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The potential impact of automation on the labour market is a topic that has
generated significant interest and concern amongst scholars, policymakers
and the broader public. A number of studies have estimated occupation-
specific risk profiles by examining how suitable associated skills and tasks
are for automation. However, little work has sought to take a more holistic
view on the process of labour reallocation and how employment prospects
are impacted as displaced workers transition into new jobs. In this article,
we develop a data-driven model to analyse how workers move through
an empirically derived occupational mobility network in response to auto-
mation scenarios. At a macro level, our model reproduces the Beveridge
curve, a key stylized fact in the labour market. At a micro level, our
model provides occupation-specific estimates of changes in short and
long-term unemployment corresponding to specific automation shocks.
We find that the network structure plays an important role in determining
unemployment levels, with occupations in particular areas of the network
having few job transition opportunities. In an automation scenario where
low wage occupations are more likely to be automated than high wage occu-
pations, the network effects are also more likely to increase the long-term
unemployment of low-wage occupations.
1. Introduction
In response to widespread concern about the potential impact of automation on
the labour market [1–5], significant effort has been devoted towards analysing
how susceptible a given occupation is to computerization [6–8]. However,
studies that estimate the likelihood of a robot ‘stealing’ a particular job only pro-
vide part of the picture. Consider, for example, the job security faced by a
statistical technician vs. a childcare worker. Estimates developed by Frey and
Osborne [8] suggest that statistical technicians are more likely than childcare
workers, for example, to be replaced by software technology. However, should
such forecasts eventuate, and statistical technicians find themselves out of a
job, their existing skills could allow them to transition into a range of ‘safer’ occu-
pations with lower automation risk and growing demand. In contrast, while
childcare workers may not experience a direct threat from computerization,
their employment prospects may nonetheless still be impacted. As automation
displaces people in other occupations, many of these workers could have the
requisite skills to become childcare workers and may consequently provide an
indirect effect on the job security of existing childcare workers. Thus, even
though the immediate risk of automation is predicted to be larger for statistical
technicians, accounting for possible occupational transitions and labour
demand reallocation and could see childcare workers facing a greater risk of
unemployment. To study these important, but overlooked indirect labour
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displacement effects, this article develops a new data-driven
model of the labour market.

There is a rich body of literature that has demonstrated the
importance of modelling labour flows using agent-based
models and networks. Reference [9] surveyed several agent-
based models; some of these models can be used to test
different labour market policies. Reference [10] proposed an
agent-basedmodel for the French labourmarket, and references
[11–16] used networks to model how workers move between
industries and firms. These models can help understand the
first-order displacement effects of labour market shocks
better. Networks have also been used to better understand
how skills, knowledge, and work activities are distributed
across occupations [17–19]. We build on this body of work
and go further by modelling the labour market out of equili-
brium and considering indirect displacement effects of
automation. Central to our model is an empirically derived
occupational mobility network, in which nodes are different occu-
pations and edges correspond to the probability that workers
transition between them. The overall structure of this network
influences the efficiency with which workers are reallocated
across occupations following a shift in relative labour demand.

To explore the potential impacts of automation on the
labour market, we impose an automation ‘shock’ that, over
the years, decreases the demand for labour in some occupations
and increases demand in others. By using an agent-based
model, we study the associated aggregate and occupation-
specific unemployment dynamics as a function of time. While
we analyse the results for only two automation shock scenarios
based on estimates developed by Frey and Osborne [8] and
Brynjolfsson et al. [7], our model is general and can be used to
study a range of different labour market shocks.

We model the resulting process of labour reallocation as a
stochastic process with discrete time steps. During each time
step, job vacancies of different occupations open, and some
workers are separated (fired), unemployed workers apply
for a new job, and vacancies are matched with job applicants.
We model an out-of-equilibrium economy and focus on the
transient dynamics during which the labour market re-
adjusts to a new steady state. In addition to simulations, we
also derive a representation of the model as a deterministic
dynamical system that, in the limit of a large number of
workers, predicts the expected behaviour of the model simu-
lations. This provides deeper insights into the mechanics of
the model and dramatically speeds up computations with
little accuracy loss.

We assume that the relative labour demand between occu-
pations changes due to automation, but the total demand for
jobs across occupations is constant. We focus on a transition
period of around a decade right after the automation shock
hits, and the bulk of labour reallocation occurs. We analyse
the impacts on both short-term and long-term unemployment
(> 27weeks). Unsurprisingly, we find that occupations at
higher risk of automation tend to be affected most, but we
also show that restrictions on worker movements imposed
by the occupational mobility network generate substantial
labour market mismatch. In some areas of the network,
many workers can be competing for a small number of
vacancies. Simultaneously, occupations in other areas can
have vacancies that are left unfilled for a long time. Compared
to a labour market with no mobility restrictions, the occupa-
tional mobility network structure increases unemployment
by roughly 29%. We also show that occupations with the
same level of ex ante automation risk can end up with
markedly different unemployment levels.

