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There is growing evidence that each individual has unique movement
patterns, or signatures. The exact origin of these movement signatures,
however, remains unknown. We developed an approach that can identify
individual muscle activation signatures during two locomotor tasks (walking
and pedalling). A linear support vector machine was used to classify 78 par-
ticipants based on their electromyographic (EMG) patterns measured on eight
lower limb muscles. To provide insight into decision-making by the machine
learning classification model, a layer-wise relevance propagation (LRP)
approach was implemented. This enabled the model predictions to be decom-
posed into relevance scores for each individual input value. In other words, it
provided information regarding which features of the time-varying EMG pro-
files were unique to each individual. Through extensive testing, we have
shown that the LRP results, and by extent the activation signatures, are
highly consistent between conditions and across days. In addition, they are
minimally influenced by the dataset used to train the model. Additionally,
we proposed a method for visualizing each individual’s muscle activation sig-
nature, which has several potential clinical and scientific applications. This is
the first study to provide conclusive evidence of the existence of individual
muscle activation signatures.
1. Introduction
Evolution has resulted in immense variation and specialization within and
between the phyla of the kingdom Animalia [1]. For example, humans have
evolved distinct movement patterns (e.g. gait) that separate us from non-human
primates [2]. However, even within the human species, different movement pat-
terns are often observed when individuals execute the same motor task [3].
Recent studies have taken advantage of machine learning techniques to show
that computer models can identify individuals based on kinematic or kinetic
data generated during walking [4–6]. This suggests that the participants exhib-
ited discernible differences in their movements and, therefore, that patterns of
movement not only vary between individuals but are unique to each individ-
ual. This has led to the concept of individual movement signatures, defined
as distinctive patterns or characteristics by which an individual can be ident-
ified [7]. Identifying the origin of such movement signatures is crucial for
understanding the control of movement in health and disease [8].

As movement is the result of the coordinated activation of multiple muscles,
individual movement signatures may originate from unique muscle activation
patterns. However, given the complex interplay between the biomechanical prop-
erties of contracting muscle, tendon and the skeletal system, it is also possible that
different movement patterns are achieved with similar muscle activation strategies
among individuals. Yet, the existence of individual muscle activation signatures
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was recently suggested by Hug et al. [9], who demonstrated
that a machine learning algorithm can accurately identify indi-
viduals based on the activation profiles of eight muscles
measured with surface electromyography during walking
and pedalling. However, despite the power of machine learn-
ing approaches for identification of individuals, their main
limitation is that they do not provide any information regard-
ing which features are important to the decision-making
process of the model [10,11]. In other words, it remains
unknown which features of muscle activation patterns are
used to identify individuals and, therefore, what makes each
individual unique.

The limitation of classical approaches can be overcome by
techniques that provide insight into the decision-making pro-
cess of the machine learning classification model, such as
layer-wise relevance propagation (LRP) [10]. The implemen-
tation of this technique in the field of computer vision has
made it possible to highlight which pixels are crucial in the
classification of images and allows us to understand and
interpret the decision-making process of the models [12].
Developing this approach for identifying muscle activation
signatures is critical, as this will allow us to unravel the
physiological origin and relevance of individual signatures.

In this study, we extended the analyses conducted by Hug
et al. [9] by using the LRP technique to decompose the predic-
tions of a support vector machine (SVM) classification model
based on electromyographic (EMG) data collected during ped-
alling and walking. We considered these two motor tasks for
their different mechanical constraints: pedalling, for which
the movement velocity, foot trajectory and torque can be
matched between participants; and gait, which is a more natu-
ral and less constrained form of locomotion. The overall aim of
this study was to identify the unique features in individual
muscle activation signatures. Specifically, the first aim was to
determine whether the identification of individuals based on
their muscle activation patterns relied on periods when the
muscles were most active. The second aim was to test the
within-session, between-condition and between-days reliability
of the LRP results and to test the dependency of the results on
the dataset used to train the model. We also propose a method
for graphical depiction of individual muscle signatures that
could be used to easily compare between individuals.
2. Material and methods
2.1. Experimental design
The present study used an innovative approach to analyse a
dataset that was publicly released by our group (https://doi.
org/10.6084/m9.figshare.8273774) and that was partially ana-
lysed in a previous research article [9].

