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Abstract

We propose a model-based deep learning architecture for the correction of phase errors in 

multishot diffusion-weighted echo-planar MRI images. This work is a generalization of 

MUSSELS, which is a structured low-rank algorithm. We show that an iterative reweighted least-

squares implementation of MUSSELS resembles the model-based deep learning (MoDL) 

framework. We propose to replace the self-learned linear filter bank in MUSSELS with a 

convolutional neural network, whose parameters are learned from exemplary data. The proposed 

algorithm reduces the computational complexity of MUSSELS by several orders of magnitude, 

while providing comparable image quality.
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1. INTRODUCTION

Diffusion-weighted imaging (DWI) is widely used in neuroscience applications to study the 

microstructural and connectivity changes in the brain. The long readouts in singleshot echo 

planar imaging scheme (ssEPI), which is the main workhorse for DWI, often causes 

geometric distortions and blurring artifacts in the presence of magnetic field inhomogeneity. 

Several researchers have hence introduced multi-shot EPI (msEPI) methods, where the k-

space acquisition is segmented into multiple shots. However, a challenge with msEPI-based 

DWI acquisition scheme is the phase inconsistency between the shots. Specifically, subtle 

physiological motion (e.g. cardiac pulsation) during the diffusion encoding gradients will 

result in the phase inconsistencies between the k-space data of the shots. If uncorrected, 

these phase errors translate to ghosting artifacts. Approaches to correct for these phase errors 

include navigator based methods to measure and correct for the phase errors, as well as 

methods such as MUSE [1] that estimate the phase errors.

We have recently introduced a multi-shot sensitivity-encoded diffusion data recovery 

algorithm using structured low-rank matrix completion (MUSSELS) [2]. This scheme 

enables the navigator-free joint recovery of the k-space data from all the shots. While this 

scheme can offer state of the art results, the challenge is the high computational complexity. 

Despite the existence of fast structured low-rank algorithms, the reconstruction of the high-

resolution data from different directions and slices is challenging due to the large data size 

and the need for matrix lifting.
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To minimize the computational complexity, we introduce a novel deep learning framework. 

The proposed scheme is motivated by our recent work on model-based deep learning 

(MoDL) [3] and related algorithms [4]. The main benefit of MoDL is the significantly 

reduced run time during image recovery/testing. The use of the conjugate-gradient algorithm 

within the network to enforce data consistency in MoDL provides improved performance for 

a specified number of iterations. The sharing of network parameters across iterations enables 

MoDL to keep the number of learned parameters decoupled from the number of iterations, 

thus providing good convergence without increasing the number of trainable parameters; the 

low number of trainable parameters translate to significantly reduced training data in data 

constrained medical imaging applications.

We first bring MUSSELS to the MoDL setting by using an iterative reweighted least-squares 

algorithm (IRLS); this algorithm alternates between a data-consistency block and a residual 

convolutional denoising block. The learning of the denoising filter coefficients from the data 

using low-rank minimization in MUSSELS is associated with high computational 

complexity. To realize a computationally efficient solution, we propose to replace the linear 

convolutional denoiser with a convolutional neural network (CNN); the CNN parameters are 

learned in an end-to-end fashion from exemplary data. While the implementation is similar 

to MoDL, the main difference is the extension to multichannel settings and the learning in 

the Fourier domain (k-space) motivated by the MUSSELS IRLS formulation. Specifically, 

the k-space formulation allows us to exploit the convolutional annihilation properties 

resulting from the phase relations between shots.

The proposed framework has similarities to recent k-space deep learning strategy [5], which 

also exploits convolutional relations in the Fourier domain. However, this approach relies on 

a direct approach that jointly learns the inverse of the forward model and the phase relations; 

it requires a considerably larger network with significantly more parameters, which 

translates to higher training data demand. The use of the forward model within our algorithm 

allows us to work with the significantly smaller network, which translates to reduced 

training data demand. In addition, the use of the conjugate gradients based data consistency 

blocks facilitates the direct recovery of parallel MRI data, which is vital in the multishot 

setting.

2. DEEP LEARNED MUSSELS

Let ρ and ρ represent an N shot diffusion weighted image and its Fourier transform 

respectively. Then the image acquisition model in the presence of Gaussian noise n can be 

represented as:

y = A(ρ) + n (1)

where A = S ∘ ℱ ∘ C ∘ ℱ−1. Here, ℱ, S, and C denotes the Fourier transform, sampling 

operation, and weighting with coil sensitivities, respectively. Note that the sampling indices 

of the different shots are complementary; the combination of the data from the different 

shots will result in a fully sampled image in the absence of phase errors. Unfortunately, the 

shots are often corrupted by phase errors, resulting from physiological motion during the 

Aggarwal et al. Page 2

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



diffusion encoding process. If uncorrected, the combination will exhibit severe ghosting 

artifacts as seen from Fig. 2(a).

