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The spatial spread of infectious disease is determined by spatial and social
processes such as animal space use and family group structure. Yet, the
impacts of social processes on spatial spread remain poorly understood
and estimates of spatial transmission kernels (STKs) often exclude social
structure. Understanding the impacts of social structure on STKs is impor-
tant for obtaining robust inferences for policy decisions and optimizing
response plans. We fit spatially explicit transmission models with different
assumptions about contact structure to African swine fever virus surveil-
lance data from eastern Poland from 2014 to 2015 and evaluated how
social structure affected inference of STKs and spatial spread. The model
with social structure provided better inference of spatial spread, predicted
that approximately 80% of transmission events occurred within family
groups, and that transmission was weakly female-biased (other models pre-
dicted weakly male-biased transmission). In all models, most transmission
events were within 1.5 km, with some rare events at longer distances. Effec-
tive reproductive numbers were between 1.1 and 2.5 (maximum values
between 4 and 8). Social structure can modify spatial transmission dynamics.
Accounting for this additional contact heterogeneity in spatial transmission
models could provide more robust inferences of STKs for policy decisions,
identify best control targets and improve transparency in model uncertainty.
1. Introduction
Social [1] and spatial processes [2] are key drivers of pathogen transmission, yet
their relative roles and influences on one another remain poorly understood
[3,4]. While both social structure and animal space use shape contact heterogen-
eity, they can have fundamentally different effects on contact structure and thus
pathogen transmission dynamics [3–5]. For example, social organization into
family groups (one dimension of social structure) causes local clustering of
hosts that can alter pathogen transmission dynamics in a broad range of wild-
life disease systems, such as malaria in primates, fungal infection in termites,
intestinal parasites in African artiodactylids, rabies in raccoons, bovine tubercu-
losis in badgers and chronic wasting disease in deer [6–12]. By contrast, animal
space use mainly acts on overall connectivity in a population by limiting how
far a disease can travel at each transmission event [13–16]. As such these pro-
cesses are commonly modelled using different techniques and thus not
accounted for in the same framework [3]. For example, social structure is
often represented using network models [3,17], while space use is often rep-
resented through distance functions describing how transmission probability
changes with the distance between hosts (spatial transmission kernels (STKs))
[18]. STKs are key parameters for planning disease control strategies because
they can be used to inform how surveillance and control strategies should be
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deployed spatially [2,18–22]. However, without appropriately
accounting for contact heterogeneities due to social structure,
STKs could be uncertain or biased. Thus frameworks that can
account for the effects of social structure on STKs are needed
to better understand how different dimensions of contact het-
erogeneity shape pathogen transmission dynamics in wildlife
populations and to optimize response plans using STKs.

Individual-based models (IBMs) are useful for incorporat-
ing social structure and space use separately in the same
framework [7,23,24] to understand the significance of both
processes on pathogen transmission dynamics. In general,
IBMs can be especially useful for determining how much
complexity is important to capture pathogen transmission
dynamics well enough to effectively guide control policies
[3,25]. Previous work has used similar IBM structures to rep-
resent social structure and space use concurrently in systems
as different as rabies in raccoons, African swine fever in wild
boar, bovine tuberculosis in badgers and foot-and-mouth dis-
ease in feral swine to inform disease management strategies
[7,24,26,27], demonstrating how IBMs that are designed to
account for individual-level variation in social and spatial
parameters are widely applicable while allowing for an
understanding of how individual-level nuances affect patho-
gen transmission dynamics. This flexibility is particularly
well suited for understanding how social structure modifies
STKs. Secondly, social structure is usually temporally
dynamic, which has been frequently neglected in data-
driven social-network models due to the challenges with esti-
mating changes in network structure over time. An IBM
approach allows for the natural incorporation of temporal
changes in social-network structure due to demographic
changes.

To address gaps with understanding the impact of social
structure on the spatial spread of disease, we developed an
IBM fit to weekly surveillance data from wild boar in
Poland from 2014 to 2015. In Eastern Europe, wild boar
demonstrate limited spatial movement and cluster into
family groups suggesting that both social structuring and
space use are important for inferring the dynamics of African
swine fever virus (ASFv) transmission [26,28,29]. Thus, the
ASFv system provides an excellent opportunity to quantify
the effects of social structure on STKs and the magnitude to
which model uncertainty could affect policy decisions using
STKs. ASFv has been extremely difficult to control in wild
boar partly due to a lack of robust predictions of spatial
spread for risk-based mitigation [30]. In countries where
ASFv is so widespread in wild boar such as Poland, robust
estimates of STKs are crucial for improving response plans
and risk assessment for domestic pig producers by enabling
prediction of how fast and where ASFv will spread, and
thus optimization of resource allocation across the landscape
to surveillance and control. Also, understanding how social
structure defines STKs can help to identify control targets
that would minimize disease spread (e.g. the importance of
controlling family groups versus adult males).

