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Introduction: The mortality of coronavirus disease 2019 (COVID-19) is frequently driven by an 

injurious immune response characterized by the development of acute respiratory distress 

syndrome (ARDS), endotheliitis, coagulopathy, and multi-organ failure. This spectrum of 

hyperinflammation in COVID-19 is commonly referred to as cytokine storm syndrome (CSS).

Areas covered: Medline and Google Scholar were searched up until 15th of August 2020 for 

relevant literature. Evidence supports a role of dysregulated immune responses in the 

immunopathogenesis of severe COVID-19. CSS associated with SARS-CoV-2 shows similarities 

to the exuberant cytokine production in some patients with viral infection (e.g.SARS-CoV-1) and 

may be confused with other syndromes of hyperinflammation like the cytokine release syndrome 

(CRS) in CAR-T cell therapy. Interleukin (IL)-6, IL-8, and tumor necrosis factor-alpha have 

emerged as predictors of COVID-19 severity and in-hospital mortality.

Expert opinion: Despite similarities, COVID-19-CSS appears to be distinct from HLH, MAS, 

and CRS, and the application of HLH diagnostic scores and criteria to COVID-19 is not supported 

by emerging data. While immunosuppressive therapy with glucocorticoids has shown a mortality 

benefit, cytokine inhibitors may hold promise as ‘rescue therapies’ in severe COVID-19. Given the 

arguably limited benefit in advanced disease, strategies to prevent the development of COVID-19-

CSS are needed.
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1. Introduction

The Coronavirus disease 2019 (COVID-19) pandemic is an ongoing threat to global health. 

COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was 

first reported to have emerged in humans in December 2019 and has since spread rapidly 

worldwide [1]. To date, the numbers of people infected by the SARS-CoV-2 and deaths 

directly attributable to COVID-19 continue to increase or are again rising in areas with 

previously declining new case burden. As of October 2020, more than 36 million individuals 

worldwide were diagnosed with COVID-19 and more than 1 million deaths were reported 

[2].

A major cause of morbidity and mortality in SARS-CoV-2-associated pneumonia is the 

progression to acute respiratory distress syndrome (ARDS) [1]. Data from both experimental 

animal models and clinical studies of other viral syndromes suggest a model of immune-

mediated damage caused by virus-associated dysregulation of immune responses in the 

genetically or immunologically susceptible host [3-5]. In infection with two other highly 

pathogenic coronaviruses, SARS-CoV-1 and MERS-CoV, this state of hyperinflammation 

has been likened to a cytokine storm syndrome (CSS). Evidence suggests that COVID-19 is 

similarly characterized by a deleterious activation of proinflammatory pathways, potentially 

related to dysregulated T cell responses, delayed type I interferon (IFN) responses, and 

exuberant production of cytokines, accompanied by increases in morbidity and mortality 

[3,4]. Targeting immune dysregulation with the goal to ameliorate ARDS and prevent multi-
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organ failure holds some promise as a potential therapeutic pathway. However, caution must 

be exercised, as immunomodulatory therapy may blunt host innate and adaptive responses 

during active viral replication. In this review, we summarize the evolving evidence 

supporting hyperinflammation as a pathogenetic mechanism for severe COVID-19 infection 

as well as therapeutic strategies currently in use and under investigation.

Given the rapid evolving changes in Covid19 knowledge, the authors chose to use Google 

search in addition to a Medline search using ‘Covid-19, SARS-CoV-2, Cytokine storm.’ The 

last search date was 15 August 2020.

2. Hyperinflammation in COVID-19 and infection with other virulent 

coronaviruses

2.1. Immune dysregulation in severe coronavirus infection

2.1.1. Animal and in vitro models of severe respiratory coronavirus infection
—Coronaviruses are a family of enveloped non-segmented positive-sense RNA viruses 

broadly distributed in humans and animals. Of the coronaviruses known to cause infection in 

humans, three are now recognized to cause fatal respiratory disorders: the severe acute 

respiratory syndrome coronavirus (SARS-CoV-1) and SARS-COV-2, and Middle East 

respiratory syndrome coronavirus (MERS-CoV) [5].

Although no direct evidence implicates proinflammatory cytokines as the cause of lung 

damage, the observation of patterns of proinflammatory cytokine production in animal and 

in-vitro models of SARS-CoV-1 and MERS-CoV infection supports the idea of a shared 

pathophysiology of immune dysregulation. Chu et al. examined the comparative abilities of 

MERS-CoV and SARS-CoV-1 to trigger a cytokine response in monocyte-derived dendritic 

cells and found that both induced upregulation of TNF-α and IL-6 during the same time 

frame that peak viral titers were observed in culture [6]. Zhou et al. similarly examined 

infectivity and innate immune response-related cytokines in monocyte-derived macrophages 

(MDMs) and found that MERS-CoV and SARS-CoV-1 showed a sustained induction of 

MCP-1, MIP-1α, and IL-8, whereas MERS-CoV-infected MDMs produced higher levels of 

these chemokines [7]. As expected, TNF-α and IL-6 were induced at high levels by both 

MERS-CoV and SARS-CoV-1. Interestingly, IFN-γ induction in MDMs was much more 

prominent than IFN-α and IFN-β [7]. Lau et al. examined cytokine profiles in MERS-CoV- 

and SARS-CoV-1-infected polarized airway epithelial Calu-3 cells and found that both 

viruses caused a delayed induction of IL-1β, IL-6, and IL-8, with MERS-CoV triggering a 

stronger response than SARS-CoV-1 [8]. Animal models of MERS and SARS are more 

heterogeneous in terms of symptom severity, limiting the usefulness of rodent models. 

However, in more rapidly lethal and systemically symptomatic models, elevations of pro-

inflammatory cytokines such as IL-6, IP-10, and IL-8 were observed in lung and brain 

tissues [9-11].

Animal models that model human COVID-19 are emerging. Mouse models – without 

genetic modification – do not support SARS-CoV-2 infection due to the inability of spike 

protein to bind the murine ortholog of its cognate receptor human angiotensin-converting 
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enzyme 2 (hACE2) [12]. Recent efforts to overcome these limitations using transgenic and 

adeno-associated virus-mediated expression of hACE2 in mice allow for SARS-CoV-2 

infection and replicate features of COVID-19 [12-14]. Israelow et al. found expansion of 

infiltrating myeloid-derived inflammatory cells and inflammatory monocyte-derived 

macrophages (CD64+ CD11c-CD11b+Ly6C+) in the diseased lungs at days 2 and 4 post-

infection, which was paralleled by increases in activated CD4+ and CD8 + T cells as well as 

natural killer (NK) cells. These cellular changes in the lungs were associated with increased 

cytokines and interferon-stimulated gene signatures, including a subset of 45 genes specific 

to type I IFN signaling, similar to what has been observed in the lungs of patients with 

COVID-19 [12]. IFN-α receptor- and IFN regulatory transcription factor 3/7-deficient mice 

showed markedly decreased recruitment of monocytes/macrophages, and activation of CD4 

+ T cells, CD8 + T cells, and NK cells in infected lungs, highlighting the role of type I IFNs 

in the immunopathology of SARS-CoV-2 pneumonia [12]. Unlike the sequelae observed in 

human disease, this model of SARS-CoV-2 infection in young mice did not recapitulate the 

mortality observed in COVID-19-ARDS and CSS. In another model of hACE2 transgenic 

mice, SARS-CoV-2 infection resulted in isolated pulmonary pathology with interstitial 

pneumonia and was associated with transient weight loss, but otherwise did not recapitulate 

COVID-19-CSS [14]. By contrast, HFH4-hACE2 transgenic C3B6 mice showed evidence of 

a multi-system disease (including interstitial pneumonia, elevation in CPK and AST, cardiac 

muscle edema and myocyte necrosis, sporadic neuro-invasion) and variably showed weight 

loss, respiratory distress, neurological symptoms, and mortality, reminiscent of human 

disease [13]. Cynomolgus macaques were permissive to SARS-CoV-2 infection and showed 

limited pulmonary lesions with evidence of diffuse alveolar damage but remained 

asymptomatic at day 4 post-infection [15]. It remains unclear whether SARS-CoV-2-related 

hyperinflammation is replicated in non-human primate models, similar to the cytokine storm 

observed during lethal infection with 1918 influenza virus in macaques [16]. Animal models 

that comprehensively replicate the dysregulated immune responses and associated 

immunopathology of COVID-19, can model the response to prophylactic and 

immunosuppressive therapies, and inform their timing will remain a priority.

