or 

low concentrations of the target analytes, ranged from 93.6 to 106.2%, depending on the 

analyte and concentration (Kato et al., 2018). Method precision, expressed as the relative 

standard deviation of multiple measures of the QC materials in a two-month period, ranged 

from 5.6 to 10.4 %, depending on the PFAS and concentration (Kato et al., 2018).

In serum of 2013–2014 NHANES participants, we previously quantified concentrations of 

10 of the PFAS now measured in urine in nationally representative subsamples of 639 

children 3–11 years of age and of 1,993 persons 12 years of age and older (CDC, 2019;Ye et 

al., 2018). The 10 PFAS (PFBS and PFHpA [short-chain PFAS], and PFHxS, n-PFOS, Sm-

PFOS, n-PFOA, Sb-PFOA, PFNA, PFDA, and PFUnDA [long-chain PFAS]) were quantified 

using analytical procedures described in detail before (Kato et al., 2011;Kato et al., 2018).

Statistical Analysis

We used Statistical Analysis System (SAS) (version 9.4; SAS Institute Inc., Cary, NC) and 

SUDAAN (version 13, Research Triangle Institute, Research Triangle Park, NC). All 

analyses incorporated sample weights and design variables to account for unequal selection 

probabilities caused by the complex, clustered design of NHANES and to account for 

oversampling certain demographic groups. For concentrations below the LOD, as 

recommended by NCHS, we imputed a value equal to the LOD divided by the squared root 

of 2 (Hornung and Reed, 1990).

For the descriptive analyses, we stratified age, self-reported in years at the last birthday, in 

two groups: 6–11, and ≥12 years. We also defined five race/ethnicity groups based on self-

report: non-Hispanic black, non-Hispanic white, all Hispanic, Mexican American, and 

Asian. We calculated select percentiles (both in micrograms per liter [μg/L] and in 

micrograms per gram of creatinine [μg/g creatinine]) using survey sampling weights. For 

each analyte, we calculated the detection frequency for all samples and by age group. We did 

not calculate geometric means because the proportion of results <LOD was greater than 40% 

for all PFAS examined.

For a select group of participants (148 children 6–11 years of age, and 2,125 individuals 12 

years of age and older), we previously measured in serum—collected at the same time the 

urine was collected—the concentrations of 10 short-chain and long-chain PFAS (but not 

PFAS alternatives): PFBS, PFHpA, PFHxS, n-PFOS, Sm-PFOS, n-PFOA, Sb-PFOA, PFNA, 
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PFDA, and PFUnDA (CDC, 2019). For these participants, we compared the detection 

frequency of the 10 PFAS in the paired urine-serum samples.

We also calculated the proportion of the general population with detectable concentrations of 

up to three PFAS in urine for the matched paired urine-serum samples, as well as for the 

total number of urine samples.

Results

The frequency of having detectable concentrations of at least one of the 17 PFAS examined 

in urine of 2013–2014 NHANES participants 6 years of age and older was 27.2%, of 

detecting at least two was 4.7%, and of detecting three was 0.6%; the frequency of detecting 

none was 67.5% (Figure 1, Table S1). The detection frequency of individual PFAS in 2013–

2014 NHANES participants’ urine was 22.6% (PFHxA), 13.3% (PFBA), 1.2% (GenX), 

1.1% (PFHpA), <0.1% (PFHxS, PFHpS, n-PFOS, Sb-PFOA, PFNA), and 0% for the other 

eight PFAS (Figure S2, Table 1). Detection frequencies were similar regardless of age group 

(6–11 vs ≥12 years).

Concentration ranges (min–max) of the four PFAS detected most frequently in 2013–2014 

NHANES participants 6 years of age and older were <LOD–7.5 μg/L (PFHxA), <LOD–3.4 

μg/L (PFBA), <LOD–0.4 μg/L (GenX), <LOD–0.3 μg/L (PFHpA); ranges of all 17 PFAS 

for 2013–2014 NHANES participants overall and by age group are shown in Table 1. The 

90th and 95th percentiles were 0.10 μg/L and 0.30 μg/L (PFBA) and 0.30 μg/L and 0.50 μg/L 

(PFHxA), respectively (Tables 2 and 3).