Our model also provides insights into the Beveridge
curve, a well-known negative empirical relationship between
the unemployment rate and the vacancy rate [20]. Typically,
when vacancies increase, unemployment goes down. We
show that after parameter calibration, our model reproduces
the empirical Beveridge curve during the most recent US
business cycle and supports the hypothesis that business
cycles alone can cause the anticlockwise cycling behaviour of
the curve [21–23].

Our results have important implications for designing
policies aimed at helping workers best prepare and adapt to
the changing nature of the labour market. More nuanced
insights into employment impacts associatedwith automation
could help improve the effectiveness of worker retraining
schemes. For example, rather than only considering workers’
current occupation’s susceptibility to automation, skill devel-
opment programmes could be more efficiently targeted
towards workers in occupations that are likely to face longer
spells of unemployment [24]. Furthermore, a better under-
standing of the mechanisms underpinning the Beveridge
curve could help policymakers mitigate adverse employment
impacts of business cycles and accelerate the recovery process.
2. Model design
2.1. The occupational mobility network
We first construct an occupationalmobility network to capture
the ease with which a worker can transition between occu-
pations. We follow the work of Mealy et al. [19] and
construct the network based on the data on occupational tran-
sitions in the United States between 2010 and 2017 [25]. In this
network, nodes are occupations, and the weights of the edges
are proportional to the probability that a worker transitions
between occupations. The resulting network is weighted and
directed with n = 464 nodes (see figure 1b). The network also
has self-loops since workers often remain in the same occu-
pation when they change jobs. We represent the network by
its adjacency matrix A, with elements

Aij ¼ r if i ¼ j
(1� r)Pij if i = j,

�
(2:1)

where the indices i and j label the n possible occupations. r is
theweight of the self-loops and is the probability that aworker
from occupation i who changed jobs remains in her same
occupation. Pij is the empirical probability that a worker tran-
sitioning out of occupation i moves to occupation j. In the
electronic supplementary material, we provide details on
how we compute Pij section S1.1 and a robustness check in
section S4 where we use heterogeneous values of the self-
loops. We assume that Aij is fixed in time—edges do not
change, and no nodes are removed or added.

Figure 1b shows the occupational mobility network,
making it clear that there is a rich structure underlying occu-
pational transitions [19]. As a result, occupational mobility is
significantly more restricted than is commonly assumed in
the most basic labour market models, as noted in references
[26,27]. Figure 1b also shows estimates of the automatability
of occupations, revealing that while there are clear clusters of
high or low automatability, specific occupations have a very
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Figure 1. Estimates of automatability in the occupational mobility network. (a) A
histogram of the probability of computerization for different occupations as esti-
mated by Frey and Osborne [8], suggesting a bimodal distribution. (b) The
occupational mobility network, where nodes represent occupations and links rep-
resent possible worker transitions between occupations. Red nodes have high
automatability, and blue nodes have low automatability. The size of the nodes
indicates the logarithm of the number of employees in each occupation.
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different degree of automatability than their neighbouring
occupations and will therefore be strongly affected by indirect
(reallocation) effects.
2.2. A network model of the labour market
Our model is designed to understand the dynamics of unem-
ployment at the occupation level. The flow of workers on the
network (i.e. workers changing occupations) is described by
a set of discrete-time stochastic processes for employment,
unemployment and vacancies in each occupation i. The
agents in our model are workers who can be employed or
unemployed. All workers have only one occupation per time
step, but they can switch occupations. In this model, we
assume that workers are perfectly geographically mobile,
and we neglect wage pressure. The set of possible occupations
is fixed, andwe define aworker’s occupation as the occupation
in which she was last employed. At any given time t, the
number of workers employed in occupation i is ei,t, the
number of unemployed workers is ui,t and the number of job
vacancies is vi,t. The number of workers that are separated
(i.e. fired) is ωi,t, and the number of newly opened vacancies
is νi,t. The labour flow fij,t+1 is the number of workers hired in
occupation j who were previously unemployed in occupation
i. By using these notations, we can write

i,tþ1 ¼ ei,t � vi,tþ1|ffl{zffl}
separated workers

þ
X
j

f ji,tþ1|fflfflfflfflffl{zfflfflfflfflffl}
hired workers

(2:2)

ui,tþ1 ¼ ui,t þ vi,tþ1|ffl{zffl}
separated workers

�
X
j

fij,tþ1|fflfflfflfflffl{zfflfflfflfflffl}
transitioning workers

(2:3)

and

vi,tþ1 ¼ vi,t þ ni,tþ1|ffl{zffl}
opened vacancies

�
X
j

f ji,tþ1|fflfflfflfflffl{zfflfflfflfflffl}
hired workers

: (2:4)

These equations express conservation laws stating that the
change in each variable is equal to the difference between
inflow and outflow. Equation (2.2) states that the change in
employment is equal to the number of workers hired minus
the number of workers separated. Similarly, equation (2.3)
states that the change in unemployment is equal to the
number of separated workers minus the number of hired
workers. Finally, equation (2.4) states that the change in the
number of vacancies is equal to the number of vacancies created
minus the number of workers hired to fill existing vacancies.
Figure 2 is a flow chart that makes the transitions explicit
from a worker’s perspective and an employer’s perspective.

