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Introduction

Development of therapeutic strategies for immune-mediated tumor destruction, previously 

an elusive goal, has been accelerated by understanding the molecular basis of immune 

recognition and regulation of cancer cells. It is now well known that the immune system 

plays a pivotal role in monitoring cancer development (1–4). This concept of “cancer 

immunoediting” (2, 5, 6) holds that the immune system not only protects the host against 

primary cancer development, but also sculpts tumor immunogenicity (6). Cancer 

immunoediting is a dynamic process composed of three phases: elimination, equilibrium, 

and escape (6). Elimination represents the classical concept of cancer immunosurveillance 

(7, 8), equilibrium is the period of immune-mediated latency after incomplete tumor 

destruction (9), and escape refers to the final outgrowth of tumors that have outstripped 

immunological restraints (10). In support of this concept, presence of tumor-infiltrating 

lymphocytes (TILs) is associated with improved clinical outcome in epithelial ovarian 

cancer (EOC) (11–14).

Significant progress has been made in the development of antitumor immunity by initiating 

de-novo or boosting pre-existing immune responses; some have gained regulatory approval 

(Table 1). These interventions include vaccines, cell-based therapy, checkpoint blockade, 

and oncolytic virotherapy. Dramatic clinical responses in certain solid cancers treated with 

monoclonal antibodies targeting checkpoint pathways have spurred the popularity of 

utilizing the immune system to control unchecked tumor growth. FDA approval of 
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checkpoint inhibitors, anti-cytotoxic T lymphocyte antigen-4 (anti-CTLA-4) and anti-

programmed death-1 (anti-PD-1) for several solid tumors and sipuleucel-T for metastatic 

prostate cancer (15, 16) suggest these promising results may be expanded to EOC.

EOC tumor antigens and vaccine therapy

The development of approaches to analyze humoral (17) and cellular (18) immune reactivity 

to cancer led to the molecular characterization of tumor antigens recognized by autologous 

CD8+ T-cells (19) and/or antibodies (20) including serological analysis of recombinant 

cDNA expression libraries (SEREX) (21), differential gene expression analysis, T-cell 

epitope cloning (TEPIC) (22, 23), and bioinformatics (24, 25). As a consequence, human 

tumor antigens (TA) can be broadly classified into one or more of the following categories:

i. differentiation antigens [e.g. tyrosinase (26), Melan-A/MART-1 (27), gp100 

(28)];

ii. mutational antigens [e.g. CDK4 (29), β-catenin (30), caspase-8 (31), P53 (32)];

iii. amplification antigens [e.g. Her2/neu (33), P53 (34)];

iv. splice variant antigens [e.g. NY-CO-37/PDZ-45 (32), ING1 (35)];

v. glycolipid antigens;

vi. viral antigens [e.g. HPV, (36), EBV (37)]; and

vii. cancer-testis antigens (CTA) [e.g. MAGE (22), NY-ESO-1 (21), LAGE-1 (38)].

These TAs give rise to epitopes presented on tumor cells in the context of major 

histocompatibility complex (MHC) molecules, thereby stimulating CD8+ or CD4+ T-cells.

Although there are several options in deciding which antigen to target, fundamental 

requirements of ideal TA include:

i. limited or no expression in normal tissues, but aberrant expression at high 

frequencies in tumor;

ii. immunogenicity; and

iii. a role in tumor progression.

Self-antigens

While no current self-TA completely meets all criteria, the CTA family is closest. Criteria 

for placing antigens in this category are (39, 40):

i. predominant expression in testis germ cells and generally not in other normal 

tissues;

ii. expression in malignant tumors of different histological types;

iii. expression in malignancies in a lineage non-specific fashion;

iv. often mapping on the X-chromosome;

v. often members of multigene families.
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Despite their poorly characterized biologic function, their expression is known to be 

restricted in immune privileged sites such as testes, placenta, and fetal ovary, but not in other 

normal tissues. Abnormal expression of these germ-line genes in malignant tumors may 

reflect activation of a silenced “gametogenic program,” which ultimately leads to tumor 

progression and broad immunogenicity (41). CTA immunogenicity has led to development 

of cancer vaccines targeting these antigens in many solid tumors.