Eighty physically active volunteers participated in this study
(62 men and 18 women; mean ± s.d.; age: 23.6 ± 5.4 years, height:
176.7 ± 7.8 cm, body mass: 71.3 ± 10.0 kg). Participants had no
history of lower leg pain within the previous two months. The
institutional research ethics committee, CPP Ile de France XI,
approved this study (no. 2018-A00110-55/18020), and all pro-
cedures adhered to the Declaration of Helsinki. All participants
provided written informed consent.

The experimental protocol has previously been described in
detail [9]. Data were collected during two separate sessions. In
the first session (referred to as day 1), all 80 participants were
tested. In the second session (referred to as day 2), which was
held (mean ± s.d.) 13 ± 10 days after day 1, 53 participants
(12 women and 41 men) were tested again. The session on
day 1 consisted of a series of locomotor tasks: two all-out isoki-
netic pedalling sprints were used to standardize the intensity of
the submaximal pedalling tasks, pedalling at four submaximal
intensities and walking on a treadmill at 1.11 m s−1. The order
of the tasks (pedalling and walking) and the intensities of the
pedalling tasks were randomized for each session. On day 2,
only the submaximal pedalling tasks and the walking task
were repeated.

The pedalling task was performed on an electronically
braked cycloergometer (Excalibur Sport; Lode, Groningen, The
Netherlands) equipped with clipless pedals and cycling shoes.
Saddle height, saddle setback and handlebar height were
adjusted to the anthropometry of the participant in order to
limit the impact of the pedalling position on the variability of
the activation strategies between the participants and between
the two test sessions (for more details, see [9]). After familiariz-
ing themselves with the cycloergometer and a standardized
warm-up, participants performed two 5 s all-out isokinetic ped-
alling sprints at 80 rpm, separated by 2 min of rest. The average
of the two cycles with the highest power output was considered
to be the maximal power output (Pmax). Next, participants ped-
alled at four different submaximal intensities (80 W, 150 W, 10%
of Pmax and 15% of Pmax; in a randomized order), each at
80 rpm for 90 s, separated by 30 s of rest. Feedback from the
target pedalling rate was displayed on a monitor placed in
front of the participants. The 150 W condition from day 1 was
selected as the condition for pedalling on which the classification
model was trained, and is referred to as the baseline data for ped-
alling. Data for the 80 W were not needed to address the aims of
the present study and, therefore, are not reported. Participants
walked barefoot on a treadmill (Power 795i; Pro-form, France)
and first familiarized themselves with the treadmill before start-
ing the experimental task, which consisted of walking at
1.11 m s−1 for 90–120 s. The day 1 walking data were selected
as the condition for walking on which the classification model
was trained and are referred to as the baseline data for walking.

2.2. EMG recordings
EMG signals were collected from eight muscles on the right leg:
vastus lateralis (VL), rectus femoris (RF), vastus medialis (VM),
gastrocnemius lateralis (GL), gastrocnemius medialis (GM),
soleus (SOL), tibialis anterior (TA) and biceps femoris long head
(BF). For each muscle, a wireless surface electrode (Trigno Flex;
Delsys, Boston, MA, USA) was attached to the skin at the site rec-
ommended by SENIAM [13]. Before attaching the electrodes, the
skin was shaved and then cleaned with an abrasive pad and alco-
hol. Electrodes were secured to the skin with double-sided tape
and a tubular elastic bandage (tg®fix; Lohmann & Rauscher
International, GmbH & Co. KG, Germany). EMG signals were
band-pass filtered (10–850 Hz) and digitized at a sampling rate
of 2000 Hz using an EMG acquisition system (Trigno; Delsys,
Boston, MA, USA). A trigger signal indicating either the top
dead-centre of the right pedal (pedalling, using a Hall effect
sensor) or the onset of foot contact (walking, using a force-sensing
resistor) was recorded on the EMG acquisition system.

2.3. Data pre-processing
All EMG data were pre-processed offline using Matlab R2015b
(MathWorks, USA). Raw EMG signals were first band-pass fil-
tered (20–700 Hz) and were then visually inspected for noise or
artefacts. At this stage, some data were discarded owing to move-
ment artefacts. In this study, we considered only the participants
for whom data were available for both pedalling and walking
on day 1, which left data for 78 participants for analysis.