Our model builds on Mortensen and Pissarides’ studies
[28,29], who proposed the use of a matching function between
workers and vacancies. In our model, the labour flow fij,t+1
corresponds to a new matching function, which has the
advantage of being granular (i.e. it is occupation-specific)
and motivated by the stochastic process illustrated in figure 2.

We denote occupation-specific stochastic variables by low-
ercase letters and aggregate quantities by uppercase letters
(e.g. total unemployment is Ut ¼

P
i ui,t) and use bold font for

vectors (i.e. the i-th element of ut is ui,t). We denote realized
values of stochastic variables by a hat above e.g. êi,t is a realiz-
ation of the stochastic variable ei,t. The time steps are chosen,
so that their duration is long enough for workers to transition
between occupations, but too short for workers to change
their employment status more than once. That is, a worker is
not allowed to switch her status from employed to unemployed
and then back to employed in a single time step. Likewise, a
vacancy cannot be opened and filled within the same time step.

We assume that the number of separated workers ωi,t+1

and the number of opened vacancies at t + 1 νi,t+1 follow
binomial processes of the form,

vi,tþ1 � Bin(̂ei,t, pu,i,t) (2:5)

and

ni,tþ1 � Bin(̂ei,t, pv,i,t), (2:6)

where Bin(m, p) denotes a binomial distribution with m trials
and success probability p. The success probabilities p̂u,i,t and
p̂v,i,t depend on d̂i,t � dyi,t, which is related to the imbalance of
supply and demand for labour and play a key role in the
dynamics. We will first complete an overview of the search
and matching process and return in a moment to specify
πu,i,t and πv,i,t.
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2.2.1. Search and matching
The labour flow fij,t+1 depends on the occupational mobility
network structure, the number of vacancies and unemployed
workers and the job search and matching process. We assume
that each unemployed worker makes exactly one job appli-
cation (this facilitates the mathematical derivations). We
denote the probability that a worker in occupation i applies
to a vacancy in occupation j by qij,t+1 and assume that qij,t+1
is proportional to the number of vacancies in occupation j
and the empirical transition probability1 between the two
occupations Aij. This leads to the following functional form:

qij,tþ1 ¼
v̂ j,tAijP
l v̂l,tAil

, (2:7)

where we have the number of vacancies of occupation j mul-
tiplied by the empirical transition probability Aij in the
nominator and we have a normalizing factor that guarantees
that

P
j qij,tþ1 ¼ 1 in the denominator. After all workers have

placed their application, one applicant chosen uniformly at
random is hired for each vacancy. Some vacancies may not
receive applications, in which case no one is hired, and the
job vacancy remains open. At the next time step, the model
repeats itself as illustrated in figure 2. In the Results section,
we present analytical approximations to the dynamics of
the model and make more explicit how the flow of workers
depends on the occupational mobility network structure.
2.2.2. Supply and demand for labour
Workers move across the occupational mobility network in
response to shifts in labour demand. These shifts are deter-
mined by the success probability πu,i,t of the binomial
process for separating workers in equation (2.5) and the suc-
cess probability πv,i,t for the binomial process for creating
vacancies in equation (2.6). We break each of these into two
separate random processes. The first is a spontaneous process
(or state independent), and the second is a state-dependent
process.

In the spontaneous process, workers are separated, and
vacancies are opened at random, independent of the state of
the system. For simplicity, we assume that the separation and
opening rates are the same for all occupations. For any given
occupation, the spontaneous probability that a given worker
is separated at any given time is δu, and the spontaneous prob-
ability that a vacancy opens is δv times the number of workers
in that occupation.

The state-dependent process drives the labour demand
reallocation by adjusting the realized labour demand towards
the target labour demand. The target labour demand dyi,t is the
desired quantity of labour for occupation i at time t. The
target demand is imposed externally and allows us to
impose automation shocks (or other reallocation shocks) as
a function of time. The realized labour demand, in contrast,
is a time-dependent variable corresponding to the sum of
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the number of employed workers plus the number of job
vacancies in a given occupation, i.e.

di,t ¼ ei,t þ vi,t:

The difference between the realized and the target demand
can be attributed to supply factors (e.g. when there are more
employed workers in an occupation than the target demand
requires) or to demand factors (e.g. when vacancies are scarcer
than what the target demand dictates). The separation of
workers and opening of job vacancies allow the realized
labour demand to adjust: the realized labour demand for an
occupation i increases when vacancies of occupation i open
and decreases when workers of occupation i are separated.
In this state-dependent process, we equilibrate the realized
labour demand di,t to the target demand dyi,t by opening
more vacancies if di,t , dyi,t or separating workers if di,t . dyi,t.
To do so, we define an additional occupation-specific prob-
ability αu,i,t that a worker from occupation i is separated at
time t and an additional occupation-specific probability αv,i,t
that a vacancy in occupation i opens. Both of these probabil-
ities are functions of time and depend on the difference
between the realized and target labour demand. We assume
the following functional forms

au,i,t ¼ gu
max

�
0, di,t � dyi,t

�
ei,t

(2:8)

and

av,i,t ¼ gv
max

�
0, dyi,t � di,t

�
ei,t

, (2:9)

where γu and γv are parameters that determine the speed
of adjustment and are in the interval [0, 1]. The α’s are
probabilities and must satisfy 0≤ αu,i,t≤ 1 and 0≤ αv,i,t≤ 1.2

For the purposes of this article,we assume the adjustment speed
for separations and vacancies are equal, i.e. γu = γv = γ.