2.1.2. Proinflammatory cytokines are associated with disease severity in 
coronavirus infection—Macrophage infiltration of the lungs, their presence in 

bronchoalveolar lavage (BAL) fluid, high concentrations of proinflammatory mediators, and 

hemophagocytosis suggest that host responses contribute to the immunopathogenesis of 

SARS and MERS [3,4,17-20]. Understanding this hyperinflammatory state and relative 

contributions of host immune responses to morbidity and mortality is of interest in 

identifying targets for potential treatment. Several pro-inflammatory cytokines have been 

found to be elevated in patients with severe pneumonia associated with SARS-CoV-1 and 

MERS-CoV, including IL-1β, IL-6, IL-12, IL-15, IL-17, IFN-γ, IP-10, and MCP-1 [4,21]. 

More severe courses of SARS and MERS are associated with persistent fever, lung 

infiltrates, and higher plasma levels of proinflammatory cytokines including IL-6, MCP-1, 

and IP-10 [3,4]. The difference is most pronounced in the second week of illness, days after 

peak viral loads were observed. Elevated levels of IL-6 and IL-8 were observed in SARS 

patients, and IL-6 and IP-10 in MERS patients, suggesting that a dysregulated immune 

response phase occurs after the viral replication stage. Similar findings of elevated levels of 
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pro-inflammatory cytokines have been reproducibly demonstrated in COVID-19 [3,22]. IL-6 

elevation in particular has received considerable attention as a marker of disease severity and 

in-hospital mortality [23-29]. Several other cytokines have been associated with disease 

severity in COVID-19, including IL-2 R, IL-8, IL-10, TNF-α, IP-10, MCP-3, IL-1RA, but 

not IL-1β [27,28,30,31]. In a large cohort of 1,484 patients TNF-α and IL-6 were the only 

two cytokines that significantly and independently predicted mortality [27]. In an early 

study, patients requiring ICU admission had higher concentrations of IL-2, IL-7, IL-10, 

IL-12, G-CSF, MCP-1, MIP-1A, and TNF-α than did those not requiring ICU admission 

[32]. Elevation of other chemokines and cytokines has been reported in target tissues and 

circulation however, elevation of IL-6 and other cytokine levels alone may not reliably 

differentiate moderate from severe COVID-19 or even signify a hyperinflammatory state 

[33,34]. One study of peripheral blood mononuclear cells (PBMCs) found increased 

polyclonal granulocyte-macrophage colony-stimulating factor (GM-CSF)+ CD4 T cells in 

COVID-19 patients compared to healthy controls and GM-CSF-responsive CD14+ CD16+ 

monocytes capable of producing IL-6, suggesting a mechanism by which dysregulation of T 

cell responses can contribute to the overproduction of cytokines seen in hyperinflammation 

[35].

Despite the association between high levels of pro-inflammatory cytokines and increased 

disease severity, it should be emphasized that this observation does not establish a causal 

relationship. Conversely, while the cryopyrin-associated periodic syndromes (CAPS) are 

driven by deregulated release of IL-1β and can be treated effectively with anakinra or other 

IL-1 blocking agents [36] Serum levels of IL-1β are below the level of detection even during 

CAPS flares. More mechanistic research will be needed to determine the roles of specific 

cytokines in COVID-19 pathophysiology.

2.1.3. Delayed type I IFN responses may lead to more severe coronavirus 
infection—IFNs are produced during a viral infection and are critical to orchestrate innate 

and adaptive antiviral immune responses [5]. IFNs induce the production of antiviral effector 

proteins, thereby inhibiting intracellular viral replication. Type 1 IFNs (IFN-I) activate 

interferon-stimulated genes (ISG) that are involved in inflammation, signaling, and 

immunomodulation. A deficient IFN-I response can lead to reduced antiviral activity. In 

addition, IFN-I treatment has been studied in MERS-CoV and SARS-CoV-1 infection alone 

or in combination with other antivirals, glucocorticoids, or IFN-γ, although studies in 

patients have thus far been disappointing [5,6]. Some have used IFN-α2b sprays to reduce 

the infection rate of SARS-CoV-1 in children [37]. In an elegant demonstration, 

Channappanavar et al. showed that a robust viral replication and delayed IFN-I responses 

were detrimental in SARS-CoV-1-infected mice due to influx of inflammatory monocytes-

macrophages into target tissue, which led to severe forms of SARS [37]. Additionally, they 

found that inflammatory monocytes-macrophages were the predominant source of the 

proinflammatory cytokines CCL2, TNF-α, and IL-6 in SARS-CoV-1-infected lungs. A 

strong and persistent expression of IFN and ISGs, associated with impaired T cell and 

antibody responses, was also associated with fatal cases of SARS [38].

Emerging information implicates impairment of the type I interferon response in the 

pathogenesis of severe COVID-19 infection. Blanco-Melo et al. found that SARS-CoV-2 
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impairs expression of type I and III IFN genes in a SARS-CoV-2 animal model as well as in 

lung tissue and sera from patients with COVID-19 [39]. Trouillet-Assant et al. examined the 

kinetics of the plasma IFN-I response in 26 critically ill patients with COVID-19 and found 

that all (5 out of 5) patients with sustained lack of IFN-α2 production required invasive 

ventilation compared to 9 out of 21 patients with the expected peak of IFN-α2 8–10 days 

after onset of symptoms; all patients had sustained elevation of C-reactive protein (CRP) and 

IL-6 levels [40]. Hadjadj et al. reported that plasma levels of IFN-α2 at 8–12 days after 

symptom onset were lower in 18 critically ill patients with COVID-19 than in 15 patients 

with mild-to-moderate symptoms [41]. Gene expression analysis also showed that ISGs such 

as MX1, IFITM1, and IFIT2 were down-regulated, but serial measurements were not 

reported [41]. Taken together, these findings support the concept of delayed or impaired IFN 

responses causing delayed viral clearance and increased proinflammatory cytokine release, 

ultimately causing severe disease. While we are still striving to fully understand the 

pathophysiology of COVID-19, this model could explain part of the wide range of clinical 

presentations of SARS-CoV-2 infection.

2.2. Clinical presentation of COVID-19

2.2.1. Progression of COVID-19—Infection with SARS-CoV-2 leads to a wide range 

of clinical manifestations ranging from asymptomatic to severe, life-threatening disease with 

a median time from illness onset to clinical resolution of 22 · 0 days (IQR 18 · 0–25 · 0). In 

the adaptive immune phases of infection, COVID-19 may be complicated by ARDS, multi-

organ failure (including heart and kidney failure), sepsis/septic shock, and death [1,42]. The 

outcome of COVID-19 is thought to be largely governed by the interplay between the virus 

and host antiviral immune responses [43]. Although more studies are needed to establish a 

reliable clinical staging system, the initial state of COVID-19 infection appears to be 

relatively mild, with nonspecific symptoms such as malaise, fever, myalgia, dry cough, and 

diarrhea. While the virus multiplies in the host cells, primarily affecting the lower 

respiratory system but also the gut and nasopharynx, mild respiratory and systemic 

symptoms predominate (stage 1). In a second stage of the infection, patients develop a viral 

pneumonia with bilateral infiltrates and ground-glass opacities, leading in some patients to 

dyspnea (7 · 0 (IQR 4 · 0–9 · 0) days from illness onset) or hypoxemia requiring 

hospitalization (stage 2) [1]. A minority of patients will progress to the most severe form of 

illness, characterized by ARDS with or without an extrapulmonary systemic 

hyperinflammation syndrome, commonly referred to as CSS (stage 3) [44] (Figure 1).

