
1

SLEEPJ, 2021, 1–12

doi: 10.1093/sleep/zsaa170
Advance Access Publication Date: 7 October 2020
Original Article

Submitted: 23 April, 2020; Revised: 30 July, 2020

© Sleep Research Society 2020. Published by Oxford University Press on behalf of the Sleep Research Society. 
All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

Original Article

A standardized framework for testing the performance of 

sleep-tracking technology: step-by-step guidelines and 

open-source code

Luca Menghini1,2,*, , Nicola Cellini2,3,4,5, , Aimee Goldstone1, Fiona C. Baker1,6, 
Massimiliano de Zambotti1,

1Center for Health Sciences, SRI International, Menlo Park, CA, 2Department of General Psychology, University of Padova, 

Padua, Italy, 3Department of Biomedical Sciences, University of Padova, Padua, Italy, 4Padova Neuroscience Center, University 

of Padova, Padua, Italy, 5Human Inspired Technology Center, University of Padova, Padua, Italy and 6Brain Function Research 

Group, School of Psychology, University of the Witwatersrand, Johannesburg, South Africa

*Corresponding Author. Luca Menghini, Department of General Psychology, University of Padova Via Venezia 8, 35131 Padova, Italy. Email: luca.
menghini.3@phd.unipd.it.

Abstract
Sleep-tracking devices, particularly within the consumer sleep technology (CST) space, are increasingly used in both research and 
clinical settings, providing new opportunities for large-scale data collection in highly ecological conditions. Due to the fast pace of 
the CST industry combined with the lack of a standardized framework to evaluate the performance of sleep trackers, their accuracy 
and reliability in measuring sleep remains largely unknown. Here, we provide a step-by-step analytical framework for evaluating 
the performance of sleep trackers (including standard actigraphy), as compared with gold-standard polysomnography (PSG) or other 
reference methods. The analytical guidelines are based on recent recommendations for evaluating and using CST from our group 
and others (de Zambotti and colleagues; Depner and colleagues), and include raw data organization as well as critical analytical 
procedures, including discrepancy analysis, Bland–Altman plots, and epoch-by-epoch analysis. Analytical steps are accompanied by 
open-source R functions (depicted at https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html). 
In addition, an empirical sample dataset is used to describe and discuss the main outcomes of the proposed pipeline. The guidelines 
and the accompanying functions are aimed at standardizing the testing of CSTs performance, to not only increase the replicability 
of validation studies, but also to provide ready-to-use tools to researchers and clinicians. All in all, this work can help to increase 
the efficiency, interpretation, and quality of validation studies, and to improve the informed adoption of CST in research and clinical 
settings.
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Statement of Significance
Sleep technology is increasingly used by sleep researchers and clinicians. Wearable sleep trackers are recognized as promising 
tools for large-scale sleep assessment. However, their level of accuracy is still largely unknown, and the validation process is 
challenged by the lack of a standardized framework to evaluate the performance of these devices. In our guidelines, we provide 
step-by-step analytic procedures, an illustrative example, and a set of open-source R functions that can be easily implemented by 
different laboratories for testing and interpreting the performance of different sleep trackers. The proposed analytical framework 
can improve the efficiency and reproducibility of validation studies while promoting the informed adoption of sleep trackers for 
both research and clinical purposes.
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Introduction

Sleep-tracking technology, and particularly consumer sleep 
technology (CST; i.e. multi-sensor wearable sleep trackers 
such as wristbands, armbands, and smartwatches), is increas-
ingly used by sleep researchers and clinicians to track quality, 
quantity, and patterns of sleep in an individual’s free-living 
conditions and for extensive periods [1]. The continuous 
passive tracking of sleep can generate massive datasets (big 
data), opening an unprecedented window of opportunity to 
investigate sleep in relation to a wide range of factors impli-
cated in health and disease [2–4].

The widespread usage of CST by the general population, 
their limited cost and low level of expertise required are among 
the main reasons for their growing popularity within the scien-
tific sleep community. Moreover, the recent implementation of 
miniaturized multisensory systems able to integrate accelerom-
eters with a broad range of other biosensors capturing physio-
logical (e.g. cardiac data) and environmental information (e.g. 
environmental noise) has further enhanced the potential of CST 
to deeply explore sleep (sleep composition in addition to sleep/
wake patterns) and its physiology (e.g. sleep autonomic func-
tion) [2–4]. Consequently, CST is viewed by sleep researchers as a 
promising cost-effective tool to enable large-scale sleep assess-
ment and advance the field of sleep and circadian science [5].

Despite these advantages, the validity, accuracy, and re-
liability of CST devices are still poorly supported by empirical 
data, a crucial and overlooked factor in their adoption (see de 
Zambotti and colleagues [1]). The unstandardized, undisclosed, 
and often unvalidated data outcomes and algorithms are among 
the main challenges the scientific community faces in using CST 
[1, 5–7]. As recommended by the American Academy of Sleep 
Medicine (AASM), “further CST data validation regarding device 
accuracy and application within clinical practice is necessary if 
these devices are to be considered part of medical evaluation 
and treatment” [6]. Such a required effort appears to be acknow-
ledged by the CST literature, where an increasing number of val-
idation studies has been reported [3, 8]. Nevertheless, the slow 
pace of scientific validation and peer-reviewed publication pro-
cesses is challenged by the relentless pace of the CST industry, 
with new devices and algorithms being introduced every year, 
questioning the generalizability of published results and the ap-
propriateness of the term “validation” itself. Consequently, there 
is a need for more time efficient and standardized validation 
protocols to continuously update the evidence on the perform-
ance (rather than the “validity”) of CST devices [1, 5].

Standardized protocols are also necessary for promoting 
comparison across studies and better interpretation of CST 
outcomes. Indeed, CST performance is currently evaluated by 
a strongly heterogenic and sometimes lax range of methodo-
logical and analytical procedures. For instance, Haghayegh and 
colleagues [9] excluded 50 of the 72 identified articles from their 
review on the accuracy of Fitbit devices also due to ineligible or 
insufficiently described method or outcomes, and they reported 
inconsistencies across multiple aspects such as recording set-
ting, method of reference, and statistical procedures. A similar 
degree of heterogeneity has been reported by other reviews of 
CST validation studies [1, 3], including those evaluating the per-
formance of clinical-grade actigraphy [10]. In addition to the 
diversity in validation protocols, the variety of device features 
implies important differences in terms of analytical techniques 

and also in the terminology used to describe their performance. 
For example, the classic definition of “sensitivity” as the ability 
to detect sleep (useful in a dichotomic sleep/wake classification) 
is inadequate to describe the performance of newer devices pro-
viding more than two levels of classifications (sleep stages).