Since the spontaneous and state-dependent processes
are independent, the probability that a worker in occupa-
tion i is not separated from her job is (1− δu)(1− αu,i,t). This
means that the probability that a worker is separated is
given by

pu,i,t ¼ 1� (1� du)(1� au,i,t) ¼ du þ au,i,t � duau,i,t, (2:10)

where the negative term on the right-hand side avoids counting
a worker as separated twice. Similarly, for each employed
worker in occupation i, the probability that a vacancy opens is

pv,i,t ¼ dv þ av,i,t � dvav,i,t: (2:11)
2.2.3. Automation shocks
We assume that automation reallocates labour demand across
occupations, decreasing the number of jobs available in some
professions and increasing them in others. Since the set of
occupations is fixed, we base the creation of new jobs on
the thought experiment that work hours are reduced in all
non-automated jobs, so that the total number of jobs in the
economy stays constant. This assumption is motivated by
the long-run evidence that unemployment rates have no
trend but hours worked have decreased substantially [30].
In other words, we assume that aggregate labour demand
remains constant during the shocks (i.e. Dy

t ¼ D0 ¼ L); auto-
mation reduces the target demand for occupations with a
high automation level and correspondingly increases the
target demand for occupations with a lower automation
level, so that the number of jobs destroyed equals the
number of jobs created (see Methods section S1.2 in the elec-
tronic supplementary material). As we discuss later, our
model can also consider changes in the aggregate demand.

This completes our specification of the model. Table S1 of
the electronic supplementary material gives a summary of the
variables and parameters. For a full description of howwe cali-
brated parameters and set initial conditions, see the Methods
section S1.3 in the electronic supplementary material.
Table S2 contains fitted values for all the parameters.
3. Results
3.1. Deterministic approximation for large populations
Although theworkers and employers follow simple rules in our
model, when the number of workers L is large, running the
computer simulation is computationally costly. However,
when L is large, we can take advantage of the law of large num-
bers and multivariate Taylor expansions to approximate the
system’s behaviour in terms of expected values. This provides
a good approximation for most purposes and makes it easier
to understand themechanics of the model and is faster to simu-
late, which is very useful for exploring the parameter space. We
discuss these approximations in further detail in section S2 of
the electronic supplementary material.

We approximate expectations for equations (2.2)–(2.4) in the
limit of a large number of agents and conditional on the state of
the system at the previous time step. To keep the notation com-
pact, we often denote approximations to the expected values by
a bar above the variable, e.g.

�ui,tþ1 � E[ui,tþ1jui,t ¼ ûi,t, vi,t ¼ v̂i,t, ei,t ¼ êi,t]:

We reduce themaster equations to a 3ndimensional determinis-
tic dynamical system given by

�ei,tþ1 ¼ �ei,t �
 
du�ei,t þ (1� du)gumax

�
0, �di,t � dyi,t

�!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

separated workers

þ
X
j

�f ji,tþ1|fflfflfflfflffl{zfflfflfflfflffl}
hired workers

, (3:1)

�ui,tþ1¼�ui,tþ
 
du�ei,tþ(1�du)gumax

�
0,�di,t�dyi,t

�!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

separatedworkers

�
X
j

�f ij,tþ1|fflfflfflfflffl{zfflfflfflfflffl}
transitioningworkers

, (3:2)

and

�vi,tþ1 ¼ �vi,tþ
 
dv�ei,tþ (1� dv)gvmax

�
0, dyi,t � �di,t

�!
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

opened vacancies

�
X
j

�f ji,tþ1|fflfflfflfflffl{zfflfflfflfflffl}
hired workers

: (3:3)

As we discuss in section S2.1 of the electronic supple-
mentary material, we can express �f ij,tþ1 in terms of the
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adjacency matrix and the expected values of the state
variables as follows:

�f ij,tþ1 ¼
�ui,t�v2j,tAij(1� e��s j,tþ1=�v j,t )

�s j,tþ1
P

k �vk,tAik
, (3:4)

where

�s j,tþ1 ¼
X
i

�ui,t�v j,tAijP
k �vk,tAik

(3:5)

is the expected number of applications submitted to vacancies
of occupation j. In section S2.1 of the electronic supplementary
material, we discuss the relative error of this approximation
and provide mathematical arguments that suggest that
this error is inversely proportional to the number of agents.
We run simulations to show that the error is negligible in
the limit of a large number of agents (see section S2.2 of the
electronic supplementary material). Therefore, we can use
equations (3.1)–(3.3) to study large systems, in this case, the
US labour market, in a tractable manner. We also use
equations (3.2) and (3.4) to compute long-term unemployment
(see section S1.4 in the electronic supplementary material).