2.2.2. Clinical and laboratory features of severe COVID-19—The severe 

presentation of COVID-19 peaks around 7–14 days after onset of illness and is associated 

with respiratory distress, and hyperinflammation [1,45]. Compared to moderate cases, 

patients with severe cases of COVID-19 have more chest tightness, tachypnea, and dyspnea 

with frequent hypoxemia requiring invasive mechanical ventilation [46] (see Table 1).

Despite an increase in white blood cell count, severe SARS-CoV-2 infection is associated 

with lymphopenia (particularly in CD4 + T cells and CD8 + T cells but not in B cells). As 

we discussed, the levels of proinflammatory cytokines IL-6, IL-2 R, IL-10, and TNFα are 

markedly elevated in severe cases. Elevated levels of transaminases, creatinine, creatine 

Amigues et al. Page 6

Expert Rev Clin Immunol. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



kinase, LDH, D-dimer, ferritin, cardiac troponin, and NT-pro-BNP were all more frequently 

seen in deceased patients [1,33]. In our experience, elevations of these acute phase proteins 

and pro-inflammatory cytokines correspond to COVID-19 disease progression. In particular, 

some patients with severe disease appear to have a hyperinflammatory state characterized by 

very high D-dimer levels, elevated CRP, and elevated ferritin. Coagulopathy with pulmonary 

thrombosis, microangiopathy, and multi-organ system dysfunction, including acute kidney 

injury and cardiomyopathy, can also be seen [47].

2.2.3. Pathological studies of COVID-19—There are relatively few reports of 

histopathological data from patients with COVID-19. In autopsies of 75 fatal cases of 

COVID-19 pneumonia, the main pulmonary findings included diffuse alveolar damage with 

hyaline membrane formation, fibrin exudates, epithelial damage, and diffuse type II 

pneumocyte hyperplasia [34,35,48]. Interstitial lymphocytic inflammatory infiltrates were 

seen in only one patient; in the same patient, multinucleated syncytial cells with atypical 

enlarged pneumocytes and viral cytopathic-like changes in the intraalveolar spaces were also 

visible [34]. Another case series revealed evidence of predominantly thrombotic injury 

without similar fibroproliferative or viral cytopathic changes in the lung [49]. Thrombotic 

microvascular injury with complement C5b-9 deposition was seen in skin tissue of three and 

lung tissue of two of these five patients [49]. Similarly, lung pathology of four patients who 

died of COVID-19 revealed small, firm thrombi in sections of the peripheral parenchyma, 

platelets, and thrombi in small vessels, and foci of hemorrhage [50]. Similar findings were 

seen in the form of deep venous thrombosis and pulmonary thromboembolism in a series 

highlighting COVID-19-associated coagulopathy [51]. In patients who had their hearts 

examined, there was scarce evidence of inflammation. While some had only few interstitial 

mononuclear inflammatory infiltrates and no other substantial damage, others also had 

evidence of scattered individual cell myocyte necrosis [34,35,50]. None had a significant 

lymphocytic inflammatory infiltrate consistent with the typical pattern of viral myocarditis 

[34,35,50]. Reports of hemophagocytosis among autopsy series are relatively sparse, 

especially from bone marrow biopsy specimens [52,53]. While the presence or absence of 

hemophagocytosis by itself does not define cytokine storm, this sparsity may suggest a 

divergence between COVID-19-CSS and other hyperinflammatory syndromes.

2.2.4. Predictors of mortality and severity in severe COVID-19—Age, male sex, 

chronic hypertension, and other cardiovascular comorbidities are risk factors for death due to 

COVID-19 [33]. Leukocytosis, persistent and severe lymphopenia, as well as elevated 

transaminases, creatinine, creatine kinase, LDH, D-dimer, ferritin, cardiac troponin, and NT-

pro-BNP were all more frequently seen in patients who died from COVID-19 [1,33]. In a 

multivariable logistic regression model, older age, higher Sequential Organ Failure 

Assessment (SOFA) score, and elevated D-dimer were associated with increased odds of 

death [1]. Concentrations of IL-6, IL-8, IL-10, TNF-α, and IL-2-receptor were also 

significantly higher in patients who died than those who recovered [1,33]. In a study from 

Germany, the authors found that IL-6 levels above 80 pg/mL were strongly associated with 

the need for mechanical ventilation and may identify patients at highest risk of respiratory 

failure [54]. While it remains unclear whether IL-6 directly contributes to organ-damage in 

severe COVID-19 or merely represents a biomarker, its elevation in severe COVID-19 
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patients has raised suspicion that it can trigger or sustain cytokine storm. 

Hyperinflammatory syndromes such as MAS, HLH, CRS, and the viral response to SARS-

CoV-2, while similar in their cytokine profile and associated laboratory parameters, should 

be differentiated and compared with caution.

3. Comparison of severe COVID-19 to other syndromes with 

hyperinflammation

3.1. HLH and MAS

HLH is the prototypical hyperinflammatory syndrome that is driven by T and NK cells and 

associated with an often fatal cytokine storm [55,56]. HLH is subdivided into two categories. 

Familial or primary HLH is associated with various genetic defects in the perforin cytotoxic 

pathway and commonly autosomal recessive in inheritance. Patients with secondary or 

reactive HLH (rHLH) can also have underlying mutations and/or polymorphisms affecting 

genes of the perforin pathway and have identifiable triggers including cancer or infection, 

commonly Epstein Barr virus (EBV), cytomegalovirus (CMV), human immunodeficiency 

virus (HIV), or influenza [56,57]. When triggered by an autoinflammatory/autoimmune 

disorder, the term macrophage activation syndrome (MAS) is commonly applied in the 

literature [58,59].

Clinical manifestations of HLH include fever, lymphadenopathy, hepatosplenomegaly, and 

at times complicating neurological symptoms. Laboratory features include marked 

cytopenia, elevated liver enzymes, hypertriglyceridemia, hyperferritinemia, and 

hypofibrinogenemia. Bone marrow findings include many well-differentiated macrophages 

phagocytosing other hematopoietic elements (e.g. erythrocytes, platelets, or granulocytes). A 

decrease in ESR elevation has been proposed as a characteristic feature that is secondary to 

fibrinogen consumption and liver dysfunction [60]. Marked elevation in ferritin is seen and 

reflects activation and active production by macrophages. NK cell function is abnormal due 

to cytotoxic pathway defects and soluble IL-2 R is elevated due to ineffective immune cell 

activation when target cell killing is impaired [61]. Despite many clinical and laboratory 

abnormalities, there is no pathognomonic feature of this cytokine storm and several 

classifications have been proposed (Table 1). Unfortunately, classification criteria for HLH 

and MAS most likely cannot be directly applied to COVID-19-CSS [62,63].

3.2. Cytokine release syndrome (CRS)

Cytokine-release syndrome (CRS) is a dysregulated systemic inflammatory response seen as 

a common and severe complication of cancer immunotherapy as well as other forms of 

immunomodulatory therapy [64-66]. More recently, CRS has drawn attention as a 

complication of chimeric antigen receptor (CAR) T cell therapy, an approved treatment for 

multiple B cell malignancies [67-70]. In these cases, simultaneous activation of a large 

number of CAR T cells by engagement with their cognate antigen on cancer cells causes 

release of inflammatory cytokines and chemokines, triggering further cytokine release from 

monocytes, macrophages, dendritic cells, and other immune cells [71,72]. Biomarkers can 

include expansion of CAR T cell numbers and elevation in a variety of inflammatory 

proteins, chemokines, and cytokines including IL-6 [73,74].
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CRS can manifest clinically on a spectrum of acuity ranging from constitutional symptoms 

of fever, fatigue, headache, and myalgia to severe end-organ toxicity, hemodynamic shock, 

respiratory failure, and death [67,68,70]. In rare cases, CAR T cell therapy has been linked 

to the induction of an rHLH/MAS-like syndrome, which may be a progression to the most 

severe end of the CRS spectrum [75,76]. Common features of CRS as well as HLH and 

MAS are shown in Table 1. Both treatment factors such as the CAR construction, target, and 

dose, as well as patient characteristics such as age, comorbidities, and tumor burden are 

believed to affect the risk, severity, and presentation of CRS.