For both tasks, the first 20 cycles were excluded from the analy-
sis. Then, the first 30 consecutive cycles that were free of any
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artefacts were selected. The EMG signals were full-wave rectified
and low-pass filtered at either 12 Hz (pedalling) or 9 Hz (walking).
As explained in detail in Hug et al. [9], these cut-off frequencies
were selected because they provided the best classification accu-
racy and fell within the range classically used for smoothing
EMG signals during locomotor tasks. For every muscle, data for
each cycle were interpolated to 200 data points and normalized
to that muscle’s maximal EMG amplitude that was measured
within that cycle. This normalization procedure reduced the
chance that the classification process was biased towards the
muscles that exhibited the highest EMG amplitude. As such, all
muscles were equally weighted in the classification process.

2.4. Data classification
Classification was conducted using Python 3.7 (Python Software
Foundation, USA; codes are available at https://github.com/
sebastian-lapuschkin/interpretable-emg-signatures). To test the
uniqueness of muscle activation strategies during pedalling and
walking, we used a concatenated vector of the time-varying EMG
profiles of all eight muscles from the baseline data (150 W, day 1
for pedalling or day 1 for walking). The ability to distinguish
between the EMGprofile of one participant versus theEMGprofiles
of all other participants was investigated in a multi-class classifi-
cation (participant classification) setting. First, the classification
performance of three machine learning approaches (i.e. linear
SVM, multi-layer perceptron (MLP) and convolutional neural net-
work (CNN)) was compared. As the classification performance of
the SVMmodelwas systematically superior and because its compu-
tational timewas substantially shorter than forMLPandCNN,only
the data analysed with the SVM model are reported. The SVM
models were trained using a standard quadratic optimization
algorithm, with an error penalty parameter of C = 0.01 and l2-
constrained regularization of the learned weight vector. For the
evaluation of classification performance, the prediction accuracy
was reported over a stratified 10-fold cross-validation configur-
ation, where in each repetition of the evaluation eight partitions
of the data were used for training (24 cycles), one partition was
used for validation (3 cycles) and the remaining partition was
used for testing (3 cycles). The 30 cycles of each participant were
randomly shuffled and evenly distributed across the partitions
such that each unique group of three out of the 30 cycles was
included once in the test partition.

2.5. Classification explanation
Determining which features of the EMG profiles were unique to
each individual participant represents the originality of the pre-
sent work. Specifically, we determined which muscle(s) and at
which time period within the pedalling or walking cycles were
relevant to the classification of each participant according to
the model. To this end, we used the LRP method [10]. LRP
decomposes the prediction f(x) of a learned function f, given an
input vector x into time- and muscle-resolved input relevance
scores Ri for each discrete input unit xi. This enables us to explain
the prediction of a machine learning model as partial contri-
butions of an individual input value. In other words, LRP
indicates which information was used by the model for its pre-
diction of either in favour of (positive input relevance scores)
or against (negative input relevance scores) an output class, i.e.
participant. This enables the input relevance scores and their
dynamics to be interpreted as representative of a certain class,
i.e. an individual muscle activation strategy.

A derivation of the LRP Toolbox for Python (v. 1.3.0) [14] was
used to obtain relevance attributions. Since the models investi-
gated in this study are comparatively shallow and are largely
unaffected by detrimental effects such as gradient shattering, we
performed relevance decompositions according to LRP-ε, with
ε = 10− 5 in all layers. For each cycle, we obtained input relevance
scores in its function as a test sample during the cross-validation
procedure. We thus obtained an understanding of how the
model generalizes towards each participant based on data that
were unseen during training. The relevance scores were exported
to Matlab R2019B (MathWorks, USA) in which all further analyses
were performed. Pedalling and walking data were analysed
separately using the same methodological approach.