Given a set of time series for the target labour demand dyi,t
and a set of initial conditions, equations (3.1)–(3.3) determine
the expected employment, unemployment, and vacancies as
a function of time. Our results are based on the US occu-
pational mobility network, so we think of our model as
reflecting the US with free geographical mobility. In section
S2.2 of the electronic supplementary material, we show that
our deterministic approximation is valid for a labour pool
of at least 1.4 million workers, so our model could potentially
be applied at the regional level.
3.1.1. Steady state
Before proceeding to analyse the US labour market under a
changing demand for labour, we note that for all the cases
we have studied, when the target labour demand is constant
dyi , there exists a computable steady-state value for the expected
number of employed and unemployed workers and vacancies
in each occupation. Except for the simple case of a complete
network, with Aij = 1/n, we cannot derive a closed-form sol-
ution for occupational unemployment. Nonetheless, we have
solved equations numerically to find a solution. In section
S2.3 of the electronic supplementary material, we argue that
the steady-state values depend on the network structure and
the target labour demand. Thus, the network structure, and
the distribution of labour demand across occupations, can sub-
stantially influence the steady-state unemployment at both the
occupational and the aggregate levels.

3.2. The Beveridge curve
The Beveridge curve is one of the best known macroeconomic
stylized facts [20,21]. It states the relationship between
vacancies and unemployment: when more vacancies open,
unemployment goes down. The intuition is that when there
are many vacancies, unemployed workers get a job faster,
so the unemployment rate is low. Similarly, when there are
few vacancies, unemployed workers are less likely to find
jobs, so the unemployment rate is high. In figure 3a, we
plot the Beveridge curve for the USA between January 2001
and September 2018.

The Beveridge curve has three important features: (i) the
curve can shift away or towards the origin [31]. For example,
after the 2009 financial crisis, the Beveridge curve shifted
away from the origin, with unemployment increasing for all
vacancy rates. (ii) During recessions, unemployment and
vacancy rates move downwards along the curve, and during
recovery periods, the unemployment and vacancy rates
move upward along the curve. The recession from December
2007 to June 2009 and the recovery period from 2009 onwards
are a good example of this feature (figure 3a). (iii) Historically,
the Beveridge curve has (almost) always shifted outwards
after recessions [21], i.e. the curve cycles anticlockwise. In
other words, there are memory effects, and for the same
vacancy rate, the unemployment rate has been larger during
recoveries than during recessions. As we show later, our
model reproduces these three features.

To estimate the impact of automation shocks, we need to
calibrate the model with specific values for all the parameters.
Given the importance of the Beveridge curve in the literature,
we chose the parameters that maximize the ability of our
model to reproduce it. Todo so,we impose a simulatedbusiness
cycle, i.e.we assume that the aggregate target labourdemandDt

oscillates according to a sinewave. We then calibrate the ampli-
tude of the sine wave and the parameters δu, δv and τ to match
the empirical Beveridge curve during the most recent US
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business cycle, from 2008 to 2018.We use the 2016 employment
distribution across occupations to set the initial target
labor demand across occupations (see calibration details in
section S1.3 of the electronic supplementary material).

Our model reproduces the three mentioned features of the
Beveridge curve. First, we show that structural changes, such
as a decrease in worker–vacancy matching efficiency, cause
the Beveridge curve to shift with respect to the origin. To
demonstrate this, we hold the target aggregate demand Dt

constant, and instead, vary the structure of the network by
replacing the empirical network A with a complete network,
where Aij ¼ 1=n 8i, j, in which each node is linked to every
other node with equal weights. The complete network corre-
sponds to the null hypothesis of no skill restrictions. We do
this for different pairs of values of δu and δv and trace the
steady-state behaviour in figure 3b. As expected, when we
remove the network structure, the Beveridge curve shifts
downwards towards the origin. When we consider par-
ameters calibrated to actual data (highlighted with a bold
border), removing the network structure corresponds to an
increase in unemployment from 4.1% to 5.3%. This effect is
substantial, representing a 29% increase.

Second, our model reproduces the dynamics of the Bever-
idge curve over business cycles. As shown in figure 3c,
unemployment and vacancy rates move downwards along
the curve during recessions and upwards along the curve
during recovery periods.

Third, the Beveridge curve of our model cycles anticlock-
wise. Historically, the standard interpretation has been that
these movements are shifts that correspond to structural
changes (changes in parameters leading to a deterioration
in the matching/hiring process in the economy) [21,32].
More recently, some models [23,29,33] have suggested that
this phenomenon is independent of structural change and
is instead due to the business cycle dynamics.