2.1. Brief Review of MUSSELS

MUSSELS capitalizes on the phase relations between the shots, as well as multichannel 

measurements, to fill in the missing data. The multiplicative phase relations translate to 

convolutional annihilation relations in Fourier domain (k-space), which are exploited by 

posing the joint recovery as a structured low-rank recovery scheme. Let ρ(r) represents the 

complex DW image where r represents the spatial location. The images corresponding to 

two different shots denoted by ρi(r) and ρj(r) differ by phase terms ϕi(r) and ϕj(r), 

respectively:

ρi(r) = ρ(r)ϕi(r)
ρj(r) = ρ(r)ϕj(r) .

The key observation is that the above images satisfy an image domain annihilation relation 

[6]:

ρi(r)ϕj(r) − ρj(r)ϕi(r) = 0 ∀r,

which can be represented in frequency domain as:

ρi[k] ∗ ϕj[k] − ρj[k] ∗ ϕi[k] = 0 ∀k .

The above annihilation relation can also be expressed using the block-Hankel matrix 

representation as

H(ρi)ϕj − H(ρj)ϕi = 0,

where the matrix product H(ρi)ϕj correspond to 2-D convolution between ρi and ϕj. These 

relations imply that the structured matrix T(P) = [H(ρ1) ⋯ H(ρN)], where P = [ρ1, …, ρN] is 

the matrix of multishot images, is low-rank. MUSSELS recovers the multi-shot images from 

their undersampled k-space measurements by solving:

P = arg min
P

A(P) − y 2
2 + λ T P ∗, (2)

where ‖ · ‖* denotes the nuclear norm. The above problem can be solved using iterative 

shrinkage algorithm [2].

2.2. IRLS reformulation of MUSSELS

To bring the MUSSELS framework to the MoDL setting, we first introduce an iterative 

reweighted least squares (IRLS) reformulation. The IRLS algorithm alternates between the 

enforcement of data consistency and a denoiser, which projects the k-space data to a 

Aggarwal et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2021 February 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



constraint set. We note that the unrolled structure resembles MoDL, with the exception than 

the filters are estimated using low-rank matrix completion.

Using an auxiliary variable Z, we rewrite (2) as

arg min
P, Z

A(P) − y 2
2 + β‖P − Z‖F

2 + λ‖T(Z)‖∗, (3)

We observe that (3) is equivalent to (2) as β → ∞. An alternating minimization algorithm to 

solve the above problem yields the following steps:

Pn + 1 = arg min
P

A(P) − y 2
2 + β‖P − Zn‖F

2
(4)

Zn + 1 = arg min
Z

‖Pn + 1 − Z‖F
2 + λ

β ‖T(Z)‖∗ (5)

We now borrow from [7], where we majorize the nuclear norm term as T(P) ∗ ≤ T(P)Q F
2

where the weight matrix is specified by

Q = [TH(P)T(P) + ϵI]−1 4 (6)

Here, I is the identity matrix. Using the commutativity of convolution, T (Z) Q = G (Q) Z, 

where G (Q) is a structured block Hankel matrix formed from the columns of Q . The 

majorization of (5) yields

Zn + 1 = arg min
Z

‖Pn − Z‖F
2 + λ

β ‖G (Q) Z‖F
2

(7)

Differentiating the above expression and setting it equal to zero, we get 

Z = I + λ
β G (Q)H G (Q) −1Pn + 1. Using matrix inversion lemma and assuming λ << β, we 

approximate this step as

Zn + 1 ≈ I − λ
β G (Q)H G (Q) Pn + 1 (8)

We note that (8) can be thought of as a residual block, which involves the convolution of the 

multishot signals Pn with the columns of Q, followed by flipped convolutions 

(deconvolutions in deep learning context), and subtraction from Pn as shown in Fig. 1a. One 

can think of Q as a surrogate the null-space of T(P). Thus, the update (8) can be thought of 

as removing the components of Pn in the null-space, which can be viewed as a denoising 

step.
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2.3. MoDL-MUSSELS

The MUSSELS scheme described above provides state of the art results [2]. However, the 

computational complexity of the structured low-rank algorithm is high, especially in the 

context of diffusion-weighted imaging where several directions need to be estimated for 

each slice. To minimize the computational complexity, we introduce a deep learning scheme 

where the denoising block Dw specified by (8) is replaced by a residual learning based CNN 

block; see Fig. 1(b). The filter parameters of this non-linear block are learned from 

exemplary data. Our hypothesis is that the non-linear structure will facilitate the projection 

of the data orthogonal to the null space for an unseen dataset. The network alternates 

between the two steps

Pn + 1 = arg min
P

A(P) − y 2
2 + β‖P − Zn‖F

2
(9)

Zn + 1 = (ℐ − Nw) Pn + 1 = Dw Pn + 1 (10)

The data consistency step, specified by (9) is imposed as optimization block within the 

network as shown in Fig. 1c, implemented using conjugate gradient optimization scheme. 

Note from Fig. 1 that the structure of both algorithms is the same. The main difference from 

MUSSELS is that the self-learned Q filters are replaced by pre-learned residual deep 

convolutional block, denoted by Dw. This framework is essentially a multi-channel 

extension of our model based deep learning scheme (MoDL); the main difference is that 

learning is performed in the Fourier domain instead of the image domain.