Expression of 162 CTA across 53 normal samples from GTeX and 31 tumor samples from 

TCGA revealed a strikingly contrasting profile. Tumor samples had heterogeneous 

expression of CTA, while normal tissues (beside testis) had minimal or absent CTA 

expression (Figure 1). These results strongly suggest CTA can be exquisite candidates for 

immune targeting in EOC. Furthermore, as their transcription is epigenetically regulated 

(42–44), there are opportunities to reinstate CTA expression with DNA methyltransferase 

inhibitors.

The identification and characterization of peptide epitopes from TAs, along with the relative 

ease of cGMP-grade peptide production, led to a large number of vaccine studies utilizing 

these peptide epitopes in EOC (Table 2). The most common cancer vaccine strategy is to 

administer full-length recombinant protein or peptides, most often via intramuscular, 

subcutaneous, or intradermal route, together with one or more immunostimulatory 

adjuvants. While short peptides (8–12 a.a.) directly bind to surface MHC, synthetic long 

peptides (25–30 a.a.) are endocytosed, processed, and presented to elicit an immune 

response (45). Several reports indicate therapeutic activity of synthetic long peptides is 

superior to that of their shorter counterparts, especially when they include epitopes 

recognized by both cytotoxic and helper T-cells or when conjugated to adjuvants (45, 46).

Several NY-ESO-1 vaccine clinical trials have demonstrated clinical activity, but these 

studies were small and not definitive (47, 48). At present, no peptide- or DNA-based 

anticancer vaccine is currently FDA approved. Nevertheless, a recent retrospective analysis 

of EOC patients with NY-ESO-1 positive tumors indicated that vaccination targeting the 

antigen led to improvement in overall survival (OS) by >2 years (49).

Several forms of DC-based vaccine approaches have been developed, most involving 

isolation of circulating monocytes and their differentiation ex-vivo, in the presence of agents 

that promote DC maturation. The autologous DCs are injected into patients upon exposure 

to tumor antigen and thus elicit tumor-specific immune responses in-vivo. Another strategy 

is fusion of TA with mAbs that bind endocytosis receptors (e.g., CD206, DEC-205) on the 

surface of DCs (50).

Non-self neoantigens

Advances in next-generation sequencing (NGS) and epitope prediction now permit rapid 

identification of mutational neoantigens. This has led to efforts in utilizing neoantigens for 

personalized cancer immunotherapies. Indirect support for this approach comes from studies 

demonstrating:

i. infusion of autologous ex-vivo expanded TILs can induce objective clinical 

responses in melanoma (51), and
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ii. the relationship between pretherapy CD8+ T-cell infiltrates and response to 

checkpoint blockade in melanoma (52).

NGS permit identification of mutations present within the tumor exome allowing for 

neoantigen prediction. Several pre-clinical and clinical studies have now confirmed the 

possibility of identifying neoantigens on this basis (53–57). Although there are limitations of 

probing the mutational profile of tumor in a single biopsy (58, 59), it is evident the vast 

majority of neoantigens occur within exonic sequence and do not lead to formation of 

neoantigens recognized by autologous T-cells (59, 60). Consequently, a robust pipeline for 

filtering cancer exome data is essential. Stimulation of neoantigen-specific T-cell responses 

in cancer patients can be accomplished using two possible approaches. The first is to 

synthesize long peptide vaccines that encode a set of predicted neoantigens. The second 

approach is to identify and expand pre-existing neoantigen-specific T-cell populations to 

create either bulk neoantigen-specific T-cell products or TCR-engineered T-cells for 

adoptive therapy. This latter approach was recently tested in a pilot clinical trial of 

autologous DCs pulsed with oxidized autologous whole-tumor cell lysate (OCDC), which 

was injected intranodally in platinum-treated, recurrent EOC patients (61).