Our model supports this hypothesis. As shown in figure
3c, when we use the calibrated parameters, the Beveridge
curve cycles in an anticlockwise direction even though we
assume no structural changes. The fit of the Beveridge curve
depends strongly on the parameters δu and δv. In section S3
of the electronic supplementary material, we show how
these parameters (as well as the network structure) can
change the position, cycling direction and the area enclosed
by the Beveridge curve. Yet, it is still possible that we are over-
fitting the Beveridge curve. To address these concerns, in
section S4.2 of the electronic supplementary material, we
explore an alternative calibration method for δu and δv that
does not rely on the Beveridge curve. We show that although
this new calibration affects the exact numbers of our estimates
for the impact of automation on employment, the overall
assessment for occupations and aggregate results remain
robust. We also discuss alternative calibration procedures
that could be sought in further work.
3.3. The impact of automation on employment
We now use the model to assess the impact of automation
shocks on employment. We study two automation scenarios,
one based on the study by Frey and Osborne [8] and the other
based on the study of Brynjolfsson et al. [7]. We refer to these
automation scenarios as the Frey and Osborne shock and as the
Brynjolfsson et al. shock, respectively. For brevity, we show
the figures for the Brynjolfsson et al. shock in section S4.3
of the electronic supplementary material.

3.3.1. Estimates of the automation shock
Frey and Osborne estimated the probability that each of 702
occupations in the O*NET six-digit classification system
could be computerized soon [8]. To do this, they gave experts
a description of tasks performed by workers in a restricted
sample of 70 occupations and asked them whether the occu-
pations could be automated within the next two decades.
Based on the experts’ answers and using nineO*NET variables
that describe occupations as inputs, they trained a supervised
machine learning algorithm and estimated what they called
the probability of computerization for the remaining occupations.
They found that approximately half of the jobs in the United
States would be at risk of some degree of automation.

This study, as well as the Brynjolfsson et al. study (see
electronic supplementary material, section S4.3), estimates
the probability that an occupation will be technically automata-
ble. This is not the probability that an occupation will be
automated, which also depends on cost, institutions and so
on, and it is not an estimate of the share of jobs in an occu-
pation that will be automated. Nonetheless, for simplicity,
we interpret these as automation levels, directly determining
the share of jobs in an occupation that will be automated. We
map the six- and eight-digit O-NET classifications used in
these studies into the US occupational mobility network
(which is based on the four-digit American Community
Survey classification) using the 2016 National Employment
Matrix Crosswalk (see reference [19]).

3.3.2. Introducing automation shocks
Before the automation shock, we assume the system is in a
steady-statewhere the target demand dyi,0 matches the employ-
ment distribution in 2016 (see Methods section S1.3 in the
electronic supplementary material). We then introduce an
automation shock by making the target demand dyi,t follow a
sigmoid function, which begins at dyi,0 and converges to the
post-automation target demand (see figure 4a). We choose
the adoption rate so that the total shock is spread across a
30-year period, though most of the change happens within
about 10 years. See Methods section S1.2 in the electronic sup-
plementary material, for details. In section S4.4, we show that
these results are fairly robust for reasonable adoption rates.

3.3.3. Aggregate level outcomes
As shown in figure 4b,c, even though the aggregate target
demand is held constant, the Frey and Osborne shock
increases both the aggregate unemployment rate and the
aggregate long-term unemployment rate during the period
of automation. This increase is caused by the substantial real-
location of labour demand across occupations (see figure 4a
for an example of how the target demand changes at the
occupation level).

We compare the behaviour with the empirical occu-
pational mobility network to the hypothetical behaviour
assuming a complete network, in which any worker can tran-
sition equally well to any occupation. We use the same
parameters for both networks (see calibrated parameter
values in table S2 in the electronic supplementary material).
The aggregate unemployment rate is initially about 5.3% for
the empirical network and 4.1% for the complete network.
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When we apply the Frey and Osborne shock, the aggregate
unemployment rate for the empirical network rises to 6.7%
at its peak and then decays. In contrast, for the complete net-
work, the aggregate unemployment rises to only 4.7% before
it decays. Thus, the total change in unemployment with
the empirical network is more than a factor of two larger,
demonstrating the importance of the network structure.

The long-term unemployment rate, for the occupational
mobility network, is about 2.1% for the empirical network,
substantially smaller than the (short-term) unemployment
rate. When we apply the Frey and Osborne shock, the aggre-
gate long-term unemployment rate rises to roughly 2.6% at its
peak and then decays. The relative change from the initial
value to the peak value is about 27% for both the unemploy-
ment and long-term unemployment. The behaviour for the
complete network is quite different: first, the initial level of
long-term unemployment for the complete network is only
1.0%, more than a factor of two smaller than for the empirical
network. Second, when we apply the shock, long-term
unemployment for the complete network remains nearly flat.

Another interesting result is that the steady-state value of
the aggregate unemployment shifts after the shock. The aggre-
gate unemployment rate changes from 5.28% to 5.10%, for a
net change of roughly −0.17%. While this is small, bear in
mind that we have kept both the total aggregate target
demand and all the model parameters constant. This is
consistent with our result that the steady state explicitly
depends on the network structure and the target demand in
each occupation (see electronic supplementary material, eqs.
(S60–S64) for details). The fact that we see this shift when we
change the target demand demonstrates the key role that the
network structure plays in determining the steady-state and
transient behaviour. Note that there is no noticeable shift in
the steady state for the complete network.