Figure 1 shows a graphical overview of the data analysis steps.
Unless otherwise stated, the relevance pattern of a single cycle
contained all the relevance scores for the 200 time points and for
all eight muscles as a single concatenated vector. An example of
such a cycle is presented in figure 1a for a representative partici-
pant. Because negative input relevance scores are difficult to
interpret in multi-class classifications, we considered only the
positive relevance scores, which identify the features of the
input that describe the true participant label exclusively. After
excluding negative relevance scores (by replacing them with
zeros; figure 1b), the positive relevance scores were normalized
to the maximal relevance score achieved for that cycle. This
resulted in relevance scores for each of the 30 cycles per partici-
pant ranging between 0 and 1 (figure 1c). From these 30 cycles,
the mean relevance score per feature (i.e. data point) was calcu-
lated, which resulted in a mean relevance curve for each
participant. The mean relative EMG amplitude was calculated
similarly for each participant based on the relative EMG ampli-
tudes of all 30 cycles. For some of the additional analyses, each
of the 30 individual cycles were used, while for others the mean
relevance data per participant were used, which is explicitly speci-
fied where applicable. To determine whether high positive
relevance occurred during periods of high relative EMG ampli-
tudes (aim 1), we tested the relationship between the relevance
score and the relative EMG amplitude. To this end, we calculated
the Pearson correlation coefficient on the pooled data of all partici-
pants, consisting of the mean relevance data and the mean EMG
data for each of the 200 time points and for each participant.

2.6. Robustness of the relevance scores
For the robustness analysis (aim 2), some participants were
excluded owing to artefacts in the EMG data. As a result, the
data corresponding to 77 participants for pedalling at 10% of
Pmax (day 1) and data corresponding to 49 and 50 participants
for pedalling and walking, respectively, on day 2, were used in
testing. First, we assessed the reliability of the relevance scores
across the 30 cycles (within-session reliability), between pedalling
conditions (between-condition reliability) and between days 1 and
2 (between-day reliability). The baseline data from pedalling at
150 W (day 1) and walking at 1.11 m s−1 (day 1) were used to
train and validate the models. Next, we tested the generalization
performance of these trained models for participant classification
based on the participant-matched test data from pedalling at 10%
of Pmax and 15% of Pmax on day 1 (between-condition reliability)
and from pedalling at 150 W on day 2 and walking on day 2
(between-day reliability). To assess reliability, the root mean
square error (RMSE) and Pearson correlation coefficients between
the relevance scores were calculated. For the within-session
reliability, the relevance scores of each of the 30 cycles were com-
pared with each other (870 combinations per participant) and the
average RMSE was determined by calculating the mean of all
resulting RMSE values for that participant. The correlation analy-
sis was performed on the same number of combinations. To test
the between-condition (pedalling) and between-day (pedalling
and walking) reliability, we performed the same analyses as
described above but instead used the relevance scores averaged
over the 30 cycles for each participant.

Second, we tested the robustness of the relevance scores with
respect to the dataset used to train the models in terms of the
number of participants included in training and testing the
models. To this end, we used the baseline data from pedalling at
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Figure 1. Methodological overview and example results. Graphical overview of the post-LRP analyses for an example participant. Data for pedalling (day 1) start
with the pedal on the top dead-centre. The x-axis ticks in (a–c) and the vertical dashed lines in (d ) denote 25%, 50% and 75% of the pedalling cycle. Each box in
(a–c) shows the data from the same cycle(s) but for each muscle. The line in (a) shows the normalized EMG patterns for all eight muscles from a single cycle during
pedalling, with the colour scales representing the relevance score from the LRP analysis. Negative relevance scores were discarded by replacing them with zeros (b).
In (c), the arbitrary threshold of 0.2 is shown as a red horizontal line and all the data above this threshold are coloured blue. Only the data points for which the
relevance scores exceeded this threshold in all 30 cycles for a specific time point were used to create the signature map shown in (d ) (discussed in §2.7). Here, each
horizontal line corresponds to a muscle and each muscle is given a colour code that is shown on the right side of (d ) (VL, vastus lateralis; RF, rectus femoris; VM,
vastus medialis; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; SOL, soleus; TA, tibialis anterior; BF, biceps femoris long head). For example, several cycles
for the VM muscle correspond to data points that exceed the threshold (in blue; (c)) but it can be seen that this did not happen consistently in all 30 cycles and thus
we did not consider it to be part of the participant’s consistent muscle activation signature.
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150 W on day 1 and walking at 1.11 m s−1 on day 1. We created
subsamples with different numbers of participants (steps of 4,
from N = 6 to N = 74), resulting in 18 subsample sizes. To avoid
a bias based on which of the 78 participants were included, we
ran multiple iterations of different combinations of participants.
To this end, 10 different combinations of participants were made
with only one participant included in all 10 combinations (tested
participant) and the other participants selected randomly each
time. This was then repeated for each of the 78 participants such
that each of them was once the tested participant. For each of
these model iterations, we used the above-described 10-fold
cross-validation procedure and processed the relevance results
from the LRP using the same methods as described above. Each
of these iterations produced the relevance scores for each of the
30 pedalling or walking cycles per participant. For further ana-
lyses, the mean relevance scores per feature over the 30 cycles
were calculated for each participant. Because the results from
the different combinations of participants were all highly similar,
we further used the mean correlation coefficients of the 10 iter-
ations for each participant and each subsample. Then, the
Pearson correlation coefficient between this mean relevance
score per participant and that participant’s baseline (N = 78;
day 1) mean relevance score was calculated for each subsample
size. In other words, this procedure allowed us to compare the
time-varying relevance patterns from the baseline data of each
participant with their time-varying relevance patterns identified
from different models with a different subset of participants.
This step was crucial to discuss the generalization of our results.
2.7. Graphical depiction of the individual muscle
activation signatures