Without detailed genetic or contact tracing data to
reconstruct transmission history, STKs are predominantly
estimated indirectly by fitting pathogen transmission
models to available case data [2,18,31]. Common assump-
tions of STK estimation methods include a single
introduction event and perfectly observed data [32]. How-
ever, STK estimates could be biased if re-introduction
events from outside sources spark epizootic foci in spatially
distinct areas from the initial outbreak (i.e. being mistaken
for transmission between clusters and causing artificially fat
tails in the STK). Likewise, STKs could be biased if the sur-
veillance system is biased towards the detection of
particular transmission events. Thus, methods that account
for re-introduction and surveillance design are important in
cases where ‘single introduction’ and ‘perfect detection’
assumptions are violated. Similar to many wildlife host–
pathogen systems [31,33–35], ASFv surveillance in wild
boar is mostly passive [36] with only a small proportion of
cases likely being detected (e.g. for ASFv in Poland: less
than or equal to 30% of all ASFv carcasses detected by carcass
surveillance, less than or equal to 1.7% of all active ASFv
infections detected by hunter harvest [26]), and genetic evi-
dence suggests that at least two re-introductions from
neighbouring regions occurred during the time frame of
our study [37].

In previous work, we fitted models that accounted for the
realities of multiple introduction events and partially
observed data to ASFv surveillance data from wild boar in
Poland to estimate the frequency of carcass-based trans-
mission and re-introduction in outbreak dynamics [26]. This
previous work predicted greater than 10 international intro-
ductions per year were necessary to sustain viral
persistence at low host densities [26]. Here, we extended
this modelling approach to understand how social structur-
ing and space use assumptions affect estimates of STKs and
spatial pathogen dynamics. We tested three different assump-
tions about space use and social structure: (i) neighbourhood
(local transmission only), (ii) exponential decay (distance
distribution that includes long-distance processes) and
(iii) distance distribution with social structure (social and
spatial processes) (figure 1). We fitted the different models
to ASFv surveillance data using approximate Bayesian com-
putation (ABC) and compared the model fits using distance
metrics and R2. We then predicted the STKs under each set of
assumptions using the fitted models and evaluated the
effects of social and spatial processes on STKs and a key epi-
demiological parameter—the effective reproduction number.
Our framework provides a general approach for understand-
ing the relative role of social and spatial processes in
pathogen transmission dynamics and quantifying STKs in
the presence of realistic complexities (i.e. social structure,
multiple re-introductions, partially observed case data).
2. Methods
2.1. Study system and data
ASFv, a virulent virus of swine, emerged in domestic pigs in
Georgia in 2007 following introduction from Africa [38]. After
its initial emergence, the virus spread quickly to Eastern
Europe becoming endemic in wild boar, which has challenged
elimination. With no effective vaccine or treatment options, con-
trol strategies are focused on reducing swine movement,
decontamination and culling [39]. In wild boar, transmission
occurs primarily through direct contact or contact with contami-
nated carcasses, consumption of contaminated food resources
and other forms of environmental or mechanical transmission
are suspected [40]. The effectiveness of these strategies depends
on being able to rapidly find new cases and target high-risk
areas, thus models that can predict spatial spread are crucial
tools. The index case of ASFv in wild boar was detected in Feb-
ruary 2014 in north-eastern Poland (53°1903300N, 23°4503100E), less
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Figure 1. Schematic of methods and contact structures. Three different forms of contact structure were fitted to ASFv surveillance data (1. and 2.): (a) neighbour-
hood (local transmission only; local-only model), (b) distance distribution (exponential decay that includes long-distance processes; distance-only model) and (c)
distance distribution with social structure (same as (b) but also allows for different transmission probabilities for within versus between family groups; distance-social
model). Goodness of fit was determined for each of the three fitted models (3.). Then the fitted models were used to simulate pathogen transmission dynamics (4.)
and epidemiological metrics were derived from the simulated output (5.). ζ is a fixed local neighbourhood (equation a) delimiting the contact radius, xk,j is the
distance between infectious individual k (Ik) and susceptible individual j (Sj), α is the rate at which transmission decays with distance (equations b and c), d denotes
alive individuals or direct transmission, c denotes infectious carcasses or carcass-based transmission, β is the transmission rate that is specific to the transmission
mechanism (d or c) and w denotes contact within the same family group whereas the absence of w denotes contact among family groups (equation c).
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than 1 km from the border with Belarus. Subsequent cases
occurred close to the Belarusian border [41,42]. By the end of
2015, 139 wild boar tested positive for ASFv in the area, with
maximum distance of 27.4 km west of the border and a 100 km
range along the border. The affected area is dominated by a
mosaic of woodlands and agricultural land (crop fields, pastures,
meadows) with several large (several hundred square kilo-
metres), continuous forests. On average, forest covers 53% of
the area and wild boar densities range from 1.5 to 2.5 wild
boar/km2 across all of Poland [43]. A total of 2470 samples
from hunters and 205 samples from carcasses were collected
from eight administrative districts where ASFv occurred from
February 2014 through December 2015. These samples were sub-
mitted to the National Reference Laboratory for ASFv at the
National Veterinary Research Institute in Puławy, Poland for
viral diagnostics. Surveillance data were used to fit the model
and define the spatio-temporal intensity of sampling for this
analysis. We also used similar data from January 2016 through
July 2016 to evaluate the out-of-sample prediction. A detailed
description of laboratory procedures and tests can be found in
Wo�zniakowski et al. [41] and �Smietanka et al. [44].