In sum, our understanding of CST performance is threat-
ened by heterogeneity at various levels (e.g. data collection pro-
cedures, data analysis, device features, and terminology). Such 
complexity highlights the need for a common framework to aid 
comparison across studies, devices, and algorithms, to reduce at 
least some areas of uncertainty.

Initial CST validation guidelines have been introduced by 
de Zambotti and colleagues [1] and largely supported by a con-
sensus panel report [5] following the Sleep Research Society 
sponsored workshop “International Biomarkers Workshop on 
Wearables in Sleep and Circadian Science”, held at the 2018 
SLEEP Meeting of the Associated Professional Sleep Societies in 
Baltimore (Maryland, USA). These efforts highlighted the most 
up-to-date methodological and analytical requirements to 
be met by validation studies, with the goal of promoting fur-
ther development and informed use of CST in the sleep and 
circadian field.

Here, we aimed to integrate these recommendations by pro-
viding step-by-step analytical guidelines to evaluate the per-
formance of sleep trackers compared with reference methods 
such as PSG. The analytical steps are designed to be simple 
and easily accessible, to flexibly fit the prototypical datasets 
used by CST validation studies, and to be applied to any type 
of sensors providing sleep outcomes. Each step is accom-
panied by a set of open-source functions [11] based on the R 
environment [12]. Finally, an empirical sample dataset is used 
to illustrate the recommended steps, and to describe the es-
sential outputs that should be reported in a validation paper. 
The analytical pipeline with example code in R matching the 
step-by-step procedure outlined in the article is available at 
https://sri-human-sleep.github.io/sleep-trackers-performance/
AnalyticalPipeline_v1.0.0.html.

Methods

Step-by-step guidelines for testing the performance 
of sleep-trackers

The following guidelines target prototypical studies reporting on 
sleep trackers performance (i.e. comparing the performance of a 
device in measuring sleep against gold-standard PSG), but they can 
be generalized to several other cases. For instance, although PSG 
has been recommended as the gold-standard to evaluate CST [1, 5], 
we recognize that the comparison of CST devices with other refer-
ence methods, including standard actigraphy and subjective sleep 
reports, can be informative under certain circumstances (e.g. see 
[13, 14]). Similarly, whereas most sleep trackers are increasingly able 
to provide information on sleep staging, it is acknowledged that 
some frequently used devices (including standard actigraphy) can 
only measure sleep/wake patterns. Thus, the proposed guidelines 
are designed with a degree of flexibility to generalize to cases where 
reference methods alternative to PSG are used, or where only the 
sleep/wake pattern is provided. In the following sections, “device” 
indicates any sleep tracker under assessment, whereas “reference” 
refers to any other method against which the device is tested.

https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html
https://sri-human-sleep.github.io/sleep-trackers-performance/AnalyticalPipeline_v1.0.0.html
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Considering the pace of the CST industry, we encourage the 
use of the term “performance” instead of “validity,” to prevent 
erroneous interpretation of a device as valid when only limited 
information is provided (e.g. a single study), and when device 
functioning can rapidly change as algorithms are updated. 
Also, “CST validation studies” are typically method comparison 
studies. Although method comparison has been considered as 
a special type of validity (i.e. the ability of a measurement to 
reflect what it is designed to measure), the agreement of a new 
method with a gold standard should be more correctly referred 
to its reliability (i.e. the absence of measurement error) [15]. 
Thus, in the present article “performance” refers to the qualities 
of a sleep tracker describing its measurement error (reliability 
and accuracy), as quantified by the agreement with a reference 
method [16, 17].

The procedures described below are strictly focused on 
evaluating such qualities through the computation of the rele-
vant performance metrics on a specific sample of subjects. 
Group comparison (e.g. insomnia patients vs. healthy sleepers) 
or measurement precision (i.e. agreement between repeated 
measurements using the same method) can be addressed with 
traditional statistical tools (e.g. linear regression, test–retest 
comparison) to model the variability of the computed metrics 
(see also [17]). Similarly, common statistical aspects such as 
data distribution, outlier detection, homoscedasticity, and con-
fidence intervals computation are not discussed in detail but 
briefly described at the end of each section, and highlighted by 
the accompanying functions, allowing for informed decision 
about function parameter settings. A flow chart of the recom-
mended analytical procedures is depicted in Figure 1.

Following the description of the analytical steps, the pro-
posed guidelines are applied to a sample of empirical data, 
which is used as an example to illustrate the essential recom-
mended analytical steps to be reported in a “validation paper,” 
and to provide an interpretation of the main outcomes. The data 
were obtained from a sample of 14 healthy adults (30–53 y, 6 
women) recruited from the community of the San Francisco Bay 
Area, who spent a night at the SRI human sleep lab. All partici-
pants gave informed consent and the study was approved by the 
SRI International Institutional Review Board. Standard labora-
tory PSG sleep assessment was performed via the Compumedics 
Grael® HD-PSG system (Compumedics, Abbotsford, Victoria, 
Australia) while participants were also wearing a Fitbit Charge 2 
device (Fitbit Inc.).

Step 1: data structure

The recommended analytical steps rely on minimal methodo-
logical assumptions to generate the optimal data structure. 
First, sleep should be measured simultaneously with the device 
under assessment and a reference method. Second, both device 
and reference recordings should have the same epoch length 
(e.g. 30-s or 1-min). Epoch duration should be adjusted when the 
epoch length differs between device and reference. For instance, 
the AASM standards recommend scoring PSG recordings in 30-s 
epochs [18]. When such length is not allowed by the device, as 
for CST devices providing 1-min epochs, a conversion should be 
performed to aggregate PSG epochs, by preferring “wake” score 
when both sleep and wake are present in either one of the two 
30-s epoch of each minute [19]. Importantly, some CST devices 

do not allow the user to export epoch-by-epoch (EBE) data and 
instead provide only nightly summary sleep measures. In these 
cases, assuming that a replicable procedure is used to syn-
chronize the recordings, it is only possible to evaluate the device 
performance through discrepancy analysis (i.e. by skipping EBE 
data processing and the analyses described in Step 3).

Third, when EBE data is provided, device and reference re-
cordings should be synchronized on an epoch level. The tem-
poral synchronization between the device and the reference 
data recordings is critical as lack of synchronization can strongly 
influence certain outcomes, particularly EBE metrics. Ideally, 
both recordings should be confined to the period between 
lights-off and lights-on (i.e. sharing the same time in bed [TIB]), 
either by synchronizing the starting time before the recording 
or by aligning the epoch after the recording (post-processing), 
provided that device and reference share the same timestamps. 
Several strategies have been proposed to assure the alignment 
between device and reference starting time (e.g. see [20, 21]). 
Although lights-off and lights-on are often automatically deter-
mined by CST algorithms, their correspondence between device 
and reference is required for comparing the measures recorded 
by the two methods.