We conjecture that the Frey andOsborne shock causes such
persistent effects since automation levels of neighbouring
occupations tend to be similar. This has two effects: it means
that there are some regions of the network where workers
easily find new jobs, and others where workers get trapped
because there are no good alternatives, causing a substantial
boost to long-term unemployment. The steady-state shift
occurs because the post-automation distribution of the target
labour demand across occupations is more concentrated on
fewer occupations that are more densely connected between
each other, reducing worker–vacancy matching frictions.
We test our conjecture by creating a surrogate Frey and
Osborne shock that randomizes the distribution of automation
levels of occupations across the network and find supporting
results (see electronic supplementary material, section S5.1).
Finally, we explore what happens when we relax the assump-
tion that the aggregate target labour demand remains
constant. Unsurprisingly, we find that when the aggregate
demand decreases, the automation shock displaces more
workers for all occupations (see section S4.5 in the electronic
supplementary material).
3.3.4. Occupation-level outcomes
We now show how automation affects the occupation-specific
unemployment rates, where the network plays a crucial role.
We measure the average unemployment rate and average long-
term unemployment rate during the shock as follows:

�ui,average(T) ¼
P

t[T �ui,tP
t[T (�ui,t þ �ei,t)

and

�u(�t)
i,average(T) ¼

P
t[T �u

(�t)
i,tP

t[T (�ui,t þ �ei,t)
,

where T is the set of time steps that correspond to the auto-
mation shock. (We discuss an alternative way of defining the
average unemployment rate in the electronic supplementary
material, section S4.6 and show that our results are robust.)
For simplicity, from here onward, we refer to the average
unemployment rate and the average long-term unemploy-
ment rate during the automation period simply as the
unemployment rate and the long-term unemployment rate.

In figure 5, we compare the percentage changes in unem-
ployment and long-term unemployment with each
occupation’s automation level. To highlight the role of the net-
work, we do this for both the occupational mobility network
and the complete network. For the complete network, occu-
pations with the same automation level have the same
percentage change in their unemployment rates. In contrast,
for the occupational mobility network, the automation level is
not aperfect predictorof the occupation-level outcome.Network
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effects specific to each occupation also affect unemployment
(this is also true for Brynjolfsson et al. [34] shock).

It is useful to highlight some specific cases to make the
size of the network effects more clear. Both dispatchers and
pharmacy aides have a high probability of computerization
roughly of 0.72. Still the automation shock causes a 21%
increase in the dispatchers’ long-term unemployment, while
the pharmacy aides’ long-term unemployment decreases by
roughly 17%. Some occupations experience the opposite
change that one would expect. Statistical technicians and
pharmacy aides are likely to be automated (with a probability
of computerization above 0.6), while childcare workers and
electricians are not (with a probability of computerization
below 0.2). However, statistical technicians and pharmacy
aides decrease their long-term unemployment, while childcare
workers and electricians increase theirs. This is due to the fact
that it is relatively easy for statistical technicians and phar-
macy aides to transfer to jobs in other occupations with
increasing demand. In contrast, it is easier for other workers
with occupations susceptible to automation to transfer to
childcare workers or electricians, thereby increasing workers’
supply relative to the demand. This illustrates the importance
of network effects.

We also study if the network effects are beneficial or
detrimental, that is, whether the occupation-specific unem-
ployment rates decrease or increase when we consider the
occupational mobility network instead of the complete net-
work. We measure the network effects by taking the
difference between the percentage change in unemployment
rates in the two cases (i.e. the difference between the green
and the black dots in figure 5). If the difference is positive,
the network effects are detrimental—the occupation faces a
larger increase in (long-term) unemployment. In figure 6, we
compare the network effects with the median wage of occu-
pations. We find that occupations with low median wage are
more likely to face detrimental network effects, while almost
all high wage occupations have better outcomes with the
empirical network than with the complete network.
3.3.5. Network structure
We further explore how the network structure affects the
impact of automation on employment in the electronic sup-
plementary material, section S5. First, we run the model on
randomized occupational mobility networks (rewiring edges
or reshufflingweights). Second, wemodel a retraining strategy
by adding edges between occupations that share work activi-
ties and where one occupation substantially increases its
long-term unemployment and the other decreases it. Our
results show that adding these edges can help dampen the
adverse effects of automation (see figure S26 in the electronic
supplementary material).
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3.3.6. Brynjolfsson et al. automation shock
Brynjolfsson et al. [34] estimated the suitability for machine learn-
ing of occupations, which we use as an alternative automation
shock (see electronic supplementary material, section S4.3 for
details). Unlike the Frey and Osborne shock, the Brynjolfsson
et al. shock causes no noticeable change in the aggregate unem-
ployment rates. The different outcome of the model to the two
automation shocks is caused by the different distributions of
the two shocks. The Frey and Osborne shock is heterogeneous
across occupations, affecting some occupations a great deal
and others little, so that the changes in target demand at the
occupation level are substantial (see figure 1a). In contrast,
the Brynjolfsson et al. shock affects most occupations similarly,
so that the changes in the target demand are lower and the
network effects are small (see figure S15A in the electronic
supplementary material). During the Brynjolfsson et al.
shock, we still observe the network effects at the occupation
level. The change in the long-term unemployment and
unemployment varies substantially for occupations with
similar suitability for machine learning (see figure S16A,B
in the electronic supplementary material). However the
network effects, workers of different occupations face during
the Brynjolfsson et al. shock have no significant correlation
with median wages (see figure S16C,D in the electronic
supplementary material).
4. Discussion
This work develops an out-of-equilibrium model of the
labour market and applies it to analyse the impact of
automation on unemployment. At the occupation level, we
show that employment impacts for workers are likely to
depend not only on the automatability of their current occu-
pation but also the alternative occupations that they can
transition into. At the macro level, our model reproduces
the dynamics of the Beveridge curve.