Immune inhibitory network and immune checkpoint inhibitors in EOC

A major barrier to successful cancer immunotherapy is an immunosuppressive TME. Even if 

large numbers of tumor-specific T-cells are generated in patients by active immunization or 

adoptive transfer, these T-cells may not readily destroy tumor targets. In EOC, some of the 

major mechanisms that subvert anti-tumor immunity in the TME include Tregs (11, 62), 

MDSC (63–65), inhibitory cytokines such as transforming growth factor-β (TGFβ) (66), 

immune checkpoint receptors (67–70), and indoleamine-2,3-dioxygenase (IDO) (71–73). 

This redundant immunosuppressive network may pose an impediment to immunotherapy, 

thus facilitating tumor progression.

Emerging evidence suggests that inhibitory receptor expression on TA-specific T-cells is one 

mechanism by which tumors evade immunosurveillance (74). Although inhibitory receptor 

blockade has shown significant promise (75–77), recent studies indicate that multiple 

inhibitory receptors are often co-expressed on TA-specific T-cells (78). In human EOC, TA-

specific CD8+ T-cells co-expressing PD-1 and LAG-3 exhibit significantly impaired IFN-γ 
and TNF-α production compared with single positive cells (70). Simultaneous blockade of 

both receptors restored effector function of these TA-specific T-cells to a level above single 

receptor blockade (70). In an EOC mouse model, synergistic blockade of LAG-3 and PD-1 

enhanced CD8+ TIL function and promoted tumor control, while single-agent blockade had 

little or no effect (79).

Immune modulation is designed to reinstate an existing anticancer immune response or elicit 

novel responses as a result of antigen spreading. This has been achieved through four 

general strategies:

i. inhibition of immunosuppressive receptors expressed by activated T-cells;

ii. inhibition of the principal ligands of these receptors;
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iii. activation of co-stimulatory receptors expressed by effector T-cells; and

iv. neutralization of immunosuppressive mediators in the TME.

The first published data supporting checkpoint blockade as a potentially valuable therapeutic 

approach in EOC were trials of nivolumab (67), and BMS-93655 (anti-PD-L1) (75). In 20 

nivolumab-treated patients in whom responses could be evaluated, the best overall response 

was 15% and the disease control rate was 45%. Two additional trials using avelumab and 

pembrolizumab were presented at the annual ASCO meeting in 2015. Of 75 heavily pre-

treated avelumab-treated EOC patients, 8 patients experienced partial responses, 33 patients 

had stable disease, and there were no complete responses, with a disease control rate of 

54.7% (80). In another Phase-1b study, 26 heavily pre-treated EOC patients with PD-L1 

expression ≥1% on tumor cells were treated with pembrolizumab. The results showed one 

complete response, two partial responses and six patients with stable disease, corresponding 

to a disease control rate of 34.6% (81).

While these results are promising, the mechanism(s) of resistance to immune checkpoints in 

EOC are unclear. It is possible redundant immunosuppressive mechanisms counteract the 

beneficial effects of checkpoint blockade. Interestingly, a recent study in a murine EOC 

model showed anti-PD-1 monotherapy resulted in compensatory induction of other 

checkpoints, a feedback loop further contributing to immunosuppression (82). Additional 

checkpoint blockade agents are in various phases of clinical development, including anti-

LAG-3 and anti-TIM3. Finally, emerging evidence suggests that the clinical efficacy of 

checkpoint blockade may be profoundly influenced by the mutational burden and 

“neoantigens” specific to the neoplasm (83), as higher neoantigen load leads to recruitment 

of a diverse repertoire of neoantigen-specific T-cells, leading to more effective tumor 

control.