Fourth, device and reference data should be encoded using 
the same coding system (e.g. 0 = wake in both device and refer-
ence data). The epoch coding system to be used depends on the 
ability of the device and the reference to provide sleep staging. 
Conventionally, most CST devices that provide sleep staging in-
formation consider PSG-based N1 + N2 sleep as “light sleep” and 
N3 as “deep sleep.” Checking these specifications with the device 
manufacturer is recommended. A  categorical coding system 
(e.g. 0 = wake, 1 = N1/N2 or “light” sleep, 2 = N3 or “deep” sleep, 
3 = REM sleep) is used when sleep staging is provided, whereas 
a binary system (e.g. 0 = wake, 1 = sleep) is used when only the 
sleep/wake pattern is available. Finally, both recordings should 
not contain any missing data.

Detailed methodological recommendations (e.g. device set-
ting, synchronization, and experimental protocols) in assessing 
the performance of sleep-tracking technology have been dis-
cussed elsewhere [1, 5]. Once the device and reference data have 
been collected and recoded, the application of the following 
steps assumes the organization of the dataset in a long format 
that includes one column for the subject identifier, one column 
for the epoch identifier, and two columns reporting the device 
and the reference data, respectively (see section 1 of the analyt-
ical pipeline [11]).

Step 2: discrepancy analysis

The analysis of the discrepancies between a new and a refer-
ence method is thought to be the main step to evaluate the suit-
ability of the new method as a substitute of the reference.[16] 
Here, “discrepancy” refers to the difference (bias) and the limits 
of agreement (LOAs) between any device- and reference-derived 
numeric measurement (e.g. total sleep time).

Sleep measures computation
Classical overnight sleep parameters (see [18]) can be easily 
computed from the data structure described at the end of Step 
1. Table 1 provides a definition and a computational procedure 
for each of the main sleep measures to be considered in CST 
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validation studies, including both those derived from sleep/
wake dichotomous data (e.g. provided by actigraphy) and those 
based on sleep staging (e.g. provided by the new generation of 
multi-sensor CST devices).

Individual-level discrepancies
After the computation of the relevant sleep measures, data 
are organized in two columns (device and reference measures) 

matched by subject and used to compute the difference for each 
subject in each measure. In contrast with the data structure de-
scribed in Step 1 (i.e. long form, with one row for each epoch), 
sleep measures and the corresponding discrepancies are struc-
tured in a wide form, with one row for each subject. Specifically, 
when a device is compared with a reference method, the 
reference-derived measures are subtracted from device-derived 
measures (i.e. device − reference), such that positive differences 

Figure 1.  Analytical flow chart including the core analytical steps to evaluate the performance of sleep trackers. LOAs, limits of agreement; EBE, epoch-by-epoch; 

PABAK, prevalence-adjusted bias-adjusted kappa; ROC, receiver operating characteristic.
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will be interpreted as device’s overestimations, whereas nega-
tive differences will be interpreted as device’s underestimations. 
It is common practice to graphically represent individual-level 
discrepancies (e.g. Bland–Altman plots, see below), also to high-
light potential outliers in the sample (see section 2.2 of the ana-
lytical pipeline [11]).

Group-level discrepancies
In a subsequent step, discrepancies computed at the individual 
level are used to estimate the systematic and the random com-
ponent of measurement error in the device under assessment. 
As originally proposed by Altman and Bland [22], the former is 
quantified by the systematic bias whereas the random error is 
quantified by the 95% LOAs. Bias and LOAs computation relies 
on three main assumptions: (1) the bias should be independent 
from the size of measurement, (2) random error should be uni-
form over the size of measurement (homoscedasticity), and (3) 
differences should be normally distributed [16]. A function that 
automatically tests each assumption and computes the results 
accordingly is included in 11 (see section 2.3 of the analytical 
pipeline). Here, we briefly discuss how each assumption is 
tested, and how bias and LOAs are computed under each cir-
cumstance (see also [17]).

Constant bias, homoscedasticity, and normally distributed differ-
ences:   When all assumptions are fulfilled, the systematic bias 
is easily computed as the mean of the differences between 
each measure obtained with the device and the reference. In 
this case, the observation of a systematic bias (i.e. significantly 
higher or lower than zero) simply implies the necessity to adjust 
for it by subtracting the mean difference (“calibration index”) 
from device-derived measures. Under the same conditions, 
LOAs are computed as bias ± 1.96 standard deviations (SD) of the 
differences [16, 17].

Proportional bias:   Proportional bias indicates a case where the 
mean difference increases or decreases as a function of the size 
of measurement (SM), that is the “true magnitude” (i.e. based 
on the reference) of the considered sleep measure. For instance, 
it might happen that TST discrepancies are larger for subjects 

with lower “true TST” compared with subjects with higher TST. 
Unless a nonlinear relationship between SM and the bias is de-
tected (which is very unlikely to occur), proportional bias for 
the sleep measure i can be tested and represented using simple 
linear regression:

	 Biasi = b0 + b1SMi.� (1)

A statistical test of the slope b1, accompanied by the visual in-
spection of Bland–Altman plots (see below), can be used to decide 
how to represent the bias: with equation (1) if b1 is significant, as 
the mean difference otherwise [16]. When a proportional bias is 
detected but data are homoscedastic, LOAs are computed as:

95 % LOAsi = Biasi ± 1.96 ×

Ã
1
n

n∑
i=1

[(xDi − xRi)− (b0 + b1SMi)]
2,

		
		  (2)

�

where n is the sample size, and xDi and xRi are the 
i-th sleep measure obtained with the device and the reference, 
respectively.

Heteroscedasticity:  Heteroscedasticity indicates a case where 
the random error (i.e. the SD of the differences) increases or de-
creases as a function of SM [15]. Similar to what is indicated for 
proportional bias, heteroscedasticity can be evaluated by visu-
ally inspecting the trend of the differences dispersion over SM 
(Bland–Altman plots) and by applying a linear regression model 
to the absolute values of the residuals (AR) obtained from the 
model reported in equation (1):

	 ARi = c0 + c1SMi.� (3)

If c1 is significant, data are considered heteroscedastic. To deal 
with heteroscedasticity, data can be log-transformed before 
computing LOAs [16, 23]. Alternatively, when log transformation 
does not remove heteroscedasticity, the SD of the differences 
can be expressed as a function of SM, using the coefficients es-
timated with equation (3) [16]. Under the assumption of nor-
mality, LOAs are then expressed as:

Table 1.  Main sleep measures considered in discrepancy analysis

Sleep metric Definition Computation

TST Number of minutes classified as sleep between lights-off 
and lights-on

Sum of epochs classified as sleep × epoch 
length (s)/60

SE Percentage of total sleep time over TIB TST/TIB
SOL Number of minutes classified as wake before the first epoch 

classified as sleep
Sum of epochs classified as wake before 

the first sleep epoch × epoch length 
(s)/60

WASO Number of minutes classified as wake after the first epoch 
classified as sleep