3.3. Management of HLH, MAS, and CRS

3.3.1. Management of pHLH and rHLH/MAS—In all cases of HLH, early recognition 

and treatment initiation is key to reduce morbidity and mortality. In children, the primary 

goal of pHLH is to suppress the life-threatening inflammatory process, often using an 

etoposide-based treatment induction regimen (dexamethasone, etoposide, intrathecal 

methotrexate, and cyclosporine) [77]. The goal of aggressive induction therapy in pHLH is 

to achieve remission and bridge to allogeneic hematopoietic stem cell transplantation 

(HSCT) [78]. In adults, tailored treatment approaches with dose reduction and duration as 

well as a modified diagnostic approach that factors in age and potential alternative drivers of 

the disease needs to be considered [79].

For rHLH secondary to malignancy, the underlying malignancy is usually targeted, with 

additional HLH-specific treatment including glucocorticoids and etoposide. In rHLH 

secondary to infection, treatment of the underlying infection is balanced with additional 

HLH-specific treatments including glucocorticoids, etoposide, and cytokine targeted therapy, 

including IL-1 and/or IL-6 pathway inhibition, as well as rituximab in the case of EBV-

related rHLH [79,80]. Emapalumab, an interferon-γ neutralizing antibody, has also been 

successfully used in the treatment of refractory HLH as well as in a case series of patients 

with rHLH/MAS [81,82].

A targeted treatment approach is also followed by both pediatric and adult rheumatologists 

when treating MAS. Due to low event rates, phase 3 clinical trials in patients with MAS are 

difficult to perform, and most treatments used are extrapolated from our understanding of 

systemic juvenile idiopathic arthritis (sJIA), one of the most common underlying disorders 

associated with MAS. IL – 1β, IL – 6, and IL-18 have been implicated in the 

immunopathogenesis of sJIA and possible therapeutic targets in MAS. Both IL-1 pathway 

inhibition with anakinra, a non-glycosylated form of human IL – 1Ra that competitively 

inhibits binding of IL-1α and/or IL-1β, and canakinumab, a human monoclonal anti-IL-1β 
antibody, as well as IL-6 R inhibition with tocilizumab have shown promising results in 

treating sJIA, but do not prevent the development of MAS in all patients that achieve control 

of their arthritis [59,83,84]. Anakinra is also used in the treatment of MAS despite 

difficulties in performing clinical trials in MAS and lack of phase III clinical trials, it can be 

effective in patients who fail to achieve remission with glucocorticoids and cyclosporine 

alone [85]. Higher doses of anakinra may be required to treat MAS than sJIA. Interestingly, 

phase III trials of canakinumab in sJIA did not show a dramatic reduction in the incidence of 

MAS, which was usually triggered by infection [84]. Indeed, the occurrence of new-onset 
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MAS in patients with sJIA in clinical trials of tocilizumab and canakinumab demonstrates 

that the inhibition of either IL-1 or IL-6 alone does not provide full protection against MAS 

[59]. While IL-1 and IL-6 may be contributing factors in the development of MAS, other 

cytokines may be critical drivers of immunopathogenesis when these cytokine signaling 

pathways are inhibited. IL-1- or IL-6-targeted therapies may also benefit those with 

hypomorphic genetic variants, as they are susceptible to MAS triggered by infection.

3.3.2. Management of CRS—Management strategies for CRS with CAR T cell 

therapies have traditionally weighed the need to mitigate CRS effects against the potential 

for immunosuppression to abrogate anti-tumor efficacy and increase infection susceptibility. 

As such, mild or moderate CRS is managed with supportive care and often resolves without 

the need for pharmacologic intervention. Informed by the elevation of IL-6 in CRS, high-

grade CRS is managed with anti-IL-6 or anti-IL-6 R blocking antibodies [68,70]. 

Tocilizumab is an FDA-approved anti-IL-6 R monoclonal antibody for treating CRS. 

Glucocorticoids are also administered, typically only when severe CRS is refractory to 

tocilizumab [68,70,86,87]. In current practice, immunosuppressive therapies are generally 

withheld until the presentation of severe CRS with the intention of preserving immune 

treatment efficacy. However, emerging evidence suggests that targeted therapies inhibiting 

IL-6 signaling and glucocorticoids may not decrease response rates or durability [88]. 

Whether immunosuppressive treatments can be applied earlier in the course of CRS without 

compromising efficacy remains an active area of investigation.

3.3.3. Consideration for the treatment of hyperinflammatory syndrome 
secondary to SARS-CoV-2—While considering similarities between hyperinflammation 

in CRS and COVID-19, it is also important to appreciate distinctions in pathophysiology, 

clinical setting, and treatment goals that may influence the potential translatability between 

treatments and biomarkers for COVID-19-CSS and CRS. CSS in COVID-19 develops after 

a prolonged period of crosstalk between the innate and adaptive arms of the immune system 

in response to viral dynamics, whereas CRS is triggered by the abrupt infusion of a large 

number of activated T cells [89]. In CRS, synthetic constructs drive signaling pathways that 

are qualitatively and quantitatively distinct from signaling driven through natural TCRs [90]. 

Lymphodepleting regimens administered prior to CAR T cell therapy infusion influence 

cytokine signaling along with immune cell interactions [91]. Treatment goals and acceptable 

downsides also differ between CRS and COVID-19-CSS. For example, anti-IL-6(R) 

therapies may not decrease anti-cancer activity for CAR T therapies but could blunt antiviral 

innate and adaptive immunity at a time of active viral replication in the infected host [92]. 

Thus, caution should be used in considering evidence of hyperinflammation in cases of 

patients with COVID-19 prior to recommending immunomodulatory therapy.

4. Approaches in the treatment of COVID-19-CSS

There is a paucity of published randomized controlled trials that can inform the use and 

timing of immunosuppressive therapy in patients with severe COVID-19. Clinical trial 

registries reflect the large and ever-growing spectrum of approaches hypothesized to 

ameliorate COVID-19-CSS. While the ‘compassionate’ off-label use of some of these 

medications may be appropriate in critically ill patients (especially when clinical trials are 
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not available to treating physicians and supportive care is insufficient), cautious and 

judicious use of these drugs is paramount until reliable data regarding their efficacy from 

clinical trials becomes available and their safety in this unique patient population is 

established. A list of current prospective clinical trials on immunosuppressive and 

immunomodulatory agents in COVID-19 can be found through a variety of COVID-19 

clinical trial trackers [93-96]. Figure 2 summarizes the mechanisms of many of the targeted 

therapeutic strategies discussed below.

4.1. Biologics

4.1.1. IL-6 pathway inhibition—The observation of systemically elevated IL-6 levels 

in patients with severe COVID-19 suggests a potential role for anti-IL-6 or anti-IL-6 R 

antibodies in the treatment of COVID-19-ARDS and CSS. Drawing from immuno-oncology, 

the success of tocilizumab in managing CAR-T cell-related CRS provides a further clinical 

rationale for studying therapeutics modulating the IL-6 axis in COVID-19-CSS [68,70,97]. 

Candidate agents include tocilizumab and sarilumab, both of which target the IL-6 R, and 

siltuximab, which neutralizes IL-6 directly.