Another critical tolerogenic mechanism in EOC is mediated by IDO, an immunoregulatory 

enzyme that contributes to profound immunosuppression (72). IDO catalyzes the rate-

limiting step of tryptophan degradation. Reduction in local tryptophan levels and the 

production of tryptophan catabolites both contribute to immunosuppression (84), 

culminating in negative effects on T-cell proliferation, function, and survival. IDO activity 

also promotes the differentiation of naïve T-cells to Tregs (85). Since increased Treg activity 

has been shown to promote tumor growth and Treg depletion has been shown to allow an 

otherwise ineffectual anti-tumor immune response to occur (62), IDO expansion of Tregs 

provides an additional immunosuppressive mechanism.

In addition to directly inhibiting IDO enzymatic activity, second-generation IDO1 inhibitors 

such as epacadostat and navoximod have entered clinical trials due to their favorable 

pharmacokinetic profile. Phase I clinical trials with these orally available compounds have 

demonstrated safety and biological efficacy based on reversal of tryptophan depletion (86). 

A recently completed trial (NCT02042430) sought to determine the magnitude by which 

epacadostat alters CD8+ TIL frequency when administrated prior to surgery in newly 

diagnosed stage III-IV EOC patients. Another approach tests whether concomitant IDO 

inhibition and NY-ESO-1 vaccination will enhance the generation of durable antitumor 

CD8+ T-cells in EOC patients (NCT02166905).
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Adoptive Cellular Therapy

Among various immunotherapeutic approaches, adoptive T cell therapy (ACT) has resulted 

in objective responses in the majority of treated patients (87). ACT approaches involve:

i. the collection of circulating T-cells or TILs (88);

ii. modification and/or expansion ex-vivo; and

iii. their re-infusion to patients after lymphodepleting chemotherapy.

Initial studies demonstrating the potential of T-cell immunotherapy to eradicate solid tumors 

came from the NCI in adoptive transfer studies of TILs (89, 90). Unfortunately, methods of 

isolating and manufacturing TILs are labor intensive and only successful in a subset of 

patients (91, 92). In order to improve the therapeutic potential of ACT, peripheral blood 

lymphocytes can be genetically modified to express: (i) a TA-specific T-cell receptor (TCR) 

(87), or (ii) “chimeric antigen receptor” (CAR) expressing the TA-binding domain of an 

immunoglobulin linked to costimulatory molecules (93). In EOC, targets for the TCR 

approach include NY-ESO-1, MAGE-A4, and WT1. Targets for CAR-T-cells include 

MUC16, mesothelin, and folate receptor. Several studies are ongoing or completed testing 

CD8TCR-engineered T-cells in patients. Although spectacular responses have been 

observed, the majority of clinical responses are short-lived with ultimate tumor relapse. One 

explanation for this sub-optimal outcome is the relatively limited long-term survival and 

effector function due to suppression or exhaustion of infused T-cells.

Previous ACT trials have focused on CD8TCR but not CD4TCR. Because CD4+ T-cells 

maintain CD8+ T-cell responses (94, 95) and rescue exhausted T-cells (96), long-lasting anti-

tumor responses are expected by the synergy of CD8TCR− and CD4TCR-engineered T-

cells. Recently, two types of TA-specific CD4+ T-cells, tumor-recognizing or non-tumor-

recognizing, have been identified that play distinct roles in the TME (97). Though both 

recognize NY-ESO-1 presented by APCs, only tumor-recognizing CD4 directly recognize 

cancer cells in an antigen/MHC-restricted manner (97, 98).

Oncolytic Virus-based therapy

Oncolytic viruses (OV) are non-pathogenic viral strains that specifically infect cancer cells, 

triggering their demise. The anti-neoplastic potential of OV can be innate via a cytopathic 

effect or by mediating oncolysis due to expression of gene products that are potentially 

lethal for the host cell. Increasing preclinical and clinical evidence indicate that the 

therapeutic activity of oncolytic viruses is also related to their ability to elicit immune 

responses as they (i) reprogram the inflammatory TME to be more immunogenic and (ii) 

promote the release of TA. OVs can be genetically engineered to endow them with 

additional attributes, such as antagonism of chemokine receptors (99).