Sum of epochs classified as wake after the 
first sleep epoch × epoch length (s)/60

“Light” sleep duration Number of minutes classified as “light” sleep (the equivalent 
of PSG N1 + N2 sleep) between lights-off and lights-on

Sum of epochs classified as “light” sleep × 
epoch length (s)/60

“Deep” sleep duration Number of minutes classified as “deep” sleep (the equivalent 
of PSG N3 sleep) between lights-off and lights-on

Sum of epochs classified as “deep” sleep × 
epoch length (s)/60

REM sleep duration Number of minutes classified as REM between lights-off and 
lights-on

Sum of epochs classified as REM sleep × 
epoch length (s)/60

Sleep measures are defined assuming a recording confined between lights-off and lights-on. TIB, time in bed (assumed to be the same between device and reference); 

TST, total sleep time; SE, sleep efficiency; SOL, sleep onset latency; WASO, wake after sleep onset; REM, rapid eye movement; PSG, polysomnography. The computation 

of the latter three measures assumes that sleep staging is provided by both device and reference.
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	 95% LOAsi = Bias ± 2.46 (c0 + c1SMi).� (4)

Note that in equation (4), the bias is computed depending on the 
first assumption: as the mean difference if independent from 
SM, using equation (1) otherwise.

Deviation from normality:  Although departure from normality 
is thought to be less problematic for LOAs computation com-
pared with other statistical contexts [16], distributions that are 
very skewed or have long tails should be analyzed with caution. 
Logarithmic transformation (see above) and nonparametric ap-
proaches (e.g. reporting centiles or proportions of differences 
falling outside cutoff values) have been proposed as strategies 
to deal with these cases [15, 16]. Only the former is implemented 
in our functions (see sections 2.3 and 2.4 of the analytical pipe-
line [11]).

Independently of the specific bias and LOAs computation, 
confidence intervals (CI) are reported to quantify the uncer-
tainty in each of the estimated discrepancy metrics, and to 
express bias significance [24, 25]. Alternative approaches such 
as nonparametric or bootstrap CI should be used when a de-
viation from normality is detected or when the sample size is 
small (see [26, 27]). Finally, outliers and influential cases should 
be carefully evaluated with both graphical (e.g. Bland–Altman 
plots) and statistical procedures [28]. Excluding such cases is re-
commended only under specific circumstances that should be 
clearly explained (e.g. a participant with only 4  h of TST in a 
sample of good sleepers).

Bland–Altman plots
The Bland–Altman plot [22] is widely considered as a core ana-
lysis for evaluating the interchangeability between two methods 
of measurement, and it is the most popular method to measure 
agreement between continuous medical measurements [29]. 
The Bland–Altman plot is the graphical representation of what 
is described in the previous section, in which the differences 
between device- and reference-derived measures are plotted 
against SM [16]. In addition to clearly visualizing bias and 
LOAs, it allows to graphically inspect assumptions of constant 
bias over SM and homoscedasticity, and to highlight potential 
outliers. Whereas in the original Bland–Altman plot SM is rep-
resented by the mean of the two measurements [22], reference-
derived measures (and particularly PSG measures) have been 
recommended [1, 5] and frequently adopted [30, 31] to represent 
SM (i.e. on the x-axis). Examples of Bland–Altman plots adjusted 
for various cases of compliance with assumptions are provided 
in the illustrative example below (see Figure 2).

Step 3: EBE analysis

The quantification of the agreement between a device and 
a reference method depends on the nature of the considered 
data [32]. In the previous step, we discussed the relevant per-
formance metrics for numeric variables (i.e. sleep measures). 
Here, we discuss the essential procedures to be considered with 
binary or categorical data, namely, EBE analysis, to be used when 
the evaluated sleep tracker allows to export EBE data. EBE ana-
lysis is the preferred approach to assess the accuracy of a device 
in sleep and wake classification, compared with a gold standard 
[1], and it has been widely used to test standard actigraphy 

against PSG [10, 21]. As in the case of discrepancy analysis, the 
data structure described at the end of Step 1 is the starting point 
for analyzing the data on an EBE level.

Error matrices
Error matrices (also referred to as confusion matrices or contin-
gency tables) are cross-tabular representations in which rows 
and columns indicate the frequency of classification categories 
for each of the two methods [32]. Importantly, error matrices are 
the basis of most metrics indicating the performance of binary 
measurements, including the widely reported sensitivity and 
specificity. In sleep detection, classic definitions of sensitivity 
(i.e. ability to correctly classify sleep epochs) and specificity (i.e. 
ability to correctly classify wake epochs) rely on binary scorings 
of sleep/wake epochs, as provided by standard actigraphy and 
other sleep trackers (see [10]). With the increasing capability of 
CST to perform sleep staging [2], such definitions are updated 
to generalize to non-binary data (i.e. wake, “light,” “deep,” and 
REM sleep). In this framework, “sleep-stage sensitivity” refers to 
the device’s ability to correctly detect a given stage, such as REM 
sleep, whereas “sleep-stage specificity” is the ability to correctly 
detect all other considered stages. Careful interpretation of the 
terminology is necessary when interpreting EBE sleep stage 
classification, to avoid ambiguity with classic (binary-based) 
definitions.

Table 2 shows the structure of an error matrix obtained from 
a device and a reference method providing sleep staging infor-
mation. Each cell contains the number of epochs in a given con-
dition (e.g. cell C reports the number of epochs scored as “deep” 
sleep by the device that are scored as wake by the reference). 
From Table  2, sleep-stage sensitivity is computed as the pro-
portion of epochs classified in a given stage (e.g. REM sleep) by 
both methods over the total number of epochs classified in that 
stage by the reference, whereas specificity is computed as the 
proportion of epochs classified in any of the other stages (e.g. 
wake and NREM sleep) by both methods over the total number 
of epochs classified as any of the other stages by the reference. 
For instance, REM sensitivity is calculated as P/(M + N + O + P), 
whereas REM specificity is computed as ([A + B + C] + [E + F + G] + 
[I + J + K])/([A + B + C + D] + [E + F + G + H] + [I + J + K + L]).