Several studies have reported anti-IL-6/IL-6 R treatment in COVID-19. The National 

Clinical Trial (NCT) registry reflects tocilizumab’s position as the main IL-6/IL-6 R 

antagonist under investigation (see www.clinicaltrials.gov), with most trials studying IL-6/

IL-6 R antagonists at dosing approved for CAR-T-associated CRS. Primary endpoints for 

these trials range from acute changes in vital signs and laboratory parameters of uncertain 

clinical significance (e.g. defervescence or reduction in CRP) to ICU length of stay and 

mortality measures (e.g. 28-day survival). Tocilizumab was the first monoclonal antibody of 

this class reported to be of potential benefit in severe COVID-19, mirroring its success in 

treating CRS associated with CAR-T cell therapy [68,70,98]. Notably, however, a 

randomized-controlled trial of tocilizumab in severe COVID-19-associated pneumonia 

reported no difference in clinical status or mortality in patients who received tocilizumab 

compared to those who received placebo [99]. Another randomized controlled trial of 

sarilumab in patients with COVID-19 receiving mechanical ventilation also did not reveal a 

significant mortality benefit [100]. However, in these studies, treatment was neither given 

nor assessed based on the inflammatory state, leaving open the possibility that 

hyperinflammation could respond to inhibition of the IL-6 pathway [101]. Moreover, trends 

toward potential benefit in more severe disease were noted.

A historically controlled study of 172 patients with COVID-19-associated 

hyperinflammation found a benefit in respiratory status, length of hospital stay, and 

mortality in patients treated with tocilizumab and glucocorticoids compared to 

glucocorticoids alone, in addition to low-quality evidence from case series. The largest 

published series of 100 tocilizumab-treated patients with hyperinflammatory syndrome or 

ARDS related to COVID-19 found an improvement in respiratory status in 77%, though 

20% died despite treatment [102]. Smaller case series of moderately to critically ill patients 

have reported similar findings of improvement in respiratory status after one to three doses 

of tocilizumab [98,103,104]. Data from another uncontrolled case series of siltuximab in 21 

patients with COVID-19-ARDS revealed that 7 (33%) were clinically improved, 9 (43%) 
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had no change in clinical status, and 5 (24%) had a deterioration in condition after a median 

of 8 days of follow-up [105]. A potential disconnect in effect sizes reported in cases series 

and uncontrolled studies on one hand and those observed in placebo-controlled clinical trials 

of IL-6 signaling pathway inhibitors on the other is noted.

While some of these preliminary studies show promise in select populations, care must be 

taken in critically assessing measures of clinical response used in these studies. As a 

reduction in CRP and other acute-phase reactants is expected with IL-6/IL-6 R inhibitor 

therapy, these changes may not reflect normalization on the target tissue level and cannot be 

equated with meaningful clinical improvement. Treatment with anti-IL-6/IL-6 R therapies in 

the setting of clinical trials is recommended, especially given the lack of established efficacy 

of these agents in severe COVID-19-associated pneumonia. When such trials are not 

available, decisions on compassionate use of these drugs are best made in an 

interdisciplinary team of infectious disease physicians, pulmonologists, rheumatologists, 

hematologists, and other primary team members following local guidance documents.

4.1.2. IL-1 pathway inhibition—Data examining the use of anakinra in patients with 

sepsis and severe organ dysfunction showed some benefit in a subgroup of patients with 

sepsis and concurrent features of HLH/MAS [106]. Based on its safety profile in sepsis and 

its efficacy in rHLH/MAS, IL-1 inhibition has been proposed as a treatment of COVID-19-

CSS [59,107,108].

While anakinra and canakinumab are being used off-label in the treatment of severe 

COVID-19, we are limited to observational studies on the safety and efficacy of IL-1 

antagonism in COVID-CSS. A proof of concept study using anakinra in nine patients with 

moderate to severe COVID-19 pneumonia showed improvement in oxygen requirements, 

markers of inflammation, and clinical outcomes [109]. Another retrospective cohort study 

comparing intravenous (IV) and lower dose subcutaneous (SC) anakinra to standard of care 

demonstrated that IV anakinra slowed systemic inflammation and improved respiratory 

function in those with moderate to severe COVID-19 ARDS in a non-ICU setting, but no 

evidence of benefit for SC anakinra in this study [110]. Another larger case–control study 

compared outcomes in 52 consecutive hospitalized patients with COVID-19 receiving SC 

anakinra at a single center in France with 44 historical controls who received standard of 

care. Anakinra use was associated with significantly lower risk of admission to the ICU and 

death (25% vs.73%, HR:0.22; 95% CI 0.11–0.41) [111]. Major limitations of these studies 

are the use of historical comparator groups and small cohort sizes.

The effects of IL-1 inhibition on antiviral immunity and clearance of SARS-CoV-2 are not 

known, and safety profiles may vary independent of mechanism of action based on 

pharmacokinetics alone, as half-lives are significantly longer for canakinumab (26 days) and 

rilonacept (7 days) compared to anakinra (4–6 hours) [112-114]. The observational studies 

above cannot be interpreted for safety outcomes. Consequently, the results of ongoing 

clinical trials will be helpful in evaluating efficacy and safety of IL-1 inhibitors alone or in 

combination with other agents compared to standard of care in COVID-19-CSS 

(NCT04324021).
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4.1.3. Tumor necrosis factor-α inhibition—Anti-TNF-α therapies are widely used in 

the treatment of autoimmune diseases including rheumatoid arthritis and inflammatory 

bowel disease. In these conditions, TNF-α appears to represent a critical signaling node, and 

inhibition has proven effective in a subset of patients despite upregulation of numerous 

cytokines. Case reports describe effective use of the anti-TNF-α agent etanercept in MAS, 

although other case reports suggest that etanercept can induce or exacerbate MAS 

[115--115-120]. Feldmann et al. has postulated that a single infusion of an anti-TNF-α agent 

may be able to reduce lung inflammation in COVID-19 [121,122]. Registry data from the 

COVID-19 Global Rheumatology Alliance showed that in 600 patients the adjusted odds 

ratio for hospitalization was 0.40 (95% CI 0.19–-0.81) compared to no disease-modifying 

anti-rheumatic drug [123]. Data from the SECURE-Inflammatory Bowel Disease Registry 

demonstrated that anti-TNF reduced the adjusted odds of hospitalization or death 0.60 (95% 

CI 0.38–0.96), but not death alone or the composite outcome of ICU, hospitalization, or 

death [124]. However, these registries do not address COVID-19-associated 

hyperinflammation. The prospect of using anti-TNF for the treatment of coronavirus 

infection has also been proposed prior to the current SARS-CoV-2 pandemic on the basis of 

its potential to reduce severe inflammatory sequelae [125]. While they should be interpreted 

with caution there are also eight reported cases of COVID-19 being treated with anti-TNF 

and showing clinical improvement [126-128]. The effects of anti-TNF-α therapies on viral 

replication in SARS-CoV-2 infection are not known [129]. However, a signal for improved 

outcomes from two large registries of patients with autoimmune disease and COVID-19 is 

reassuring. Notably, patients with these conditions are treated with anti-TNF-α therapies at 

baseline for their underlying inflammatory disease (i.e. prior to infection), suggesting that 

these drugs may have a role in the prevention of severe COVID-19.

4.1.4. Interferon-γ inhibition—The involvement of IFN-γ in the pathogenesis of the 

hyperinflammatory syndrome is complex and potentially complicated by its antiviral role. 

Emapalumab, an interferon-γ neutralizing antibody, has been approved for the treatment of 

refractory HLH. Remarkably, in one case report of refractory HLH in the setting of multiple 

viremias, viral clearance was not negatively impacted [81]. Emapalumab was also used in a 

series of patients with rHLH/MAS related to sJIA who had not improved on high-dose 

glucocorticoids; patients had improvement in clinical and laboratory parameters [130]. 

Potential interference with antiviral host immune responses may be expected in early use of 

anti-INF-γ therapy, and the safety of this approach needs to be established. Emapulumab is 

currently being studied along with anakinra in reducing hyperinflammation in COVID-19 

(NCT04324021). However, in light of conflicting data on levels of IFN-γ in severe 

COVID-19, emapalumab should not be used outside of clinical trials and controlled studies 

are needed to evaluate its efficacy, optimal timing of administration, and safety.