Even though the relevance scores were normalized to their maxi-
mumvalues during a single cycle, forming a correct interpretation
on the magnitude of the relevance scores is not straightforward.
For this reason, we decided to only consider the values that
were above an arbitrary threshold of 0.2 (out of 1) at each time
point in all 30 cycles as part of the signature (figure 1c in blue).
Even though relevance scores below this threshold were occasion-
ally observed (figure 1c), they did not consistently occur for all the
cycles, casting doubt on their physiological relevance. Further-
more, features with such low relevance scores (below the
threshold) contribute little to the classification of the participant
and, therefore, have little impact on the further results. To establish
whichmuscles were themost relevant for identifying participants,
we determined, for each muscle, the number of participants for
whom the mean relevance score exceeded the threshold of 0.2.
Further, to provide a graphical depiction of the individual
muscle activation signatures, we extracted the periods of the
cycle and the muscles for which the relevance score reached the
threshold in each of the participant’s 30 cycles (figure 1d ).

2.8. Statistical analysis
Mean RMSE and Pearson correlation coefficients were used to
assess the robustness of the technique. For each analysis, Pearson
correlation coefficients were transformed to Fisher’s Z values,
from which the mean and 95% confidence intervals were calcu-
lated before transforming the result back to obtain a single
mean correlation coefficient and 95% confidence intervals.
Statistical significance for all correlations was set at p < 0.05.
3. Results
3.1. Classification accuracy
We previously developed an innovative approach for identi-
fying muscle activation signatures based on existing data [9].
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Figure 2. Example results of the relevance scores for three participants (P). The lines show the mean (over 30 cycles) muscle activation patterns for eight lower limb
muscles (VL, vastus lateralis; RF, rectus femoris; VM, vastus medialis; GL, gastrocnemius lateralis; GM, gastrocnemius medialis; SOL, soleus; TA, tibialis anterior; BF,
biceps femoris long head) during pedalling (a) and walking (b). The colour bar represents the output relevance scores from the LRP technique. Only positive
relevance scores, which contribute to the classification of that individual, were considered and, therefore, all negative and zero scores are coloured in black.
The closer the score is to 1, the more relevant the section of the EMG pattern is for recognition of that individual. The shaded areas represent relevance
scores greater than the arbitrary threshold of 0.2. The data in (a) start with the pedal at top dead-centre and the x-axis ticks denoting 25%, 50% and 75%
of the pedalling cycle for each muscle. The data in (b) start at heel-strike and the single x-axis tick denotes the transition between the stance and swing phase.
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In Hug et al. [9], we showed that a classification model is
capable of assigning EMG patterns that were measured
during pedalling and walking to the corresponding individ-
ual with an accuracy of up to 99.28%. This result suggested
the existence of individual muscle activation signatures. In
the current study, we used a similar SVM model, which logi-
cally achieved classification accuracies that were extremely
close to those reported in Hug et al. [9], i.e. (mean ± s.d.),
99.3 ± 0.5% for pedalling and 98.9 ± 0.5% for walking (results
are from the 10-fold cross-validation).