Error matrices can be computed either by considering 
the total number of epochs in the sample (i.e. “absolute 
error matrix,” with each cell reporting the sum of epochs in 
a given classification category, regardless of the subjects) 
or by accounting for the variability between subjects (see 
section 3.1 of the analytical pipeline [11]). In the second case, 
recommended by de Zambotti and colleagues [1], a matrix 
is generated per each subject (individual-level matrix), and 
the value in each cell is divided by the corresponding mar-
ginal frequency based on the reference (i.e. the “Total refer-
ence” column in Table  2), resulting in a “proportional error 
matrix” that shows the estimated stage-specific sensitivities 
and specificities per subject. Then, individual-level matrices 
are averaged to generate a group-level proportional matrix, 
with each cell reporting the average proportion of epochs in 
each classification category, with the corresponding SD and 
95% CI. The advantage of such representation of EBE per-
formance, in addition to including the essential EBE metrics 
(described in the following sections), is the immediate in-
terpretation of the nature of device misclassifications (see 
example in Table 5).
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Individual-level EBE metrics
Table  3 shows an overview of the most widely reported EBE 
metrics used to evaluate the performance of CST devices (see 
also [32, 33]), which can be computed by applying the functions 
included in our pipeline [11] (sections 3.2 and 3.3) to the data 
structure described in at the end of Step 1. Although sensitivity 
and specificity are perhaps the most important metrics, and in 
most cases they are sufficient to describe a device performance, 
metrics such as positive predictive value (PPV; sometimes called 
“precision”) might be useful to provide further details (e.g. to 
estimate the probability of a given epoch to be in a given stage 
based on the device classification).

Group-level EBE metrics
When considering group-level accuracy metrics, the advan-
tage of evaluating EBE data at an individual level becomes more 
evident. Indeed, the common practice of considering the total 
number of epochs regardless of individual differences would re-
sult in a single value for each metric (e.g. accuracy = 0.92, specifi-
city = 0.64). However, EBE metrics are sample-based estimates of 
population parameters, and they should be accompanied by in-
formation on their variability (SD) and uncertainty (CI). A func-
tion that computes both “absolute” (i.e. based on the total count 
of epochs in the sample) and “averaged” group-level EBE metrics 
is included in our pipeline [11] (section 3.1). The second modality 
is recommended. The same statistical considerations regarding 
CI computation, sample size, and outliers reported for discrep-
ancy analysis (Step 2) apply also to group-level EBE metrics and 
error matrices.

Additional EBE analyses
As described in detail by Watson and Petrie [32], binary data 
can be analyzed with the McNemar’s test [34], which evaluates 
the significance of systematic differences between proportions 
of “positive” (e.g. sleep) classifications from the two methods, 
or the Cohen’s kappa [35], which quantifies the proportion of 
classification agreement that is not due to chance, ranging from 
0 to 1. As is recommended for other metrics, the kappa coeffi-
cient should be reported with the corresponding CI. Of note, the 
kappa coefficient is sensitive to both the number of categories 
(i.e. the higher the number of categories and the lower the 
kappa) and the prevalence of each condition. In sleep detection, 
sleep epochs are usually more prevalent than wake epochs, and 
this would result in cases of “high agreement but low kappa” 
[36]. A  prevalence-adjusted bias-adjusted kappa (PABAK) has 
been proposed by Byrt and colleagues [33], and it is recom-
mended for evaluating agreement in sleep detection. Both the 
McNemar’s test and the kappa coefficient can be applied to 
both binary (i.e. sleep/wake) and categorical classifications (i.e. 
sleep staging), with the latter requiring to be dichotomized for 
each stage before testing. Further analyses might include the 
receiver operating characteristic (ROC) curve, which consists 
in plotting sensitivity against (1 – specificity). ROC curves are 
mainly used to determinate optimal cutoff for diagnostic tests, 
but they can be also applied to compare the accuracy of two 
devices (or two algorithms used by the same device) with a ref-
erence method [32].

Although we believe that the metrics reported in Table  3 
(and particularly sensitivity and specificity) are sufficient for 
describing the EBE performance of a CST device, these additional 

analyses can be used to test systematic differences between the 
two methods, and are provided in our pipeline [11] (section 3.3).

Results

Illustrative example

Here, the proposed guidelines are applied to the sample of empir-
ical data described at the beginning of the previous section, and 
the core outputs to be reported in publication reports evaluating 
the performance of sleep tracker devices are depicted.

Data structure
PSG sleep records were scored in 30-s epochs (wake, N1, N2, N3, 
and REM sleep) according to AASM criteria, and EBE Fitbit data 
were obtained through Fitabase (Small Steps Labs LLC.). PSG 
and Fitbit 30-s epochs confined between lights-off and lights-on 
were matched and organized with the data structure described 
in Step 1 (see section 1 of the analytical pipeline [11]). In this 
example, both PSG and Fitbit epochs were encoded as: 0 = wake, 
1 = “light” sleep (PSG-based N1 + N2), 2 = “deep” sleep (PSG-based 
N3), and 3 = REM sleep.

Discrepancy analysis
Results of group-level discrepancy analysis are reported in 
Table  4. In the sample, “light” sleep duration is overestimated 
by the device (i.e. bias is positive, with both CI above zero), 
whereas REM sleep duration does not show a significant bias 
(i.e. zero is included within the CI). The systematic component 
of measurement error in “light” sleep duration can be “cor-
rected” by removing 34.54 min (“calibration index”) to all device 
“light sleep” durations. All other sleep measures show a nega-
tive proportional bias, whose magnitude (and significance) de-
pends on SM (expressed as the range of PSG-derived measures). 
Figure 2 shows the corresponding Bland–Altman plots for some 
of the considered measures, and it highlights the bias trend over 
SM. For instance, in the case of WASO and “deep” sleep dur-
ation the measure is underestimated by the device for cases 
showing higher PSG-derived measures (i.e. with PSG-derived 
WASO higher than 40 min, and N3 duration higher than 60 min), 
whereas the bias is not significant for lower values. On the con-
trary, TST and SE are overestimated by the device for subjects 
with lower PSG-derived measures (i.e. TST lower than about 
300 min, SE lower than 85%), whereas the bias is not significant 
for higher values. In all these cases, the bias is represented as 
a linear regression with intercept b0 and slope b1 (see equation 
(1) in Step 2  “Group-level discrepancies”), and “corrections” of 
device-derived measures should be based on SM.

Data are homoscedastic (the variability of the differences is 
constant over SM) for both “light” sleep duration and TST, and 
LOAs are computed as bias ± 1.96 SD of the differences and using 
equation (2) (i.e. bias ± 1.96 SD of the residuals of the regression 
model representing the bias), respectively (see Step 2  “Group-
level discrepancies”). In both cases, LOAs are represented in 
Figure 2 as parallel to the bias line.

In contrast, heteroscedasticity was detected for SE, SOL, 
and “deep” sleep duration, where LOAs were modeled as a 
function of SM. As in cases of proportional bias, they are ex-
pressed as a linear regression with intercept c0 and slope c1 
(see equation (3) in Step 2  “Group-level discrepancies”). The 
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sign of c1 determines the direction of heteroscedasticity, with 
higher random error (i.e. wider LOAs) for higher PSG-derived 
SOL and “deep” sleep duration, and lower SE. Further cases 
of heteroscedasticity (WASO) or deviation from normality 
(REM sleep duration) were addressed by log transforming the 

measures before computing LOAs. Consequently, LOAs are ex-
pressed as a function of SM, which is multiplied by a slope 
determined based on the log-transformed differences (see 
[23]). In all these cases, the minimal detectable change de-
pends on SM.