2.2. Process model
2.2.1. Overview
Previously, we developed a spatially explicit IBM of ASFv trans-
mission dynamics in wild boar that we fitted to surveillance data
using ABC. This model accounted for: (i) social structure (inde-
pendent adult males and matrilineal family groups that varied
seasonally in size and composition due to birth rates, natal dis-
persal and hunter-harvest trends) and (ii) spatial processes
(daily space use and dispersal to new home range centroids),
and was used to infer the role of carcass-based transmission in
disease persistence. However, we did not investigate how
social structure determines spatial transmission nor whether
this level of complexity was necessary for capturing spatial trans-
mission dynamics. Thus, here we used the same framework to
evaluate three models that differed by social and spatial trans-
mission process assumptions (described below) (figure 1). We
estimated transmission parameters and some other epidemiolo-
gical and demographic parameters as described below. With
parameters from the fitted models, we then predicted cases
over time, spatial spread over time, STKs, effective reproductive
numbers over time, and age- and sex-structure of infected indi-
viduals. All analyses were implemented in Matlab (v.R2016b,
The MathWorks, Inc., Natick, Massachusetts, USA). A full
description of the IBM and code for running it is given in
Pepin et al. [26]. Below is an overview of the approach with an
emphasis on differences from our previous work.
2.2.2. Landscape
We used a gridded landscape to allow heterogeneity in popu-
lation density across the landscape through density-dependent
reproduction. We also allowed grid cell densities to affect disper-
sal (and thus potentially spatial spread of ASFv) by preventing
dispersal to grid cells that were at carrying capacity. We chose
a grid cell resolution of 5 × 5 km (25 km2) because it allowed
fine-scaled heterogeneity in host density (close to home range
size) while maintaining reasonable computation time. The total
landscape size was 120 × 50 km (6000 km2), similar to the
‘infected’ zone in eastern Poland. Grid cells each had a carrying
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capacity of 0.5 or 2 boars/km2 (the average density of 1.5 wild
boar/km2), which is similar to previous estimates of local
densities that were estimated to range from very low (less
than 0.5 boar/km2) in poor habitats to high (greater than
1.5 boar/km2) in high-quality habitats [43]. This level of hetero-
geneous boar density fitted the surveillance data better than
homogeneous densities of 1, 2 or 4 wild boar/km2 [26].

2.2.3. Attributes and demographic processes
Individual-boar attributes were monitored and updated at a
daily time step. These included age, unique group identification,
X- and Y-coordinates of the home range centroid, grid cell ID;
and status of life, reproduction and infection. Thus, the distri-
bution of wild boar locations was continuous but density was
controlled at the grid cell level. The variable attributes changed
based on time, age, group size, grid cell density, natal dispersal
timing and the pathogen transmission process. Fixed individ-
ual-level attributes included sex, dispersal distance, dispersal
age and age at natural death, which were all chosen from
probability distributions [26].

Individual-boar status was updated by the following order of
processes: daily movement (defined by the contact processes
described below) and pathogen transmission, natural mortality
(occurring according to the pre-set age), natal dispersal (one-
time initial departure from the natal family group occurring
according at a pre-set age), dispersal due to other factors (i.e.
family groups becoming too large, single females searching for
groups; occurring based on current family group size), surveil-
lance sampling (permanent removal of hunter-harvested
individuals and carcasses), conception (rates dependent on cur-
rent grid cell density) and new births (occurring with gestating
females reaching the end of their gestation period). Fixed par-
ameters included longevity (a data-based distribution), litter
size (6), age at reproductive maturity (180 days), the minimum
time between conception and farrowing (90 days), gestation
time (115 days), age of natal dispersal (∼Poisson(13 months)
truncated between 10 and 24 months), dispersal distance (∼Wei-
bull(2.5,0.5)), the maximum size of family groups (10), the
incubation period for ASFv (∼Poisson(4 days) truncated at 1),
the infectious period for ASFv (∼Poisson(5 days) truncated at
1) and disease-induced mortality (assumed to be fixed at 100%
lethality for infectious individuals). There were also fixed seaso-
nal trends that varied monthly for conception probability and
carcass persistence that were based on data [45–48]. For example,
seasonal birth pulses influenced group size and dispersal events
over time (because dispersal was age-dependent), but we
assumed that average daily contact distances were constant
throughout the year. Rationale and sources for the processes
and parameters were derived from ecological studies of wild
boar and are described in Pepin et al. [26].

2.2.4. Epidemiological states and processes
Epidemiological states for individual boar included: susceptible,
exposed, infectious, infectious carcass, non-infectious carcass and
removed from the landscape. Mortality only occurred from the
disease (leading to an infectious carcass) or reaching the age of
longevity (leading to an non-infectious carcass). We assumed
the disease was lethal in 100% of infectious individuals. The
hunting process of alive individuals caused direct removal
from the landscape (no carcass). Our model also included mul-
tiple spatio-temporal scales of spatial processes because the
dispersal process (∼Weibull(2.5,0.5)) allowed for longer-distance
movements and occurred less frequently relative to the contact
process that occurred daily and mostly at shorter distances.