4.1.5. GM-CSF inhibition—GM-CSF has pleiotropic and complex roles in homeostasis 

and inflammation, leading to varied hypotheses on the effects of increasing or decreasing 

GM-CSF signaling as a therapeutic strategy for COVID-19 [131,132]. The role of GM-CSF 

in promoting proliferation of pulmonary epithelial cells and maintenance of alveolar 

macrophage function supports the hypothesis that increasing GM-CSF signaling may be 

beneficial in early stages of COVID-19. A trial investigating the administration of the 
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recombinant GM-CSF sargramostim is underway. In contrast, GM-CSF also has roles in 

inflammatory signaling cascades, suggesting that inhibition of GM-CSF signaling may 

ameliorate COVID-19-CSS. A prospective cohort study of patients with severe COVID-19 

treated with the anti-GM-CSF receptor antibody mavrilumab found that treatment was 

associated with improved clinical outcomes. Compared to 26 patients in a standard of care 

control group, 13 patients in the mavrilumab treatment group had a decreased risk of death 

and a shorter time to clinical improvement [133]. Additional trials of mavrilumab for 

patients with COVID-19 are ongoing, as are trials of the anti-GM-CSF agents gimsilumab, 

lenzilumab, namilumab, otilimab, and TJM2. Data from these larger and randomized trials 

will be necessary to determine the efficacy of this potentially promising strategy for 

COVID-19-CSS.

4.1.6. Complement factor 5 inhibition—Drugs that inhibit the complement pathway 

can reduce immune-mediated damage in complementopathies and certain autoimmune 

rheumatic diseases [134]. Not surprisingly, complement pathway activation has been 

observed to regulate inflammatory responses in animal models of SARS-CoV-1 and 

influenza infection [135,136]. Inhibition of complement C5 has been found to attenuate CSS 

and inflammatory lung injury in animal models [136,137]. In addition, reports of 

microangiopathy associated with complement deposition in patients with COVID-19 suggest 

a potential pathogenetic role for complement pathway activation, and role for complement 

inhibition, in COVID-19 [49]. A recently developed C3 inhibitor (AMY-101), the anti-C5 

antibody eculizumab, and BDB-001, another C5 antagonist currently in development, have 

been used in small case series of one, four, and two patients with severe COVID-19, 

respectively, with reported improvement in clinical and laboratory parameters. C5 

antagonists are currently being studied in COVID-19 (NCT04288713, 2020L00003) 

[138-140].

4.2. Small molecules

4.2.1. Janus kinase (JAK) inhibition—Small molecules that inhibit intracellular 

signaling through the JAK/signal transducers and activators of transcription (JAK-STAT) 

pathway, including baricitinib, tofacitinib, and ruxolitinib, reduce downstream production of 

cytokines and thereby inflammation [141]. Tofacitinib and baricitinib are commonly used in 

the treatment of autoimmune disorders and rheumatic diseases [142]. The JAK1/2 inhibitor 

ruxolitinib has shown promise in rHLH [143]. Beyond its effects on JAK-STAT signaling, 

baricitinib was predicted to have a direct antiviral activity by interrupting viral entry into 

cells by interfering with AP2-associated protein kinase 1 (AAK1) which is involved in 

receptor-mediated endocytosis [144,145]. How these in-silico predictions translate into 

clinical practice remains to be determined. In an exploratory open-label, non-randomized 

study of patients with moderate COVID-19 pneumonia, 12 consecutive patients who 

received baricitinib plus ritonavir-lopinavir for two weeks were compared to a prior cohort 

of 12 consecutive patients who received ritonavir-lopinavir plus hydroxychloroquine. Fever, 

oxygenation, and CRP significantly improved in the baricitinib-treated group compared with 

historical controls, and no escalation of therapy to ICU level care was required in the former 

group [146]. Clinical trials examining the efficacy and safety of JAK inhibitors in 

COVID-19 are ongoing (see www.clinicaltrials.gov). Ruxolitinib in addition to standard of 
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care was evaluated in a small (n = 14) pilot study; 11/14 patients showed sustained clinical 

improvement, and particularly improvement in markers of inflammation, without significant 

short term toxicity. A multicenter phase-II clinical trial has been initiated (NCT04338958). 

Despite these promising preliminary data, caution should be used with JAK inhibitors due to 

their association with increased risk of thromboembolic events, which is of particular 

concern in patients with severe COVID-19, in addition to the well-characterized activity of 

all JAK inhibitors in suppressing antiviral interferons [1,147].

4.3. Other approaches

4.3.1. Glucocorticoids—As an immunosuppressive therapy, glucocorticoids could 

confer a benefit of attenuating hyperinflammation in COVID-19-CSS patients, though 

potential benefits must be considered in light of the risks of broad immunosuppression and 

other specific adverse effects. Prior evidence has shown that glucocorticoids are not 

associated with reduced mortality but are associated with delayed viral clearance in SARS-

CoV, MERS-CoV, and influenza infection, and an analysis in ARDS of any cause found 

insufficient evidence to support glucocorticoids use [148-150]. Retrospective analyses of 

glucocorticoids use in COVID-19 patients have reported conflicting results. Some studies 

have found associations between glucocorticoids use and increased risk of mortality or 

worsened clinical courses [151-154]. Other studies have suggested that glucocorticoids use 

was associated with reduced mortality risk or better clinical courses, and others still have 

found no association between glucocorticoids use and outcomes [32,153-160] [161-164]. In 

the COVID-19 Global Rheumatology Alliance physician-reported registry, chronic use of 

prednisone dose ≥10 mg/day was associated with higher odds of hospitalization [123]. 

Timing of administration in the disease course, doses, and patient population characteristics 

are likely contributing to the contrasting data. In fact, a preliminary analysis of the 

controlled, open-label, RECOVERY trial found that in patients hospitalized with COVID-19, 

the use of dexamethasone (at a dose of 6 mg daily for up to 10 days) resulted in lower 28-

day mortality among those who were receiving oxygen or invasive mechanical ventilation 

than usual care. For patients on ventilators, the treatment was shown to reduce mortality by 

about one-third, and for patients requiring only oxygen, mortality was reduced by about one-

fifth. Importantly, this was not observed in patients who did not require oxygen or 

respiratory support [163]. Based on this report, the WHO is currently revising its guidelines 

which until now indicated that glucocorticoids should not be routinely given for the 

treatment of patients with COVID-19 requiring respiratory support 164].

4.3.2. Colchicine—Colchicine is a nonselective inhibitor of NLRP3 inflammasome that 

reduces the production of IL-1β [165]. The NLRP3 inflammasome is thought to play a role 

in the development of ARDS and acute lung injury and viroporin E, a protein expressed by 

SARS-CoV-1, was previously shown to activate the inflammasome [165,166 167 168] . In 

SARS-CoV-2, viroporin E is thought to play a major role in viral replication. The possibility 

of improving vascular inflammation and endothelial dysfunction has prompted 4 trials 

studying colchicine use in COVID-19 [168]. Two studies of colchicine use in COVID-19 

have been reported; however, data on patients’ hyperinflammation status were not reported. 

In a randomized trial of 105 hospitalized patients with relatively mild COVID-19 infection, 

colchicine was given as a loading dose followed by 1 mg daily. Patients in the colchicine 
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group had less risk of clinical deterioration (1.8% vs 14%) and better cumulative event-free 

10-day survival rate (97% vs 83%) while there was no difference in CRP or troponin levels 

between the groups [169,170]. In the other series, 122 patients were given 1 mg daily, 

reduced to 0.5 mg daily for severe diarrhea (occured in 7.4%); the historical comparison 

standard of care group had 37% mortality while the colchicine group had 16% mortality 

[171]. However, 58% of the colchicine group received dexamethasone, compared to 32% of 

the historical comparison group. This limited evidence is not yet sufficient to support use of 

colchicine in COVID-19-CSS.