Figure 2.  Bland–Altman plots of the sample data. Red solid lines indicate bias, whereas gray solid lines indicate the 95% LOAs, both with their 95% CIs (dotted lines). 

Black points indicate individual observations, and the density diagram on the right side of each plot represents the distribution of the differences. Plots are adjusted 

for the specific case of compliance with the assumptions for discrepancy analysis: all fulfilled (“light” sleep duration), proportional bias but homoscedastic differences 

(total sleep time), constant bias but heteroscedastic differences (REM sleep duration), both proportional bias and heteroscedasticity (sleep efficiency and “deep” sleep 

duration), and LOAs based on log-transformed differences (wake after sleep onset and REM sleep duration).

Table 2.  Error matrix for evaluating sleep stages detection

Device

Wake “Light” “Deep” REM Total reference

Reference Wake A B C D (A + B + C + D)
“Light” E F G H (E + F + G + H)
“Deep” I J K L (I + J + K + L)
REM M N O P (M + N + O + P)

Total device (A + E + I + M) (B + F + J + N) (C + G + K + O) (D + H + L + P) Total number of scored epochs

“Light”, PSG-derived N1 + N2; “deep”, PSG-derived N3; REM, rapid eye movement sleep.
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In all cases, bias and LOAs are reported with their 95% CI 
computed using parametric bootstrap with 10,000 replicates 
(bootstrap CI were preferred to default classic CI due to small 
sample size and skewed distributions). When all assumptions 
are fulfilled (i.e. “light” sleep detection), CI are reported for 
the mean difference (along with its SD) and LOAs estimates, 
whereas when a proportional bias and/or heteroscedasticity is 
detected, CI are reported for the regression intercepts (b0 and c0) 
and slopes (b1 and c1). When a log transformation was applied, 
the LOAs’ CI are reported for the back-transformed slope coef-
ficient [23].

EBE analysis
Table  5 shows the group-level proportional error matrix gen-
erated from the sample dataset. As recommended, individual 
error matrices were computed for each subject, and each cell 
was divided by the corresponding marginal value for the refer-
ence. Thus, each cell includes the average proportion of each 
classification category over the number epochs classified as the 
corresponding stage by PSG. Values in the diagonal represent 
sleep-stage sensitivity, suggesting a better ability of the device 
to correctly classify “light” sleep (with about 80% of PSG-based 
N1 + N2 epochs being correctly classified), whereas poorer per-
formance is suggested for “deep” sleep detection (with more 
than half of PSG-based N3 epochs being erroneously classified 
as “light” sleep by the device). Similarly, a relevant proportion 
of PSG-based wake and REM epochs (from 11% to 44%) are con-
sidered as “light” sleep by the device, clarifying the results of 
Step 2 regarding the overestimation of “light” sleep. This pattern 
of results is also confirmed by stage-specific specificity, which 
is significantly higher than 90% for all stages but “light” sleep, 
and by the PABAK coefficient, which is significantly higher than 
0.60 for wake and “deep” and REM sleep but lower than 0.45 for 
“light” sleep (see [11], section 3.3).

Note also that the 95% CI in Table 5 indicate that estimates 
are more precise for certain categories (e.g. the percentage of 
“light” sleep considered as wake) compared to other categories 

(e.g. “deep” and REM sleep sensitivity) which show higher vari-
ability between participants (as indicated by the SD), and which 
should be interpreted with more caution.

Discussion
This work offers a detailed but easily accessible standardized 
framework and practical tools for analytically testing the per-
formance of sleep-tracking technology against a reference 
method (e.g. PSG), and is based on recent recommendations for 
evaluating and using CST [1, 5]. The article is accompanied by an 
open-source set of R functions (available at https://github.com/
SRI-human-sleep/sleep-trackers-performance) [11], and a con-
crete example of the application of the analytical pipeline on a 
sample empirical dataset.

We believe this work can increase the time efficiency, quality, 
and replicability of validation studies, mitigating the excessive 
degree of heterogeneity in both methodological and statistical 
procedures currently used in CST validation, with the ultimate 
goal of improving the informed adoption of CST in research 
and clinical settings. The generalizability and reproducibility of 
the proposed analytical steps match with the flexibility of the 
R functions, which are designed to allow modifications of their 
arguments to fit specific analytical needs (e.g. logarithmic trans-
formation and bootstrapped CI).

The added value of the recommended analytical steps be-
comes more evident when their interpretation is compared to 
less appropriate but widely used analytical techniques. For ex-
ample, although the correlation between device and reference 
measures is often used to evaluate CST performance [10], it 
simply indicates their degree of linear association, with no in-
formation on their agreement (e.g. a systematic difference of 
50 min is plausible even between two perfectly correlated TST 
measurements) [22, 32, 37]. Moreover, correlation coefficients 
are highly sensitive to the range of measurement (the broader 
the range and the higher the correlation), but insensitive to SM 

Table 3.  EBE accuracy metrics for sleep/wake and sleep stages detection

EBE metric Binary definition (sleep/wake) Categorical definition (sleep staging)

Sensitivity Proportion of “true” sleep epochs (i.e. based on 
the reference) that are correctly classified as 
sleep by the device.

Proportion of epochs classified as a given sleep stage by the refer-
ence that are correctly classified as that stage by the device.

Specificity Proportion of “true” wake epochs (i.e. based on 
the reference) that are correctly classified as 
wake by the device.

Proportion of epochs not classified as a given stage by the refer-
ence that are correctly not classified as that stage by the device.

Accuracy Proportion of correctly classified sleep and wake 
epochs over the total number of epochs.

Proportion of correctly classified epochs for a given stage over the 
total number of epochs.

PPV Proportion of epochs classified as sleep by the 
device that are “true” sleep epochs (i.e. based 
on the reference).

Proportion of epochs classified as a target stage by the device that 
are classified as that stage by the reference.

NPV Proportion of epochs classified as wake by the 
device that are “true” wake epochs (i.e. based 
on the reference).

Proportion of epochs not classified as a target stage by the device 
that are not classified as that stage by the reference.

PI Proportion of “true” sleep epochs (i.e. based on 
the reference) over the total number of epochs. 

Proportion of epochs classified as a target stage by the reference 
over the total number of epochs.

BI Difference in sleep epoch proportion (i.e. sleep 
epochs over the total number of epochs) be-
tween device and reference.

Difference between device and reference in the proportion of 
epochs classified as a target stage over the total number of 
epochs.