Similar to previous studies [11], we find that the occupa-
tional mobility network structure affects the unemployment
rate. However, here we go further by quantifying the labour
market frictions imposed by the empirical network: these fric-
tions can account for more than a quarter of the steady-state
unemployment rate. We also find that the distribution of
labour demand across occupations in the network can affect
the steady-state unemployment. Most importantly, automation
can increase unemployment (and even more so long-term
unemployment) during the transition period, even if the total
number of jobs stays constant, due to the mismatch between
unemployed workers and job vacancies. During this transition
period, wages will play an important role. For the Frey and
Osborne shock, our results suggest that low-wage occupations
aremore likely than high-wage occupations to see an increase in
their long-term unemployment due to the frictions imposed by
the occupational mobility network.

Our work complements previous efforts that have studied
automation and job displacement based on the task approach
[26,35,36], but provides a network perspective on job
transitions that goes beyond classifying workers into low,
middle and high skill categories. This article is also closely
related to work that has used networks to study the effects of
labour market frictions [37–39] or the propagation of economic
shocks [12,24,40]. However, this study is the first to our knowl-
edge to show that indirect network effects of occupational
mobility can be crucial to estimate how automation may
increase the unemployment and long-term unemployment of
different occupations.

Our findings are particularly relevant for the macro-
economic literature on the Beveridge curve. Studies based on
the search theory and networks have argued that structural
changes can cause the shifts of the Beveridge curve
[11,27,31,41]. Meanwhile, other studies suggest that these
shifts are part of the Beveridge curve’s anticlockwise cyclical-
ity, which results from business cycles dynamics [23,42].
While in our model, structural changes such as changes in
the network structure do cause shifts in the Beveridge curve,
our work supports the hypothesis that business cycles alone
are enough to cause the Beveridge curve to cycle anticlockwise.
4.1. Policy implications
Some studies have focused exclusively on the automatability
of occupations when assessing the outlook of workers. Here,
we propose a wider view by considering not only the auto-
matability of occupations but also workers’ possibilities for
transitioning into occupations with open vacancies. In some
cases, this perspective yields different and seemingly counter-
intuitive results, where workers in some occupations at high
risk of automation may actually have better employment
prospects than workers is seemingly ‘safer’ occupations.

Our model can be particularly useful in helping policy-
makers target employment assistance packages and skill
development programmes to workers who are more likely to
face longer periods of unemployment. Our results suggest
that there is a scope for retraining policies to leverage the
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occupational mobility network structure to reduce the adverse
effects of automation. While this particular article has focused
on labour market shocks relating to automation, our model is
quite general and could also be adapted to analyse impacts
arising from changes in labour demand relating to offshoring
[43,44] or the transition towards the green economy [45].
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5. Conclusion
We develop a data-driven, out-of-equilibrium model of the
labourmarket that can be used to perform in silico experiments
and has the potential to inform labour market policies. Our
main result is that the network structure plays an important
role in determining how automation affects unemployment.
There is much scope for further work. Although our main
result is robust to several parameter choices, the exact numbers
of our estimates changewith the parameters. To make accurate
predictions, onewould need to improve the calibrationmethod
and consider wage dynamics [31,41]. For example, one could
attempt to calibrate the model using occupational level
changes in employment due to previous recessions. We cur-
rently neglect wage dynamics to focus on labour market
frictions due to worker–vacancy mismatches and because
addingwages into themodel requires vacancy data at the occu-
pation level. While vacancy data are so far not publicly
available, work is underway to prioritize data collection efforts
to facilitate labourmarket research [46–48]. Finally, we have not
considered the role of geography [12,49], cities [50] or the feed-
back effects from the production network [51], all of which are
known to be important and would constitute crucial avenues
for further research.
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Endnotes
1We use the empirical transition probability as a proxy for the relative
preference with which a worker from occupation i applies to a job
vacancy in j. We cannot use the actual probability with which a
worker applies to a job vacancies of another occupation since this is
not recorded in the census data. We discuss this further in section
S1.1 of the electronic supplementary material.
2Strictly speaking, one could impose a reallocation shock so large that
jdi,t � dyi,tj . ei,t=g making one of the αs greater than one. This would
only happen in exceptional circumstances and is very unlikely; never-
theless, in such a case, we simply set α = 1.
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