We use a N layer deep CNN with each layer having a convolution operation (conv) followed 

by batch normalization (BN) and a non-linear mapping. We use an exponential linear unit 

(ELU) non-linearity, specified by defined as

f(x) =
x if x > 0
α(ex − 1) if x ≤ 0 with α > 0

Note that the ReLU block attenuates the negative part of the input; the use of this non-

linearity resulted in dc off-sets in k-space, which translates to a bright spot in the origin in 

the image. We empirically observe that the ELU block was less vulnerable to those errors. 

The input to the network is P0, which is the initial estimate of the reconstructed images 

obtained by solving the SENSE reconstruction.

3. EXPERIMENTS AND RESULTS

In-vivo diffusion data from a healthy volunteer (3T MRI scanner, 32-channel head coil) was 

used in the study. A dual spin-echo diffusion imaging sequence was used with a 4-shot EPI 

readout. A b-value of 1000 s/mm2 was used and measurements using 60 diffusion gradient 

were performed with NEX=2 to improve the SNR. The other imaging parameters were 
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FOV= 210 × 210 mm, matrix size = 256 × 148 with partial Fourier oversampling of 20 lines, 

slice thickness= 4 mm and TE = 84 ms.

Data from 3 slices of this acquisition ( 3 × 60 × 2 = 360 datasets) distributed uniformly 

throughout the brain were used for training purposes of our experiments and the fourth slice 

was used as the testing data. Note that the phase errors associated with the various slices are 

very distinct due to the cardiac, pulsatile and respiratory motion affecting the different slices 

of the brain differently. Hence, the phase errors of the testing slice can be expected to be 

very different from the training slices, thus providing a valid test case for our experiments.

The model was trained with 5-layer CNN having 64 convolution filters of size 3 × 3 in each 

layer. The real and imaginary components of complex data were considered as channels in 

the denoising step whereas the data-consistency block worked explicitly with complex data. 

The training was performed for approximately two hours.

Fig. 2 shows a sample DWI reconstructed using various methods from the testing slice. The 

uncorrected reconstruction of the slice shows severe phase artifacts which is corrected to 

some extent by the MUSE method. The MUSSELS method provide a better reconstruction 

compared to MUSE. The MUSSELS reconstruction corresponding to the training slices 

were fed to MoDL-MUSSELS for deep learning. The resulting learned reconstruction for 

the testing slice is also shown in Fig 2. It is noted that the MoDL-MUSSELS reconstruction 

for the test slice is comparable to that of the MUSSELS reconstruction.

Table 1 shows the time taken by the proposed MoDL-MUSSELS and MUSSELS algorithm. 

Note that the computational complexity of MoDL-MUSSELS is around 450 fold lower than 

MUSSELS. The greatly reduced runtime is expected to facilitate the deployment of the 

proposed algorithm on clinical scanners.

To further validate the reconstruction accuracy of all the DWIs corresponding to the test 

slice, we performed a tensor fitting using all the DWIs and compared the resulting fractional 

anisotropy (FA) maps and the fiber orientation maps. For this purpose, the DWIs 

reconstructed using various methods from the test slice were fed to a tensor fitting routine 

(FDT Toolbox, FSL ). FA maps were computed from the fitted tensors and the direction of 

the primary eigenvectors of the tensors was used to estimate the fiber orientation. The FA 

maps generated using the various reconstruction methods are shown in Fig. 3, which has 

been color-coded based on the fiber direction. It is noted that these fiber directions 

reconstructed by the MUSSELS method and the MoDL-MUSSELS match the true anatomy 

known for this brain region from a DTI white matter atlas.

4. CONCLUSIONS

We introduced a model based deep learning framework for the compensation of phase errors 

in multishot diffusion-weighted MRI data. The proposed scheme alternates between CNN 

denoisers and conjugate gradient optimization algorithm to enforce data consistency. The 

CNN parameters are learned from exemplary data. The preliminary experiments show that 

the proposed scheme can yield the state-of-the-art results, while offering several orders of 

magnitude reduction in run-time.
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Fig. 1. 
(a). The representation of Eq. (8) as a convolutiondeconvolution network. (b) The Learnable 

denoiser. (c) The iterative algorithm where denoiser can be (a) for MUSSELS or (b) for 

MoDL-MUSSELS.
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Fig. 2. 
Reconstructions using various methods corresponding to a given diffusion direction from the 

testing slice.
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Fig. 3. 
The color-coded FA maps corresponding to various reconstructions from the testing slice. 

The fiber orientation along the left-right, anterior-posterior and inferior-superior directions 

are color-coded using red, green and blue colors, respectively. Proposed MoDL-MUSSELS 

show comparable recovery of fiber orientations to MUSSELS.
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Table 1.

Testing time in seconds to reconstruct one average of a single slice with 60 directions and 4 shots. MUSSELS 

was runs on CPUs with parallel processing.

Algorithm: MUSSELS MoDL-MUSSELS

Time (sec): 2700 6
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