Metrics are defined based on proportions (generally ranging from 0 to 1), but it is common to report them as percentages, by simply multiplying the result by 100. 

PPV, positive predictive value; NPV, negative predictive value; PI, Prevalence Index; BI, Bias Index.

https://github.com/SRI-human-sleep/sleep-trackers-performance
https://github.com/SRI-human-sleep/sleep-trackers-performance
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(i.e. proportional bias), and the same applies to intraclass correl-
ation coefficients and t-tests [15, 29, 37].

In contrast, bias and 95% LOAs are sample-based estimates 
of the agreement between device and reference measurements. 
Such metrics are independent from the range of measurement, 
and the relationship between differences and SM (proportional 
bias) can be easily modeled (equation (1)) [16]. Moreover, they 
are more immediately interpretable than correlations or t-test 
outputs, as they separately quantify the most likely difference to 
occur (systematic bias) and the range within which most differ-
ences are expected to lie (random error), both expressed in the 
original measurement unit (e.g. min). In addition to discrepancy 
analysis, EBE metrics included in the proportional error matrix 
(Table 5) allow one to explore more in depth the nature of the 
observed discrepancies (e.g. high TST discrepancies can be due 
either to low sensitivity or to low specificity), and stage-specific 
EBE metrics provide further information on which stages are 
more accurately detected by the device.

Most importantly, the information provided by bias and LOAs 
can ultimately be used by sleep researchers and clinicians to po-
tentially “correct” the observed measures based on the results of 
previous method comparison studies. For example, a constant 
bias over SM (“calibration index”) can be simply subtracted from 
device measures in order to reduce systematic over- or under-
estimations. Differently, a proportional bias implies that dif-
ferences should be modeled based on SM. However, since only 
device measures will be available in real practice, they can be 
used to quantify SM and to estimate the calibration index cor-
responding to each case.

For instance, in our sample dataset we highlighted a 
proportional bias for TST, implying that PSG measures are 

underestimated by the device for subjects/nights with longer 
TST. Clinicians and researchers could use such information 
to “correct” the measures collected with the evaluated device 
under similar conditions and in similar populations as in the 
reference dataset, in order to obtain more accurate estimates 
of “true” (reference-derived) measures. As an example, a TST 
measure of 400 min is likely to be underestimated by the Fitbit 
Charge 2. Sleep scholars/practitioners can use the information 
reported in Table 4 for TST (i.e. bias = 56.42 min − 0.15 × ref) to 
compute the “calibration index” corresponding to the observed 
measure (bias = 56.42 min − 0.15 × 400 ms = −3.48 min) and apply 
the correction (TSTcorr = 400 min + 3.58 min = 403.58 min). In con-
trast, the same measures showed a Pearson correlation of 0.94 
(almost perfect), an ICC(2,1) of 0.94 (excellent reliability [38]), 
and a paired t-test indicating no statistically significant differ-
ences (t(13) = 1.13, p = 0.28). The latter pattern of results would 
simply suggest to use the device for obtaining measures almost 
perfectly associated with those obtainable with the reference, 
without providing any information on systematic bias, random 
error and EBE accuracy, and they cannot be used to calibrate fu-
ture measurements.

Both bias and LOAs should be considered when reporting on 
a sleep tracker performance, as excessively wide LOAs might 
suggest a poor performance even in cases where the bias is not 
significant [1]. When data are homoscedastic, the “minimal de-
tectable change” (i.e. the smallest change detected by a method 
that exceed measurement error) can be expressed by one-half 
the difference between the upper and lower LOA [17]. For in-
stance, in our sample dataset we found a minimal detectable 
change 39.25 min for TST. What “excessively wide” means (i.e. 
“minimal clinical important change”) strictly depends on the 

Table 5.  Group-level proportional error matrix of the sample data

Device

Wake “Light” “Deep” REM

Reference Wake 0.62 (0.16) [0.54, 0.70] 0.31 (0.18) [0.22, 0.39] 0.02 (0.02) [0.01, 0.03] 0.06 (0.10) [0.00, 0.10]
“Light” 0.05 (0.03) [0.04, 0.07] 0.79 (0.10) [0.74, 0.84] 0.06 (0.06) [0.03, 0.09] 0.09 (0.07) [0.06, 0.12]
“Deep” 0.02 (0.02) [0.00, 0.03] 0.53 (0.24) [0.41, 0.65] 0.44 (0.24) [0.32, 0.56] 0.01 (0.02) [0.00, 0.02]
REM 0.03 (0.04) [0.00, 0.05] 0.27 (0.29) [0.12, 0.41] 0.02 (0.04) [0.00, 0.04] 0.67 (0.33) [0.52, 0.85]

“Light”, PSG-based N1 + N2; “deep”, PSG-based N3; REM, rapid eye movement sleep. Results are reported as mean (standard deviation) [95% confidence intervals].

Table 4.  Group-level discrepancies computed on the sample data

Measure Device mean (SD) Reference mean (SD) Bias [95% CI] Lower LOA [95% CI] Upper LOA [95% CI]

TST (min) 339.32 (60.61) 332.57 (67.25) 56.42 − 0.15 × ref b0 = [10.03, 104.04] b1 = [−0.28, −0.03]* Bias − 39.25 [23.06, 62.90] Bias + 39.25 [23.06, 62.90]
SE (%) 88.07 (4.53) 86.08 (6.90) 58.10 − 0.65 × ref b0 = [31.53, 98.51] b1 = [−1.11, −0.35]* Bias − 2.46 × (24.90 − 0.26 × ref) c0 = [28.37, 64.51] c1 = [−0.71, −0.30]* Bias + 2.46 × (24.9 − 0.26 × ref) c0 = [28.37, 64.51] c1 = [−0.71, −0.30]*
SOL (min) 11.36 (14.81) 13.75 (11.60) 7.15 − 0.69 × ref b0 = [2.29, 20.15] b1 = [−2.53, −0.30]* Bias − 2.46 × (0.82 + 0.53 × ref) c0 = [−12.72, 2.95] c1 = [0.30, 1.54]* Bias + 2.46 × (0.82 + 0.53 × ref) c0 = [−12.72, 2.95] c1 = [0.30, 1.54]*
WASO (min) 33.82 (12.76) 38.18 (19.79) 26.13 − 0.80 × ref b0 = [8.10, 49.05] b1 = [−1.56, −0.23]* Bias − ref × 0.94 [0.69, 1.36] Bias + ref × 0.94 [0.69, 1.36]
“Light” (min) 234.64 (56.85) 200.11 (48.52) 34.54 (52.86) [7.75, 61.43]* −69.08 [−95.47, −42.25] 138.15 [111.43, 164.29]
“Deep” (min) 50.04 (22.58) 75.61 (23.71) 23.70 − 0.65 × ref b0 = [−3.37, 61.43] b1 = [−1.16, −0.22]* Bias − 2.46 × (2.66 + 0.18 × ref) c0 = [−37.43, 12.02] c1 = [0.07, 0.71]* Bias + 2.46 × (2.66 + 0.18 × ref) c0 = [−37.43, 12.02] c1 = [0.07, 0.71]*
REM (min) 54.64 (27.39) 56.86 (23.11) −2.21 (36.23) [−19.79, 16.21] Bias − ref × 1.24 [1.04, 1.84] Bias + ref × 1.24 [1.04, 1.84]

TST, total sleep time; SE, sleep efficiency; SOL, sleep onset latency; WASO, wake after sleep onset; “light”, PSG-derived N1 + N2; “deep”, PSG-derived N3; REM, rapid  

eye movement sleep; SD, standard deviation; CI, confidence intervals; LOA, limit of agreement; ref, reference-derived measures (i.e. PSG, used to quantify the size  

of measurement).