We compared three different forms of contact structure:
(i) neighbourhood (local transmission only; local-only model),
(ii) distance distribution (exponential decay that includes long-
distance processes; distance-only model) and (iii) distance distri-
bution with social structure (same as (ii)) but also allows for
different transmission probabilities for within versus between
family groups; distance-social model) (figure 1). We tested
these three models because they represent increasing levels of
ecological complexity in constraining spatial transmission. We
viewed the local-only model as the coarsest representation of
constraining transmission both spatially and within family
groups. The local-only and distance-only models are common
ways of considering contact in space at population-level scales
[49], whereas the distance-social model incorporates heterogen-
eity due to social groups. For the local-only model, infectious
individuals could transmit to all susceptible individuals within
a fixed radius with equal probability. The radius of the local
neighbourhood was constant across individuals and time—thus
similar to a queen’s neighbour effect (equation 2.1). For the dis-
tance-only model, infectious individuals could transmit to all
susceptible individuals on the landscape, but the probability of
transmission decayed with distance (equation 2.2). The dis-
tance-social model was the same as the distance-only model,
except that transmission rates varied due to both group member-
ship and space—individuals in the same family group had
higher transmission rates with each other relative to those
among family groups (equation 2.3). In general, the daily force
of infection (λ) for each contact structure was defined as follows:

l ¼
XK
k¼1

XJ

j¼1

Ik,d
Sjbd, xk,j , z
0, otherwise

�

þ
XK
k¼1

XJ

j¼1

Ik,c
Sjbc, xk,j , z
0, otherwise

�
þ b0,{j} ð2:1Þ

l ¼
XK
k¼1

XJ

j¼1

Ik,dSjbde
�axk,j þ

XK
k¼1

XJ

j¼1

Ik,cSjbce
�axk,j þ b0,{j} ð2:2Þ

l ¼
XK
k¼1

XJ

j¼1

Ik,dðSjbde
�axk,j þ S j,wbw,dÞ

þ
XK
k¼1

XJ

j¼1

Ik,cðSjbce
�axk,j þ S j,wbw,cÞ þ b0,{j}, ð2:3Þ

where ζ is a fixed local neighbourhood (equation 2.1) delimiting
the contact radius, xk,j is the distance between infectious indi-
vidual k (Ik) and susceptible individual j (Sj), α is the rate at
which transmission decays with distance (equations 2.2 and
2.3), d denotes alive individuals or direct transmission, c
denotes infectious carcasses or carcass-based transmission, β
is the transmission rate that is specific to the transmission mech-
anism (d or c), β0,{ j} is the baseline rate at which re-introduction
occurs to susceptible individuals near the eastern border [50]
and w denotes contact within the same family group whereas
the absence of w denotes contact among family groups
(equation 2.3).
2.3. Observation model
Because surveillance sampling only tests a small proportion of
the total population of wild boar in the region (less than 2%
monthly) it was important to calibrate the process model with
an observation model. Thus, we sampled the true pathogen
transmission dynamics according to the surveillance process
that was used in Poland, i.e. alive individuals were available to
be harvested by hunters, and carcasses were available to be
found for carcass sampling; then both types of samples were
evaluated to identify whether individuals/carcasses were infec-
tious. As observed negative samples could not be
georeferenced to the grid cell level (they were only available at
the district level), we were not able to account for the spatial dis-
tribution of sampling accurately. However, we used the temporal
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trends in the surveillance data to determine the number of
samples to collect per day by sampling the landscape at
random but excluding wild boar less than six months of age in
hunter harvest (because they are typically not targeted by hun-
ters [51]) and wild boar less than three months of age in
carcass sampling (because they are unlikely to be found due to
their small size and more rapid decay rates [52]). To determine
the temporal sampling trends, we calculated the relative
number of boar sampled by hunters and carcass sampling
from the data (number sampled on day t/maximum ever
sampled separately for each method) to produce daily trends
in the proportion of the population sampled. Then we multiplied
the trend data for each method by the scaling factors (ρh and ρc)
to determine the daily proportion of boar that would be sampled
(detection probability) by hunter harvesting or dead carcasses
across the landscape at random.
Soc.Interface
18:20200761
2.4. Model fitting and evaluation
Unknown parameters were estimated based on ABC with rejec-
tion sampling as described in Pepin et al. [26]. For all models,
estimated parameters included: frequency of introduction at the
eastern border (β0,{ j}), βd, βc, scaling parameters on seasonal
trends of hunted hosts (ρh) and carcass sampling (ρc), a scaling
parameter on seasonal trends in the length of carcass persistence
on the landscape (π) and a scaling parameter on seasonal pat-
terns of host birth probabilities (θ). In addition, we estimated
spatial parameters that describe three different contact structures:
(i) ξ (nearest-neighbour), (ii) α (the decay of contact probability
with distance) and (iii) βw,d and βw,c (direct and carcass-based
transmission rates for within-group contacts). Prior distributions
are listed in electronic supplementary material, table S1 (with
restrictions: βd > βc, βw,d > βd, βw,c > βc) and were informed by
movement and contact data [28,29,53,54].