Results from a study testing talimogene laherparepvec (T-VEC), a modified herpes simplex 

virus type-1, were recently reported (100). Researchers randomized 436 patients with 

aggressive, inoperable melanoma to receive either T-VEC or a control immunotherapy. 
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16.3% of the group given T-VEC showed a durable response of >6 months, with some 

responses extending past three years.

Combination of ACT and OV may have beneficial synergistic effect. In mouse models, it has 

been shown that T-cells loaded with oncolytic vesicular stomatitis virus efficiently delivered 

the virus to metastatic lymph nodes leading to tumor clearance (101). The loading of 

antigen-specific T-cells with vesicular stomatitis virus enhanced the delivery of the virus to 

lung tumors (102) and the associated pro-inflammatory TME enhanced antigen-specific T-

cell proliferation and survival within the tumor.

Conclusions and Future Directions

Cancer immunotherapy is evolving quickly and understanding the dynamics of the antitumor 

immune response, especially in regards to immunosuppression and counter-regulation, will 

lead to development of effective personalized targeted approaches. A future direction for 

EOC is to develop approaches based on shared antigens and the patient’s neo-antigenome. 

This will require a pipeline for rapid and reliable neoantigen identification, consisting of a 

multidisciplinary team of clinicians and bioinformaticians. Recent examples of “off-the-

shelf” tumor antigens and engineered T-cells are limited to the KRAS G12D TCR (103–

105). Identifying other pairs of antigen moieties and TCR sequences could offer great 

benefits for ACT and vaccination strategies in EOC.

Immunotherapy mediates tumor destruction, but also triggers coordinated induction of 

counter-regulatory and suppressive pathways. Concomitant blockade of suppressive 

pathways at the time of vaccination or T-cell transfer will allow inflammation-induced 

transformation of the TME from a tolerogenic to an immunogenic milieu. Based on 

promising results of PD-1/PD-L1 pathway blockade, it is important to consider opportunities 

for combination therapies. These include PD-1/PD-L1 blockade with anti-CTLA-4 or anti-

LAG-3, an approach that has demonstrated excellent results in pre-clinical models of ovarian 

cancer and melanoma (70, 79, 106–110). Additional potential combinations include targeted 

agents (e.g. BRAF and EGFR targeted agents) (111), blocking IDO, chemotherapies with 

potential to cause immunogenic cell death, and vaccine combinations.
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Key points:

1. Harnessing the immune system to eradicate established tumors is emerging as 

a viable and efficacious therapy for advanced ovarian cancer.

2. Shared tumor antigens, such as NY-ESO-1, or patient-specific mutational 

neoantigens are attractive targets for initiation of T-cell responses.

3. The presence of redundant and compensatory immune checkpoint pathways 

indicate that combinatorial checkpoint blockade may be required for effective 

tumor control in ovarian cancer.

4. Addressing the molecular mechanisms governing poor in-vivo persistence of 

engineered T-cells will enhance the therapeutic potential of adoptive T-cell 

therapy.
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Synopsis

Clinical progress in the field of cancer immunotherapy has been slow for many years but 

within the last 5 years, breakthrough successes have brought immunotherapy to the 

forefront in cancer therapy. Promising results have been observed in solid tumors and 

hematological malignancies with adoptive cell therapy using tumor-infiltrating 

lymphocytes (TILs), host cells genetically engineered with antitumor T-cell receptors 