*Cases showing a significant bias, proportional bias or heteroscedasticity. When a proportional bias was detected, a linear model predicting the discrepancies  

by the corresponding PSG measures was specified, and 95% CI were reported for the model’s intercept (b0) and slope (b1), as indicated in equation (1). When  

heteroscedasticity was detected, a linear model predicting the absolute residuals of the previous model by PSG-derived measures was specified, and 95% CI  

were reported for the model’s intercept (c0) and slope (c1), as indicated in equation (3).
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specific application and target population of the device under 
assessment. Although some general criteria have been proposed 
for sleep measures (e.g. see [39]), their rationale is still debatable, 
and interpretation of LOAs should be made on a case-by-case 
basis [1]. The same applies to EBE metrics, for which there is 
currently no consensus on threshold values defining a “good” 
performance. In both cases, the interpretation of the outcomes 
should be based on the specific application and target popula-
tion [1, 5].

As a further advantage, the recommended performance met-
rics can be applied on device-reference comparisons across dif-
ferent samples (e.g. insomnia patients vs. good sleepers) and 
conditions (e.g. pre-to-post sleep interventions), acknowledging 
that CST performance can be affected by multiple factors [2, 
5]. Individual-level discrepancies can be used as outcome vari-
ables in regression models to investigate the role of potential 
confounders (e.g. sex and age). Critically, the comparison of per-
formance metrics obtained with different firmware/algorithm 
versions is important to update scientific information on de-
vice performance. Similarly, EBE agreement can be used as an 
outcome variable to model within-night processes (e.g. cardiac 
activity).

Finally, the advantage of a standardized framework for CST 
evaluation is particularly evident when comparing results across 
studies. For instance, the results reported in the last section can 
be compared with those obtained by de Zambotti and colleagues 
[20], in which the same device was tested on a different sample, 
reporting results in the same output format. In line with the 
previous study, our results suggested higher device specificity 
for “light” compared to both “deep” and REM sleep, with a large 
proportion of PSG-derived “deep” sleep epochs being classified 
as “light” sleep by the device. Such degree of comparability is ex-
pected to facilitate replicable evidence, as well as device-specific 
reviews and meta-analyses.

Of note, the recommended analytical procedures strictly 
rely on the methodological assumptions summarized in Step 1 
and exhaustively discussed in previous guidelines [1, 5]. On the 
one hand, such best practices (e.g. gold standard comparison, 
device settings, and recording synchronization), in addition 
to the analytical steps described in this work, are critical for 
conducting rigorous validation studies that will advance our 
knowledge on sleep trackers performance. In this sense, our 

analytical guidelines should be considered as a first step to-
ward a standardized and time efficient validation pipeline to 
be integrated with previous recommendations. On the other 
hand, the implementation of our pipeline per se is not suffi-
cient to guarantee the “validation” of a device. As proposed by 
Grandner et al.[7], an optimal “validation cycle” would include 
(1) laboratory-based comparison with PSG, (2) field-based com-
parison with ambulatory measures, and (3) validation for spe-
cific populations. Although the recommended procedures can 
be applied in each of these phases, methodological assump-
tions should be adjusted to specific cases. For instance, in am-
bulatory settings the experimenter cannot directly set lights-on 
and lights-off times. In such settings, alternative techniques 
such as self-reported sleep logs should be used to ensure that 
device and reference recordings are synchronized and that 
sleep measures are comparable [40]. Moreover, if a CST device 
classifies motionless wakefulness as sleep, this would prob-
ably generalize to diurnal hours [10]. Thus, considering and re-
porting misclassifications on a 24 h period will be necessary to 
exhaustively evaluate device performance.

In conclusion, given the increasing interest and use of CST, it 
is hoped that this article, and the corresponding analytical pipe-
line, will contribute to the rigor of CST validations and informed 
use, which is a fundamental step to reach the level of accuracy of 
these technologies required by research and clinical applications.
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Table 4.  Group-level discrepancies computed on the sample data

Measure Device mean (SD) Reference mean (SD) Bias [95% CI] Lower LOA [95% CI] Upper LOA [95% CI]
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“Light” (min) 234.64 (56.85) 200.11 (48.52) 34.54 (52.86) [7.75, 61.43]* −69.08 [−95.47, −42.25] 138.15 [111.43, 164.29]
“Deep” (min) 50.04 (22.58) 75.61 (23.71) 23.70 − 0.65 × ref b0 = [−3.37, 61.43] b1 = [−1.16, −0.22]* Bias − 2.46 × (2.66 + 0.18 × ref) c0 = [−37.43, 12.02] c1 = [0.07, 0.71]* Bias + 2.46 × (2.66 + 0.18 × ref) c0 = [−37.43, 12.02] c1 = [0.07, 0.71]*
REM (min) 54.64 (27.39) 56.86 (23.11) −2.21 (36.23) [−19.79, 16.21] Bias − ref × 1.24 [1.04, 1.84] Bias + ref × 1.24 [1.04, 1.84]

TST, total sleep time; SE, sleep efficiency; SOL, sleep onset latency; WASO, wake after sleep onset; “light”, PSG-derived N1 + N2; “deep”, PSG-derived N3; REM, rapid  

eye movement sleep; SD, standard deviation; CI, confidence intervals; LOA, limit of agreement; ref, reference-derived measures (i.e. PSG, used to quantify the size  

of measurement).

*Cases showing a significant bias, proportional bias or heteroscedasticity. When a proportional bias was detected, a linear model predicting the discrepancies  

by the corresponding PSG measures was specified, and 95% CI were reported for the model’s intercept (b0) and slope (b1), as indicated in equation (1). When  

heteroscedasticity was detected, a linear model predicting the absolute residuals of the previous model by PSG-derived measures was specified, and 95% CI  

were reported for the model’s intercept (c0) and slope (c1), as indicated in equation (3).
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