To sample across parameter space efficiently we used a Latin
hypercube algorithm to generate 979 592 parameter sets and
then ran the model twice on each parameter set (for a total of
1 959 184 iterations; or two chains of 979 592). βd, βc and ρc
were sampled on a log scale. To improve computational effi-
ciency, a two-tiered approach was used to estimate posterior
distributions of parameters. Simulations were terminated early
if they were highly unrealistic compared to observed data.
Specific criteria and rationale were: (i) landscape-wide host den-
sity less than 20% of the initial density because observed changes
in wild boar density were only minor in the study during 2014–
2016, (ii) greater than 150 new cases per day because the maxi-
mum number observed per month was less than 20, (iii) no
new cases sampled for six months because there was only one
month with no cases detected after the first detection was
made or (iv) greater than 300 total cases because that is more
than double the actual number of observed cases. We then
only considered parameter sets for which the simulation reached
the end of the 2-year time frame as candidate values for the pos-
terior distributions. The posterior distributions consisted of all
unique parameter sets (considering both chains) that were
within the absolute distance of three metrics: the sum of absolute
differences between observed and simulated surveillance data
for monthly cases from live and dead animals (considered separ-
ately), and the maximum monthly Euclidian distance of cases
from the eastern border. Distance metric tolerance values were
48 for monthly cases from carcasses, 24 for monthly cases from
hunter-harvest samples and 120 for maximum distance from
the border. This allowed average error rates of 2 (carcass) and
1 (hunter harvest) cases, and 5 km from the border per month
on average. These error rates represent levels of uncertainty
that we expected from the data sources in our system, sensitivity
analyses revealed that less stringent error rates would affect the
posterior distribution estimates (data not shown), and more
stringent error rates would require restrictively large compu-
tational resources unless prior distributions are more informed.

Average distance metrics for parameter sets from the pos-
terior distribution were used to evaluate the goodness of fit
along with R2 values (squared correlation of observed and pre-
dicted case and spatial distance trajectories; electronic
supplementary material, table S1) and mean absolute error
(MAE; figure 2). The combination of these metrics was used for
model selection and performance relative to one another,
although we were also interested in comparing how the different
model structures impacted parameter inference and thus we
examined output from all three models. For each fitted model
we predicted outbreak dynamics using 100 random samples
from the posterior distribution. The average of the 100 predic-
tions was used to calculate R2 and MAE. We also tested the
ability of our models to forecast ASFv dynamics by using the
parameters estimated from fits to the 2014–2015 data to predict
the first seven months of 2016 (January–July). We predicted
underlying STKs, effective reproductive number over time (Re)
and age–sex structure of cases by simulating from the fitted
models. Thus, STKs and Re were model outputs. We calculated
STKs through tracking the distance between each transmission
event and summarizing the resulting distributions descriptively.
Similarly, we calculated Re by tracking the number of trans-
missions to new susceptible hosts that each live infectious
individual and infectious carcass transmitted throughout their
infectious periods and summarized daily Re as means for
individuals at the start of their infectious period.
3. Results
3.1. Parameter inference and model fit
The model with both social and spatial processes (distance-
social model; equation 2.3) qualitatively captured spatial
spread better than the local-only (equation 2.1) and dis-
tance-only (equation 2.2) models of spatial transmission,
and the local-only model largely overestimated cases
during the largest peak (figure 2). Also, the posterior distri-
butions of transmission probabilities were much lower and
more realistic for both distance models relative to the local-
only model (see βd and βc in electronic supplementary
material, table S1). The inferred STK for each model revealed
two distinct peaks symbolic of within- and between-group
transmission (figure 3) but predicted different amounts of
within-group transmission when within- and between-
group transmission probabilities were allowed to vary. The
distance-social model predicted the highest amount of
within-group transmission (80%), followed by the distance-
only (60%) and local-only (30%) models (figure 3). For both
distance models, between-group transmission peaked
between 0.5 and 1 km, with a peak amount of transmission
events reaching 5% and 2% for distance-only and distance-
social models, respectively (figure 3). For the local-only
model, between-group transmission events plateaued
between 1 and 1.5 km at a frequency of 0.2 before dropping
rapidly to 0 around 1.5 km (figure 3). The inferred STKs for
both distance models had long tails that indicated a low
frequency of long-distance pathogen dispersal (figure 3).

3.2. Impacts of model structure on epidemiological
processes

The specification of spatial and social transmission processes
in the model structure resulted in different inferences of Re.
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total samples collected (purple), births (light blue) and carcass persistence time (green).
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The local-only model predicted higher average Re over time
(mean: 2.5 with 95% confidence interval: [1.8, 3.2]), followed
by the distance-social (1.5 [1.1–2.0]), and then the distance-
only (1.1 [1.0–1.3]) models, including both direct and car-
cass-based transmission (figure 4). However, predictions
from the distance-only model suggested Re is relatively
homogeneous over time, while the local-only and distance-
social models predicted much more variability, with Re