4.3.3. Intravenous immunoglobulin (IVIG)—IVIG therapy can exert 

immunomodulatory effects to reduce end-organ damage in autoimmunity and 

hyperinflammation. IVIG has been used in attempts to reduce CSS due to HLH, although 

there is little evidence for its efficacy [172,173]. A prior case series also suggested a role for 

IVIG in the treatment of severe SARS and associated cytopenias [174]. Thus far, evidence 

supporting the use of IVIG in severe COVID-19 is limited to case reports [175,176]. 

Hyperimmune IVIG and convalescent plasma have been pursued as a treatment for 

COVID-19 based on prior success in influenza A and small studies in COVID-19 [176,177]. 

To date, evidence from controlled trials has been conflicting as to their success in severe 

COVID-19, and treatment is not given based on hyperinflammation [178,179]. Due to the 

current paucity of supporting evidence and risk of thromboembolic events associated with 

IVIG therapy, especially due to reports of hypercoagulability in severe COVID-19, IVIG, 

hyperimmune globulin, and convalescent plasma remain investigational [1,180].

4.3.4. Plasma exchange—Therapeutic plasma exchange (TPE) has previously been 

proposed as a rescue therapy in patients with inflammatory conditions in order to remove 

pathogenic cytokines and other drivers of inflammation in plasma, and specifically in 

COVID-19-ARDS [181]. Use of TPE has been reported in a case series of three critically ill 

patients with COVID-19 with subsequent improvement in inflammatory markers; however, 

one of the three died from complications of the illness [182]. A larger pilot study showed 

laboratory and clinical improvement among 10 patients with COVID-19-associated ARDS 

enrolled in a pilot study of TPE without any documented adverse effects [183]. Another non-

randomized study of 11 critically ill patients treated with TPE in addition to standard of care 

showed improved laboratory and clinical parameters and a possible benefit in 14 and 28 day 

mortality compared to patients who did not receive TPE; however, due to differences in 

treatments and the low number of subjects enrolled, these results should not yet be 

extrapolated to larger settings without further confirmation [184]. Prior experience in 

patients with acute lung injury due to the 2009 pH1N1 influenza A virus showed 

improvement in hemodynamic status and PaO2/FiO2 ratio after TPE [185]. Another 

retrospective observational study showed improvement in adjunctive use of TPE in patients 

with septic shock due to pneumonia [186]. Due to the limited evidence, TPE should be 

further investigated regarding a possible role in treatment of COVID-19-CSS, ideally in 

randomized clinical trials.

4.3.5. Anticoagulation—Coagulopathy, resulting in both venous thrombosis and 

microangiopathy, is a prominent feature in some patients with severe COVID-19. A 
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prospective study of 150 patients with COVID-associated ARDS found a high incidence of 

thromboembolic complications (18%) compared to a non-COVID-19-ARDS cohort (6%); 

pulmonary embolism was the most common (16.7%), followed by cerebrovascular ischemic 

attacks and deep venous thrombosis [187]. Although the presence of antiphospholipid 

antibodies and lupus anticoagulant has been reported, the significance of these levels, as well 

as the nature of this coagulopathic state and its relationship to hyperinflammation in 

COVID-19 remains unknown [187,188]. Most studies on anticoagulation in COVID-19 

outcomes are retrospective and reference the use of prophylactic heparin or low molecular 

weight heparin; a pilot study of 5 patients with severe COVID-19 treated with tirofiban and 

fondaparinux along with clopidogrel and acetylsalicylic acid had improved respiratory 

outcomes; however, control patients were treated with prophylactic or therapeutic heparin 

only [189]. Given the strong association of D-dimer and fibrin split products elevation with 

poor prognosis and mortality in COVID-19, the use of thromboprophylaxis and 

anticoagulation is currently being investigated and can be considered in patients at risk and 

with a hyperinflammatory phenotypes, though randomized clinical trials are needed [1,190].

5. Novel approaches in the treatment of hyperinflammation

5.1. Tyrosine kinase inhibitors

A role for the tyrosine kinase inhibitor dasatinib has been proposed in management of CRS 

associated with CAR-T cell therapy. Studies in mice demonstrated that dasatinib can act as 

an on/off switch, temporarily halt CAR T cell activity, and protect against fatal CRS 

[191,192]. Due to its rapid reversibility and titratable effect, dasatinib may have a role in 

interrupting the cascade of hyperinflammation and associated injury. The short terminal 

half-life of dasatinib may mitigate the risk of secondary infection observed with prolonged 

immunosuppression. The Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib has been 

hypothesized to protect against pulmonary injury in COVID-19-infected patients [193]. A 

newer BTK inhibitor acalabrutinib may have a role in interfering with dysregulated BTK-

dependent macrophage signaling. In a study of 19 patients with severe COVID-19, treatment 

with acalabrutinib was associated with improved oxygenation and reduced inflammation 

[194]. Acalabrutinib is being investigated in a randomized, open-label trial compared to 

standard of care alone in patients with COVID-19 hospitalized due to respiratory 

complications [195]. Implementation of any of these experimental strategies will require 

clinical validation.

5.2. Mesenchymal stem cells (MSC)

Novel, experimental approaches for treating hyperinflammation may be complementary in 

mechanism to immunomodulatory or immunosuppressive drugs. One emerging area of 

interest is cellular therapies. Mesenchymal stem cells (MSC) may reduce immunopathology 

through complex mechanisms which include the secretion of anti-inflammatory cytokines 

and the promotion of endogenous tissue repair. Although their efficacy is not yet established 

in humans, clinical trials in ARDS have demonstrated that treatment with MSCs is relatively 

safe [196]. Early reports of MSCs and MSC-derived extracellular vesicles in COVID-19 

suggest limited toxicity and a reduction of inflammation [197-199]. Additional trials in the 

treatment of COVID-19 are ongoing [200].
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6. Approaches in the prevention of hyperinflammation

6.1. Catecholamine inhibition

Preclinical studies have shown that hyperinflammation in CRS, lipopolysaccharide-induced 

cytokine storm, and polymicrobial sepsis coincides with a surge in catecholamines [201]. 

Catecholamines augment cytokine production in immune cells, generating a feed-forward 

loop [201,202]. Prophylactic inhibition of catecholamine synthesis or blockade of 

catecholamine signaling with the α-1-adrenergic receptor (α1-AR) antagonist prazosin 

markedly reduced cytokine storm and mortality in mouse models [201]. These data are 

consistent with other studies suggesting that excessive catecholamine signaling increases 

cytokine production and immune-mediated damage, whereas catecholamine antagonism 

protects against injuries [203,204]. Doxazosin has been shown to abrogate catecholamine-

induced IL-6 production in PBMCs from patients with juvenile rheumatoid arthritis [202]. 

Prazosin is a first-line treatment for scorpion envenomation, which involves dysregulated 

inflammation and can progress to ARDS [205]. In a retrospective study of >400,000 patients 

diagnosed with pneumonia or acute respiratory distress, the risk of requiring mechanical 

ventilation and death was significantly lower if patients were taking an α1-AR antagonist 

prior to hospitalization [206]. Because prazosin, doxazosin, and other α1-AR antagonists are 

widely used in the adult population and have a well-established safety profile, they may be 

uniquely suited for the prevention of severe COVID-19 in patients who have mild symptoms 

(rather than treatment of severe complications once developed). Prospective controlled 

clinical trials are currently ongoing to evaluate whether catecholamine antagonism through 

prophylactic administration of prazosin can prevent ARDS, cytokine storm, and death in 

hospitalized patients with COVID-19 [207,208].

7. Conclusion

Although the first cases of COVID-19 were only reported a few months ago, the SARS-

CoV-2 outbreak is proving to be the most challenging pandemic of the 21st century. While 

the major feature of COVID-19 is that of severe pneumonia leading to ARDS in some cases, 

some, but not all, patients with COVID-19 enter a hyperinflammatory state characterized by 

highly elevated D-dimer, elevated CRP, and elevated ferritin. Development of 

hyperinflammation corresponds to a worsening clinical status including oxygen 

requirements and respiratory status, multi-organ failure, and too often death despite maximal 

supportive care.