For a select group of 2013–2014 NHANES participants (N=2,273), we had concentrations in 

paired urine and serum, collected at the same time, of 10 PFAS: two short-chain PFAS 

(PFBS and PFHpA), and eight long-chain PFAS (PFHxS, n-PFOS, Sm-PFOS, n-PFOA, Sb-

PFOA, PFNA, PFDA, PFUnDA). The highest detection frequency in urine was for PFHpA 

(1.2%) among 2013–2014 NHANES participants 12 years of age and older; the 

corresponding frequency in serum was 12.6% (Figure 2). PFHpA was not detected in urine 

of 2013–2014 NHANES children 6–11 years, but the detection frequency was 16.2% in 

these children’s serum. Similarly, the other short-chain PFAS, PFBS, was not detectable in 

urine regardless of age, but detectable in serum of 0.6% and 9.1% of 2013–2014 NHANES 

participants who were ≥12 years and 6–11 years of age, respectively (Figure 2). On the other 

hand, for long-chain PFAS, although the detection frequency in 2013–2014 NHANES 

participants’ serum was >98% for PFHxS, n-PFOS, Sm-PFOS, n-PFOA and PFNA, in urine, 

the corresponding frequency was <0.1% (Figure 2). The highest PFOS concentration in 

urine (n-PFOS, 0.6 μg/L) corresponded to the highest PFOS concentration in serum (n-

PFOS, 1270 μg/L), in agreement with previous studies showing that concentrations of long-

chain PFAS are much higher in serum than in urine (Beesoon et al., 2012;Genuis et al., 

2013;Li et al., 2013;Zhang et al., 2013).

Discussion

We quantified urinary concentrations of 14 C4-C11 PFAS and three fluorinated PFAS 

alternatives in 2,682 participants 6 years of age and older from 2013–2014 NHANES. Our 
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estimates indicate that about two-thirds (67.5%) of the U.S. general population did not have 

detectable urinary concentrations of any of the 17 PFAS examined. Approximately one 

quarter (27.2%) of the population was estimated to have detectable urinary concentrations of 

at least one PFAS, 4.7% of at least two PFAS, and only 0.6% of three PFAS. Furthermore, in 

terms of individual PFAS, the estimated detection frequencies in urine of 15 of the 17 target 

PFAS or fluorinated alternatives for the U.S. general population were low, in the range of 0–

1.2%, with the exception of two short-chain PFAS: PFBA (13.3%) and PFHxA (22.6%). 

Noteworthy, although detection frequency would have been higher with a more sensitive 

method (e.g., LODs ≤0.01 μg/L), urinary concentrations, when detected, were low (i.e., the 

90th percentiles of PFBA and PFHxA were at or around the LOD of 0.1 μg/L).

Furthermore, the 2013–2014 NHANES results in urine do not suggest extensive exposure to 

those 17 PFAS, including PFOS, PFOA, PFNA, and PFHxS. Yet, 2013–2014 NHANES data 

in serum suggest universal exposure to these four long-chain PFAS among the U.S. general 

population (CDC, 2019). These apparently contradictory results highlight the critical 

relevance of using the proper biomonitoring matrix for exposure assessment. Concentrations 

of biologically persistent chemicals are higher in serum than in urine (Needham et al., 2007). 

In agreement with this principle, the 2013–2014 NHANES data suggest that despite being 

detected in fewer than 0.1% of the general population’s urine, PFOS, PFOA, PFNA, and 

PFHxS, long-chain PFAS with elimination half-lives of years (Bartell et al., 2010;Olsen et 

al., 2007), were universally detected in the general population’s serum (CDC, 2019).