values reaching above a value of 4 on multiple occasions,
and above a value of 8 at least once (figure 4). The dis-
tance-social model predicted higher Re during annual birth
pulses (figure 4). The local-only and distance-only models
predicted lower contributions of carcass-based transmission
in overall Re whereas the distance-social model predicted
more similar levels of each transmission mechanism (with
carcass-based transmission being slightly lower on average).
All models predicted that the infected class is predominantly
composed of juveniles (less than six months of age; electronic
supplementary material, figures S1–S3), reflecting the age-
structure in the population. However, the local-only and dis-
tance-only models predicted a slight male bias in infected
individuals while the distance-social model predicted a
slight female bias (electronic supplementary material, figures
S1–S3).
4. Discussion
Prediction of spatial pathogen dynamics is often challenged
by partially observed data, multiple pathogen introductions
and a limited understanding of host contact processes. Our
approach accounted for partially observed surveillance data
and re-introductions while examining how different dimen-
sions of host contact heterogeneity (social and spatial
processes) affect the inference of spatial transmission. Not
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accounting for social structure in spatial transmission led to
very different inferences of STKs and Re, as well as the role
of sex, birth pulses and transmission mechanisms in driving
the spatial spread. As STKs are used to plan resource allo-
cation to surveillance and control, reducing uncertainty in
STK estimates is crucial for maximizing the efficiency and
effectiveness of response plans [55]. Our results suggest that
robust estimates of STKs (and other key epidemiological
quantities such as Re) may require consideration of both
social and spatial processes for accurate prediction of spatial
spread. Secondly, the striking differences among model pre-
dictions in the role of carcass-based transmission and
magnitude and variation in Re suggest that models that
exclude social structure may provide different ecological
insights about which factors are most important in trans-
mission and persistence of ASFv (e.g. carcass versus direct
transmission processes, males versus females or family
groups versus independent males).

Spatially explicit disease models often predict that local
variations in group size can be extremely important in driv-
ing pathogen transmission due to threshold effects [56], but
that the magnitude of these effects is context-specific. For
example, an analysis that evaluated the impact of the
social-network organization on disease spread in 47 species
suggests that outbreaks of highly contagious pathogens
may be larger and persist longer in highly fragmented, gre-
garious species when compared to species with hierarchical
social systems that are more socially connected, which in con-
trast, are more prone to epidemic outbreaks of low to
moderately transmissible pathogens due to high connectivity
[1]. This suggests that highly fragmented social organization
might slow the rate of spatial disease spread. Our work sup-
ports this idea because the distance-only model predicted
more rapid spatial spread relative to the distance-social
model, despite similar natal dispersal distances. Also, in
order for the distance-only model to fit the case data as
well as possible, a larger median decay rate parameter on
the distance function was estimated relative to the distance-
social model, explaining the faster rate of spatial spread
and less locally dense STK relative to the distance-social
model. However, similar types of social behaviour can
impact disease spread differently [57]. For example, territorial
behaviours have been shown to reduce the spread of bovine
tuberculosis in European badgers to adjacent social groups
[58,59], increase the risk of macroparasite infection in African
antelope [11] and play only a minor role in the spread of
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pathogens like feline calcivirus or canine distemper virus in
Serengeti lions [57]. This suggests that social structure may
not always be important for accurately capturing spatial
spread dynamics, and that it is important to identify the
most important dimensions (if any) of social behaviour that
might modify spatial spread.

Evaluating the impact of social structure on disease
spread is facilitated when social interactions among hosts
are known [24,60], but in many cases, the social structure
must be captured through representing processes such as
connectivity structure or group size because individual-
level interactions are unknown [61]. Previous work on rac-
coon rabies demonstrates the value of integrating social
structure and space use (natal dispersal and home range
size) into predictions of spatial disease spread and evaluating
the effectiveness of control [7,23]. Similarly, a simulation
study of pathogens that are epidemiologically similar to
foot-and-mouth disease and classical swine fever showed
how realistic social structure can slow the spatial spread of
disease and lower persistence, and that this effect is dispro-
portionately strong for acute infections [27]. Spatial disease
spread can be represented using a number of modelling
frameworks (spatially explicit deterministic models,
correlation models, individual-based lattice models, reac-
tion–diffusion models, etc.), but methods to account for
social structure and space use currently in estimates of
STKs (as demonstrated here) remain limited, especially in
wildlife disease systems [3,56,62].

One way to account for social structure and space use
concurrently is to use spatial network models [17], but this
approach makes it difficult to disentangle the relative effects
of social versus spatial processes on pathogen transmission,
which is important for optimizing control strategies (but see
[61] for a novel approach that addresses this issue). By con-
trast, the field of movement ecology has developed new
strategies to account for heterogeneities due to animal move-
ment [3,4] and social behaviour [63,64], but these methods
remain underdeveloped for application in disease ecology
[3], and present an opportunity for future work. Develop-
ment of conventional methods that allow separate inference
and understanding of the role of spatial and social drivers
of pathogen transmission dynamics is important not only
for an improved mechanistic understanding of spatial patho-
gen dynamics but also for improved risk assessment and
optimal control strategies by highlighting which processes
(e.g. host clustering, movement patterns) at what scale
should be targeted for control [62].

Although IBMs can be computationally intensive, they
can capture the heterogeneous traits that make each popu-
lation, disease and sampling design unique [25]. As such,
they are advantageous for informing policy in many fields
of epidemiology and public health that are influenced by
individuals, their behaviours and the landscape [65]. The
IBM framework presented here can be used to improve pre-
dictions of spatial pathogen dynamics and risk assessment
through incorporating important real-world complexities
such as social clustering, sampling design, seasonal demo-
graphics and pathogen re-introductions (figure 1). Though
we focus on the ASFv system, this framework can be readily
applied to predict spatial pathogen dynamics and under-
stand the importance of social structure in other host–
pathogen systems by using system-specific data streams. In
addition to computational time, a second challenge with
fitting IBMs to data can be their level of complexity and
amount of stochastic variation. This can lead to wide pos-
terior distributions on parameters, without an extremely
high number of iterations (and in some cases even with a
high number of iterations). As with any complex Bayesian
model, this risk can be reduced through using a combination
of informative prior distributions and screening results that
are biologically unrealistic. During preliminary analyses, we
allowed more vague prior distributions on the distance
decay parameter (α) and found that the model could also
fit the data well with a large value of α but that these α
values were unrealistically high for wild boar movement
and also led to unrealistic values for transmission probability
and detection probabilities (based on expert opinion). Thus
we excluded these ranges in the prior distributions of our
final model fitting.