Though similar to HLH/MAS in its deleterious activation of proinflammatory pathways and 

exuberant production of cytokines and associated morbidity and mortality, the 

hyperinflammatory state associated with SARS-CoV-2 infection has a unique fingerprint. 

For example, organomegaly, elevated LDH, or triglyceride levels are not a prominent 

feature. D-dimer can, on the other hand, be extremely elevated, and is probably a reflection 

of the hypercoagulable state and microthrombi that commonly complicate severe COVID-19 

and is observed in autopsy studies. Targeting this immune dysregulation with the goal of 

preventing the development of ARDS and multi-organ failure holds some promise as a 

potential therapeutic pathway. However, caution must be used as immunomodulatory 

therapy may blunt beneficial host innate and adaptive responses during active viral 
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replication. While the ‘compassionate’ off-label use of some of these medications may be 

appropriate in critically ill patients (especially when clinical trials are not available to 

treating physicians and supportive care is insufficient), cautious and judicious use of these 

drugs is paramount until reliable data regarding efficacy from clinical trials become available 

and their safety in this unique patient population is established. This is even more important 

at a time where clinical trial results are commonly reported in pre-print or in the form of 

preliminary press releases, making it difficult to scrutinize the primary data.

8. Expert opinion

Increasing evidence suggests that poor outcomes in COVID-19 are associated with a 

hyperinflammatory state (often termed ‘cytokine storm syndrome’), typically occurring at 

least a week following initial infection and characterized by marked elevation in 

inflammatory markers and pro-inflammatory cytokines. This is consistent with experimental 

models of delayed hyperinflammation in SARS-CoV-1 infection and suggest that 

dysregulated host response to SARS-CoV-2 are responsible for much of the detrimental 

immunopathology in this phase of the disease, including localized and systemic macrophage 

activation which drive worsening oxygenation and an ARDS phenotype. While these 

features resemble other hyperinflammatory states such as HLH, they are not uniformly 

similar: organomegaly is not a prominent feature of severe COVID-19, LDH, triglycerides, 

and liver enzymes are only modestly elevated, and cytopenias, most prominently 

lymphopenia and to a lesser extent thrombocytopenia, are frequently observed.

It is not fully clear how this hyperinflammatory phase relates to SARS-CoV-2 viral loads in 

an absolute sense, but the use of treatments to suppress the host response may be helpful in 

controlling excessive inflammation and reducing organ dysfunction in individual patients. 

As with other hyperinflammatory states, including MAS, rHLH, and viral-induced HLH, 

cytokine inhibitors have been used in management. Emerging data from the inflammatory 

bowel disease and rheumatology patient registries suggest that those taking 

immunosuppressive agents are not at dramatically increased risk of severe COVID-19 

infection, and raises the possibility that some patients may have milder disease due to 

baseline suppression of specific inflammatory pathways. Immunomodulatory and 

immunosuppressive drugs used in these conditions could thus act to dampen the abnormal 

host response to SARS-CoV-2 although optimal timing in relation to viral replication 

remains uncertain [123,209-212].

To date, no blinded, placebo-controlled data have been published, but there are anecdotal 

reports suggesting efficacy of inhibitors of the IL-6 and IL-1 signaling axes. Randomized 

controlled trials of these and other immunomodulatory drugs discussed above are ongoing, 

both individually in pharmaceutical industry-sponsored studies as well as in multi-arm 

adaptive platform studies. The latter may provide head-to-head data and allow comparison 

of the efficacy of these agents. Given the pandemic nature of COVID-19, it is essential that 

inexpensive, widely accessible, and ideally oral agents are explored fully in addition to the 

more costly inhibitors of IL-1, IL-6, JAK signaling, or complement activation. While the 

short-term safety of IL-1 inhibitors in COVID-19 has been demonstrated in small case 

series, the safety of other immunosuppressive agents including IL-6 and JAK inhibitors is 
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yet to be demonstrated [110,213]. Long-term follow-up of trial cohorts and matched controls 

will be important to delineate the natural history of the infection and its sequelae. Data from 

these trials could help cement the role of cytokine inhibitors in other hyperinflammatory 

states, such as rHLH and MAS, where trial data has been largely lacking.

Immunomodulatory agents have long been posited to transform outcomes in other 

infections. Studies in sepsis have been disappointing; however, induced hyperinflammatory 

states, such as CRS, can be rapidly and effectively treated with targeted cytokine inhibition, 

suggesting that timing of immunomodulation is crucial. Trials in COVID-19 currently 

focusing on immunomodulation have been treating patients with advanced and severe illness 

in critical care environments (generally late in the disease course), where organ dysfunction 

of the lungs and other organ systems is established. However, the reports of macro- and 

microvascular thrombosis causing or aggravating end-organ damage suggests that, in the 

case of inflammation leading to endothelial dysfunction, immunomodulation at this stage 

may be too late. Use of early immunomodulatory treatment strategies – in combination with 

antiviral therapy – is important to consider, but in the absence of clinical data remains 

experimental and may blunt the host antiviral response.

Trials not just of efficacy but of the timing of intervention with immunomodulatory therapy 

are essential and may inform not just the treatment of COVID-19 but also other forms of 

hyperinflammation. While ongoing investigative efforts have primarily focused on 

identifying effective therapies for patients who developed severe COVID-19, an emphasis on 

prioritizing outpatient clinical trials of preventative treatment approaches that are safe and 

scalable to the population level is overdue and critically needed.
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Article highlights

• Some patients with COVID-19 enter a hyperinflammatory state characterized 

by highly elevated D-dimer, elevated CRP, and elevated ferritin.

• Development of hyperinflammation corresponds to a worsening clinical status 

including oxygen requirements and respiratory status, multi-organ failure, and 

death.

• Despite similarities, COVID-19-CSS appears to be distinct from HLH, MAS, 

and CRS, and the application of HLH diagnostic scores and criteria to 

COVID-19 without further study is not supported by emerging data and 

discouraged.

• While glucocorticoids have shown a mortality benefit, more studies are 

needed to evaluate cytokine inhibitors in severe COVID-19.

• Strategies to prevent the development of COVID-19-CSS are needed.
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Figure 1. 
Clinical phases of COVID-19 and potential strategies for the prevention and treatment of 

hyperinflammation (‘cytokine storm’). Disease progression in COVID-19 can be categorized 

based on the severity of clinical signs and symptoms in addition to the development of 

objective imaging and laboratory abnormalities. A hyperinflammatory state – following an 

initial viral replication phase – can be present in patients with severe disease. Potential 

approaches to ameliorate COVID-19 include strategies to reduce binding of SARS-CoV-2 to 

its cognate receptors (not shown), antiviral therapy (e.g. remdesivir), and the prevention and 

treatment of hyperinflammation and immune-mediated end-organ damage. ARDS: acute 

respiratory distress syndrome. ARDS: acute respiratory distress syndrome. IFN: interferon. 

IL: interleukin. JAK: Janus kinase. TNF: tumor necrosis factor.
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Figure 2. 
Summary of key therapeutic strategies investigated for the prevention or treatment of 

COVID-19-CSS and ARDS. Model of an inflammatory feed-forward loop in immune cells 

(e.g. lung-infiltrating monocytes and macrophages) in response to SARS-CoV-2 infection 

that results in exuberant cytokine production and cytokine storm. Drugs currently 

investigated for the treatment or prevention of severe COVID-19 and their respective targets 

are shown. Catecholamine and cytokine feed-forward loops are shown in magenta and green, 

respectively. α-1 AR: α-1 adrenergic receptor. BTK: Bruton tyrosine kinase. C5: 

Complement factor 5. IFN: interferon. IKK: I kappa B kinase. IL: interleukin. IRAK: 

Interleukin-1 receptor-associated kinase. JAK: Janus kinase. NFκB: Nuclear Factor kappa-

light-chain-enhancer of activated B cells. R: receptor. STAT: signal transducers and 

activators of transcription. TNF: tumor necrosis factor.
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