Also, long-chain PFAS concentrations in 2013–2014 NHANES participants 6 years of age 

and older were much higher in serum than in urine. For example, a serum concentration of 

PFOS of 1,270 μg/L, similar to median concentrations among manufacturing workers (Fu et 

al., 2016;Gao et al., 2015), corresponded to a urine concentration of 0.6 μg/L in this study, 

also similar to these manufacturing workers’ median urinary concentrations. Higher 

concentrations in serum compared to urine also agree with studies of children, adults and 

pregnant women from the general population of Canada, China, and South Korea (Genuis et 

al., 2013;Kim et al., 2019;Kim et al., 2014;Li et al., 2013;Zhang et al., 2015;Zhang et al., 

2013), and of highly exposed populations, including occupationally-exposed Chinese 

workers (Fu et al., 2016;Gao et al., 2015;Zhou et al., 2014), and people accidentally exposed 

to PFAS through contaminated water or dust (Beesoon et al., 2012;Worley et al., 2017). 

Together, the 2013–2014 NHANES findings confirm that for long-chain PFAS, serum is the 

most appropriate biomonitoring matrix for exposure assessment regardless of the exposure 

type (e.g., background vs occupational). We acknowledge, however, that for experimental 

research and pharmacokinetic studies, using matrices other than serum (e.g., urine) may 

provide relevant information to better understand the biological fate of PFAS.

Of the eight short-chain and alternative PFAS examined in 2013–2014 NHANES, 13.3%, 

22.6%, 1.2%, and 1.1% of the general population had detectable urinary concentrations of 

PFBA, PFHxA, GenX, and PFHpA, respectively. However, concentrations were low (e.g., 

95th percentile was 3–5 times the LOD of 0.1 μg/L). Considering the relatively short half-life 

of short-chain PFAS in humans (i.e., days to ~4 weeks) (Chang et al., 2008;Olsen et al., 

2009) and assuming a similar persistence for GenX in humans based on data in rodents and 

primates (Gannon et al., 2016), the NHANES results do not support widespread exposure to 
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these PFAS in the general U.S. population. Occupational studies and/or studies among 

residents of communities exposed through drinking water can provide important information 

to evaluate whether exposures may be restricted to populations who live or work nearby 

exposure sources.

GenX, introduced as a PFOA substitute, was detected in the Cape Fear River Basin in North 

Carolina (Sun et al., 2016), but not in select area residents’ urine (Pritchett et al., 2019) or 

serum (Ahearn, 2019;Pritchett et al., 2019). One investigation involved 30 people ≥12 years 

of age living near a manufacturing facility and whose drinking water private wells had an 

average GenX concentration of 680 ppt (Pritchett et al., 2019). The other investigation 

included 345 individuals, 56 of them children, whose tap water contained a median GenX 

concentration of 50 ppt (Ahearn, 2019).

PFBA may result from industrial synthesis, metabolism, and environmental degradation of 

certain fluorinated chemicals (Benskin et al., 2012;Chang et al., 2008;D’Eon and Mabury, 

2007). PFBA has been detected in precipitation, surface waters, water treatment facility 

effluents, and drinking water sources (Landsteiner et al., 2014;Llorca et al., 2017;Mak et al., 

2009;Scott et al., 2006;Skutlarek et al., 2006;Wilhelm et al., 2010;Yang et al., 2012), and in 

the serum of people with potential exposure to PFBA through occupation and/or 

contaminated drinking water (Chang et al., 2008;Landsteiner et al., 2014). The fact that 96% 

of serum PFBA concentrations among 177 adults with plausible exposure via contaminated 

drinking water were <2 μg/L (Chang et al., 2008)—within ranges of the median serum 

concentrations in American Red Cross adult blood donors (Olsen et al., 2011) in 2000–2001 

(2.3 μg/L) and 2006 (0.4 μg/L)—and its postulated 2–4 days average human serum 

elimination half-life (Chang et al., 2008) suggest that PFBA eliminates efficiently from the 

body.