The distance-social model performed best at capturing
both the case and spatial spread dynamics while the dis-
tance-only model performed the worst because most spatial
spread was extremely local and the distance-only model
was constrained to a monotonic distribution of transmission
distances. Thus, not accounting for social structure (i.e. allow-
ing for more transmission within than between groups) while
allowing for some amount of long-distance transmission (dis-
tance-only model) does a poorer job at inferring the STK
because there was not enough flexibility to capture the bi-
(or multi-) modal STK that best describes the spatial pathogen
dynamics. Interestingly, the distance-social model performed
the best and predicted the highest proportion of within-group
transmission events (approx. 80%) while the local-only model
performed the next best but predicted the lowest proportion
of within-group transmission events (approx. 30%). This
suggests that the local-only model was better than the dis-
tance-only model because it restricted long-distance
transmission. STKs from all models had two peaks symbolic
of within-group and between-group transmission even
though the local-only and distance-only models did not
allow for different contact probabilities for within- versus
among-group transmission because all models included
spatial clustering due to family groups. Although the local-
only model underestimated within-group transmission, and
allowed much more between-group transmission, all of the
between-group transmission was very local which allowed
the model predictions to be closer to the distance-social
model relative to the distance-only model. Together our
results suggest that long-distance transmission is important
for capturing spatial spread dynamics but that it is very rare.

Almost all transmission events for all models were within
1.5 km, with some rare events at longer distances. These STK
estimates can be used to establish control and surveillance
zones for wild boar in Poland. For example, carcass removal
could be intensified within 1.5 km of a case detection where
most transmission is occurring, with depopulation and sur-
veillance intensified out to further distances (i.e. the tail of
the STK) to contain further spread. A useful approach
could be to employ an adaptive radius that focuses interven-
tion efforts within 99% (or more—this should be validated
with modelling) of the STK, but adapts surveillance based
on real-time surveillance. However, the precise recommen-
dations will depend on how soon a detection is made
relative to where the infection front is currently. With ASFv
travelling at 1–2 km per month [29], the radii for high-inten-
sity culling and surveillance would need to be increased by
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1–2 km for each month that detection has lagged behind the
infection front, highlighting the importance of accurate pre-
dictions of spatial spread. A longer lag time for detection
will also amplify challenges that arise from long-distance
jumps highlighting that this process is especially important
to understand. One approach to account for detection lags
and anticipated spread would be to pre-determine multiple
fixed radii from the STKs to delineate surveillance and con-
trol zones. This would allow for more rapid redistribution
of control resources and better targeting of surveillance
resources for optimizing adaptive change based on current
surveillance data.

Hunting, culling and other anthropogenic factors could
influence wild boar movement and disrupt social structure
[66], thus altering STKs. While our model assumed that
daily movement dynamics (contact) remained constant
throughout the study period, it did account for social disrup-
tion. In cases where hunting left family group members
alone, these individuals dispersed to join the nearest group
(i.e. implicitly accounting for the effects of social disruption
on disease spread). In terms of the potential effects of hunting
or culling on daily movement, the behavioural response of
wild boar to hunting activities in Europe remains nuanced,
with space use changes varying by ecological and hunting
context [66]. However, feral swine culling practices in the
USA have shown short-term increases in movement and
home range shifts, which could transiently increase ASFv
transmission [67,68], and suggests that their effects could
merit further exploration.

Long-distance jumps (greater than 100 km from the epi-
zootic region) were observed on multiple occasions in
Poland after 2015 [37] and are thought to be due to human-
mediated activities as these distances are well beyond those
travelled by wild boar naturally [69,70]. However, our
model only included processes describing natural move-
ments of wild boar (which explained most of the
transmission events during our study period) because we
did not have data to describe sources of human-induced
long-distance transmission. Thus, developing estimates of
STKs that account for mechanisms or risk factors of long-dis-
tance dispersal remains an important objective that can help
target disease control efforts. Our approach allowed for some
longer-distance events (on the scale of natural wild boar
movements) but we assumed a monotonic functional form
for contact distances, such that we did not infer the effects
of spatial contact processes occurring on multiple spatial
scales (beyond within- versus between-group transmission
differences in the distance-social model). In order to infer
spatial spread with later surveillance data (i.e. 2016–present
when longer-distance events occurred multiple times), it
will be important to incorporate other spatial mechanisms
in the inference of the STKs, perhaps using covariate data
that can inform these long-distance processes. Such an
approach would provide refined recommendations for
surveillance and control targets at longer distances.