(TCRs) or chimeric antigen receptors (CARs), immune checkpoint inhibitors, and 

oncolytic virotherapy. However, most treatment modalities have shown limited efficacy 

when utilized as monotherapy. The complex nature of cancer with intra- and inter-tumor 

antigen and genomic heterogeneity, coupled with the immunosuppressive 

microenvironment, emphasizes the potential need to personalize immunotherapy by 

manipulating the patient’s own immune system against cancer. For successful and long-

lasting cure of cancer, a multi-modal approach is essential, combining antitumor cell 

therapy with manipulation of multiple pathways in the tumor microenvironment (TME) 

to ameliorate tumor-induced immunosuppression.
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Figure 1. 
Expression pattern of 162 CT genes across normal tissues from GTeX and patient tumor 

samples from TCGA. RNASeq data were obtained from GTeX (normal tissues) or TCGA 

PANCancer study (tumors). The median expression per each CT gene was calculated across 

all patients in a specific tissue. Each cell in the heatmap indicates the median expression of a 

CT gene in the tissue indicated at the bottom of the figure. Red cells indicate high 

expression and black cells low expression levels.

From Want MY, Lugade AA, Battaglia S, et al. Nature of tumour rejection antigens in 

ovarian cancer. Immunology 2018; with permission.
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Table 1:

Available Anti-cancer Immunotherapies

Approach Licensed

Tumor targeting antibodies Yes

DC vaccination Yes

Peptide vaccines Yes

Immunostimulatory cytokines Yes

Immunomodulatory antibodies Yes

Oncolytic virotherapy Yes

TLR agonists Yes

DNA and recombinant viral vaccines No

Inhibitors of IDO, arginase No

Adoptive cell therapy No
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Table 2.

Selected cancer vaccine studies

Antigen Phase Disease Technology Co-therapy Sponsor Reference

NY-
ESO-1 I Metastatic cancer Recombinant protein GLA -SE Immune Design NCT02015416

I Ovarian, fallopian tube 
cancer

DEC-205 Fusion 
protein

Poly-ICLC, IDO1 
inhibitor

Roswell Park Cancer 
Institute NCT02166905

I NY-ESO-1 expressing 
solid tumors

DEC-205 Fusion 
protein/Dendritic ell Rapamycin Roswell Park Cancer 

Institute NCT01522820

I/II NY-ESO-1 expressing 
tumors

DEC-205 Fusion 
protein

Resiquimod, Poly-
ICLC Celldex Therapeutics NCT00948961

I NY-ESO-1 expressing 
tumors Full length protein Montanide, 

Resiquimod
Mount Sinai School of 

Medicine NCT00821652

I
Ovarian, fallopian, 
primary peritoneal 

cancer
Peptide

Decitabine, 
Doxorubicin, 
Montanide

Roswell Park Cancer 
Institute NCT01673217

I NY-ESO-1/LAGE-1 
expressing tumors Peptide CpG7909, 

Montanide
Ludwig Institute for 

Cancer Research NCT00199836

I
Ovarian, fallopian, 
primary peritoneal 

cancer
Peptide Montanide Memorial Sloan 

Kettering Cancer Center NCT00066729

I Prostate cancer Peptide Baylor College of 
Medicine NCT00616291

I
Ovarian, fallopian, 
primary peritoneal 

cancer

Overlapping Long 
peptides (OLP4)

Montanide, Poly-
ICLC

Ludwig Institute for 
Cancer Research NCT00616941

I
Ovarian, fallopian, 
primary peritoneal 

cancer

Vector (ALVAC(2)-
NY-ESO-1(M) 

TRICOM)

GM-CSF, 
Rapamycin

Roswell Park Cancer 
Institute NCT01536054

I
Ovarian, fallopian, 
primary peritoneal 

cancer

Vector (ALVAC(2)-
NY-ESO-1(M) 

TRICOM)
GM-CSF Ludwig Institute for 

Cancer Research NCT00803569

II
Ovarian, fallopian, 
primary peritoneal 

cancer

Vector (Fowlpox-NY-
ESO-1)

Recombinant 
Vaccinia-NY-ESO_1

Ludwig Institute for 
Cancer Research NCT00112957
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