PFHxA is an impurity of, and a metabolite and degradation product of fluorotelomer-based 

products present in the market since the 1970s (Anderson et al., 2019). PFHxA may also be 

used in fluorinated polymer production, aqueous firefighting foams, water/grease repellents, 

food/pharmaceutical packaging, and other commercial products (Anderson et al., 2019). 

However, because PFHxA detection in water is generally low and infrequent, drinking water 

might not be a PFHxA exposure route of concern for the general population (Anderson et 

al., 2019). In experimental studies, PFHxA doesn’t bioaccumulate in mammals (Anderson et 

al., 2019;Conder et al., 2008;Russell et al., 2013). Based on exposure information from 

professional ski wax technicians, its geometric mean elimination half-life was estimated to 

be 32 days (Russell et al., 2013). Compared to long-chain PFAS, PFHxA human exposure 

data are more limited, and concentrations much lower (e.g., serum medians range from non-

detectable to 0.62 μg/L) (Anderson et al., 2019;Kim et al., 2019;Lee et al., 2017;Olsen et al., 

2017;Wan et al., 2013;Zhou et al., 2016).

Together, these 2013–2014 NHANES results, investigations of populations whose drinking 

water was contaminated with short-chain and alternative PFAS, and occupational studies do 

not support recent exposure to GenX, PFBA, PFHxA among the U.S. general population, 

and even among individuals known to have detectable levels of these chemicals in their 

drinking water. Of note, even though these PFAS may eliminate relatively quickly from the 
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human body, they will remain much longer in the environment (Ahearn, 2019;Gomis et al., 

2015;Wang et al., 2015).

Two short-chain PFAS, PFHpA and PFBS, were detected more often in the 2013–2014 

NHANES participants’ serum (CDC, 2019;Ye et al., 2018)) than in their urine. These PFAS 

have shorter biological persistence than long-chain PFAS. For example, PFBS serum 

elimination half-life in humans is 26 days (Olsen et al., 2009); although unknown for 

PFHpA (in rats, its half-life was shorter than that of PFOA (Ohmori et al., 2003)), it was 

proposed to be <4 weeks for PFHxA (Nilsson et al., 2010). Similar PFHpA concentration 

and detection patterns of paired serum/urine results (PFBS was not measured) were reported 

for 86 Chinese adults (22–88 years) sampled in 2010 (Zhang et al., 2013), and seven 

members 15–52 years of age of a Canadian family, sampled in 2008, who were exposed to 

higher than background concentrations of PFHxS from use of home carpet treatment 

products (Beesoon et al., 2012). Likewise, among 94 South Koreans 2–82 years sampled in 

2014–2015, serum concentrations were higher than urine concentrations for PFHpA, 

although lower for PFBS (Kim et al., 2019). On the other hand, in a group of 120 South 

Korean children 5–13 years sampled in 2013 (Kim et al., 2014), mean concentrations of 

PFHpA and PFBS were higher in urine (1.35 μg/L and 0.492 μg/L) than in serum (0.312 

μg/L and 0.105 μg/L), respectively. The observed discrepancies in concentration and 

detection patterns among the 2013–2014 NHANES and other populations may relate to 

differences in analytical methods and/or differences in representativeness of the examined 

populations. Nevertheless, in occupationally-exposed workers with concentrations 

considerably higher than those among the U.S. general population, serum concentrations 

were higher than urine concentrations for select short-chain PFAS. For example, Chinese 

workers from fisheries in an area close to several fluorochemical manufacturers had higher 

concentrations of PFHpA and PFBS in serum (median, 0.08 μg/L and 11.3 μg/L) than in 

urine (median, 0.0159 μg/L and 1.57 μg/L), respectively (Zhou et al., 2014). In six American 

workers followed for 180 days, PFBS concentrations were also higher in serum than in urine 

(Olsen et al., 2009). The results from these two occupational studies, and from 2013–2014 

NHANES in this study suggest that serum concentrations may also be adequate for exposure 

assessment of short-chain PFAS with biological half-lives of several days to weeks.