We assumed that ASFv is lethal in 100% of cases, but
recent evidence indicates that wild boar may survive infec-
tion [36,71,72]. If some hosts survive ASFv they could
facilitate ASFv persistence by producing new susceptible
hosts. However, the fraction of survivors is extremely small
for virulent strains of ASFv (as in our study area) and thus
it is unclear if these individuals could realistically affect per-
sistence. Modelling research to understand the potential role
of survivors in the enzootic dynamics of ASFv could be
useful for identifying conditions where survivors may alter
the enzootic dynamics. We also assumed that all infections
were acute (with an average infectious period of 5 days). If
some individuals were to become persistently infected,
those individuals would have increased opportunity to trans-
mit the virus within and among social groups and could
presumably increase the average distance of pathogen trans-
mission because there would be more opportunity for contact
among wild boar at further distances [73,74]. However, for
the virulent ASFv strains circulating in Poland, there is no
evidence of persistently infected wild boar that can shed
ASFv in high enough concentrations to infect other wild
boar [73]. Nonetheless, surveillance for changes in virulence
is important because they could change STKs over time.

Our models inferred substantial variation in Re over time
due to seasonally varying carcass persistence, with the dis-
tance-social model predicting the largest peaks in Re due to
increases in carcass and ASFv persistence in cold weather
[46,75,76]. Prior research the Baltic States and Poland also
indicated that the seasonality of ASFv cases in wild boar
peaked in winter and summer [70]. Although this trend
was observed across the entire European Union, these studies
could not prove causality [77]. Results of our analysis suggest
that carcass surveillance and removal may be especially
important during the colder months due to the potentially
increased role of carcass-based transmission.

Our estimates of Re (ranging from 1.1 to 2.5 on average
across models) due to different STK assumptions were simi-
lar to an estimate of R0 of ASFv in wild boar (1.13–3.77) in
Russia [78]. However, differences between our models in esti-
mates of Re over time suggest carcass-based transmission has
different roles in driving ASFv transmission, which could
influence identifying the optimal control strategy considering
that carcass search and removal is intensive [79]. The local-
only and distance-only models suggest that carcass-based
transmission is lower than direct transmission while the dis-
tance-social model suggests that the two types of
transmission occurred at similar frequencies. Although car-
casses have longer infectious periods than the alive phase
during the cooler months, transmission probability given
contact is lower and contact rates are lower relative to live
individuals because carcasses do not move [46,80,81]. These
limitations balance the advantage of potentially longer infec-
tious periods. The distance-social models lead to higher rates
of carcass-based transmission because they predict that most
transmission events are extremely local. The fact that models
with commonly used spatial contact structures produce
different inferences of the importance of different trans-
mission mechanisms when social structure is added
emphasizes: (i) the importance of further developing infer-
ence methods that account for social structure in spatial
spreading and (ii) the need for approaches that aim to
reduce uncertainty in estimates of STKs (e.g. [9]).

Interestingly, our models also predicted differences in the
role of sex in transmission over time. The distance-social
model predicted a slight female bias because this model pre-
dicted that most transmission events occurred within family
groups, which are female-biased. By contrast, the local-only
and distance-only models predicted a slight male bias
because they predicted more between-group transmission
and with a 50 : 50 sex ratio there are more independent
males relative to family groups. Although it is known that
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males will travel longer distances than females [82],
especially during the mating season to seek out females, we
did not account for this temporal heterogeneity in dispersal.
Considering these types of movement heterogeneities in
future work could be important for improving our under-
standing of which sex might present a higher risk of ASFv
transmission and persistence.

Although our STK estimates are based on wild boar ecol-
ogy in eastern Poland they can provide baseline guidance for
planning control in other settings. Response plans in areas
that are ASFv-free often rely only on local host movement
ecology because there are no local data on how ASFv might
transmit. Our estimates of STKs suggest that transmission
of ASFv in wild boar (or pigs) in other ecological settings
might mainly occur over the closer daily movement estimates
within home ranges due to the social processes in this host
species. To further refine STK estimates for specific ecological
contexts, parameters for the local demographic (e.g. litter
size, age at reproductive maturity, gestation time, longevity,
seasonal birth patterns, landscape carrying capacity), move-
ment (e.g. natal dispersal distance and timing, daily home
range exploration) and social processes (maximum group
size) can be used as inputs in our simulation model with
the Poland-derived estimates for transmission rates to explore
how local ecological factors might affect STKs or their
uncertainty.

Considered separately, spatial and social processes can
have similar impacts on pathogen transmission dynamics.
For example, social aggregation (e.g. family groups, herd
living) and spatial structuring can both restrict the spread
of pathogens [1,83]. However, our results highlight that
spatial and social processes can also have quite different
impacts on epidemiological quantities, especially estimates
of STKs, Re, the frequency of different transmission
mechanisms and potential risk factors such as sex. Being
able to appropriately infer the role of these quantities is cru-
cial for optimizing disease control strategies. When these
contact heterogeneities are inappropriately accounted for it
can bias inference (e.g. [84]) and potentially misguide
policy decisions [55]. Moving forward, the field of disease
ecology should emphasize the development and use of
methods that account for spatial and social contact processes
separately so that their relative roles in driving pathogen
transmission dynamics can be inferred and understood.
This will allow uncertainties in contact processes to be appro-
priately evaluated and incorporated into predictions of
spatial spread [55], for monitoring designs to be optimized
and for risk factors to be identified more accurately so that
controls can be targeted to the most important risk factors.
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