Conclusions

Our results indicate that the majority of the U.S. general population in 2013–2014 did not 

have detectable urinary concentrations of 14 C4-C11 PFAS and three fluorinated PFAS 

alternatives. A small percentage of the population was estimated to have detectable—albeit 

relatively low and often close to the limit of detection—urinary concentrations of PFHxA 

(27.2%), PFBA (13.3%), PFHpA (1.1%), the fluorinated alternative GenX (1.2%), and no 

detectable concentrations of PFBS or the two other fluorinated alternatives. Therefore, the 

2013–2014 NHANES urine PFAS data do not support widespread exposure to short-chain 

PFAS or fluorinated alternatives (e.g., GenX) in the U.S. general population although 

exposures in select populations who live or work nearby exposure sources may occur. In 

addition, these findings highlight challenges to assess human exposure to relatively non-

biologically persistent PFAS detected in the environment at or below parts-per-trillion levels, 

in population-based studies.
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Noteworthy, fewer than 0.1% of the U.S. general population was estimated to have 

detectable urinary concentrations of long-chain PFAS, including PFOS, PFOA, PFHxS, 

PFNA, even though 2013–2014 NHANES serum data suggested universal exposure to these 

legacy PFAS among the general population. These findings stress the importance of 

selecting the proper biomonitoring matrix. Considering that serum is the best biomonitoring 

matrix for long-chain PFAS, we conclude that, regardless of the exposure scenario, 

concentrations in serum of PFAS with biological half-lives of several days to weeks will also 

provide the best biomonitoring exposure assessment.

Supplementary Material
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Figure 1. 
Estimated proportion of the U.S. general population 6 years of age and older with PFAS 

detected in urine. Data from 2013–2014 NHANES for 17 PFAS
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Figure 2. 
Estimated proportion of the population with detectable concentrations of individual PFAS in 

paired 2013–2014 NHANES urine-serum samples by age group: (A) 12+ years of age (N = 

2,125), and (B) 6–11 years of age (N = 148).
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Table 1.

Concentration ranges and estimated percentage of the U.S. general population 6 years of age and older with 

detectable urinary concentrations of select PFAS in urine (2013–2014 NHANES)
a

PFAS Age group (years) Percent detection in the U.S. population (%) Concentration range (μg/L)
b

PFBA 6+ 13.3 0.07–3.4

6–11 13.6 0.07–0.7

12+ 13.3 0.07–3.4

PFHxS 6+ 0.03 0.07–0.1

6–11 0 0.07–0.07

12+ 0.04 0.07–0.1

PFHxA 6+ 22.6 0.07–7.5

6–11 21.5 0.07–1.3

12+ 22.7 0.07–7.5

PFHpS 6+ 0.06 0.07–0.1

6–11 0 0.07–0.07

12+ 0.06 0.07–0.1

PFHpA 6+ 1.1 0.07–0.3

6–11 0.7 0.07–0.2

12+ 1.2 0.07–0.3

n-PFOS 6+ 0.05 0.07–0.6

6–11 0 0.07–0.07

12+ 0.05 0.07–0.6

Sb-PFOA 6+ 0.06 0.07–0.1

6–11 0.2 0.07–0.1

12+ 0.05 0.07–0.1

PFNA 6+ 0.02 0.07–0.1

6–11 0 0.07–0.07

12+ 0.02 0.07–0.1

GenX 6+ 1.2 0.07–0.4

6–11 1.5 0.07–0.4

12+ 1.2 0.07–0.3

a
PFBS, PFPeA, Sm-PFOS, n-PFOA, PFDA, PFUA, 9Cl-PF3ONS, and DONA were not detected in any samples.

b
Ranges given as minimum–maximum where minimum values below the LOD (limit of detection, 0.1 μg/L for all analytes) were replaced with 

0.07 μg/L (i.e., LOD/SQR2).
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