The disadvantage of using SVM and other machine learn-
ing techniques for classification is that the models provide
little information regarding how they arrived at the predic-
tion for individual samples (e.g. individual pedalling or
walking cycles). In this work, we used a novel approach
based on the LRP technique [10] to explain the uniqueness
of the time-varying EMG patterns (figure 1). LRP enables
the decomposition of the predictions made by a machine
learning model into relevance scores for each individual
input value, i.e. normalized EMG amplitude value. That is,
LRP indicates which input values the machine learning
model based its prediction on for each participant. In other
words, LRP allows us to identify the features of the time-
varying EMG profiles that make each individual unique
(figure 2).
3.2. Interpretation of individual relevance scores
We first verified if relevance occurred during periods when
the muscles were most active. A moderate positive correlation
(r = 0.56, p < 0.001) was found between the relevance and rela-
tive EMG amplitude. In general, the highest relevance scores
were observed during periods of the cycle when the relative
EMG amplitude was high. However, high relevance and
high relative EMG amplitude were not mutually inclusive;
that is, there were many instances of high relative EMG
amplitude where relevance was low (figure 3). Of note,
there were no occurrences of high relevance when the EMG
amplitude was low.

Despite the general pattern of high relevance occurring
during periods of high relative EMG amplitude, the periods
of the cycle and muscles where high relevance was observed
varied greatly between participants. Figure 2 shows the
result for three participants. Although all three participants
had very similar EMG profiles, there were subtle differences
in their timing and shape. These subtle differences were ident-
ified by the SVM model during training as being distinctive
and unique features that allow classification of the partici-
pants. For example, the burst in RF electromyography that
occurred during the second half of the pedalling cycle was
of a similar relative amplitude for all three participants; how-
ever, the timing of this burst was slightly different. The results
generated by the LRP indicate that the slightly earlier onset
observed for participant 7 (figure 2a, panel 3) was highly rel-
evant to the classification of this participant and, therefore, is
unique to this participant. By contrast, participant 3 (figure 2a,
panel 2) seems to have a later and longer activation of both BF
and GM during pedalling, which suggests that this pattern is
unique to this participant. These results demonstrate the
power of the proposed technique, as the models can rapidly
extract which features are unique to a given individual
(typically less than 1 min for 78 participants and 30 cycles).
3.3. Robustness of the relevance scores
To test the robustness of the relevance scores, we first tested
their within-session, between-condition and between-day
reliability for both pedalling and walking. To assess the
within-session reliability, we compared the relevance scores
across the 30 cycles for each individual. We observed an
excellent consistency across cycles, with an average coeffi-
cient of correlation greater than 0.90 (table 1). However, the
RMSE values for these comparisons were greater than what
would be expected for such high correlation values. This
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Table 1. Reliability of the relevance scores. For between-conditions and between-days, the two conditions per row were compared. Mean RMSE and correlation
coefficients with 95% confidence intervals. RMSE numbers are absolute relevance score values; hence they can range between 0 and 1. Pedalling, day 1 and
pedalling, day 2 represent the baseline data from the 150 W condition.

analysis condition(s) RMSE r

within-session pedalling, day 1 0.10 (0.10–0.10) 0.92 (0.92–0.92)

walking, day 1 0.11 (0.11–0.11) 0.90 (0.90–0.90)

between-conditions pedalling, day 1 pedalling, 10% 0.06 (0.05–0.06) 0.97 (0.96–0.97)

pedalling, day 1 pedalling, 15% 0.04 (0.04–0.05) 0.98 (0.98–0.98)

between-days pedalling, day 1 pedalling, day 2 0.06 (0.05–0.06) 0.97 (0.96–0.98)

walking, day 1 walking, day 2 0.06 (0.05–0.07) 0.96 (0.95–0.97)
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indicates that the magnitude of the relevance scores is less
consistent, but that the overall pattern is highly robust. There-
fore, we decided to use an arbitrary threshold of 0.2 and
considered all magnitudes above this to equally contribute
to an individual’s signature.

We further assessed the reliability of the relevance scores
across different pedalling conditions (between-condition
reliability). To this end, we used the mean relevance per feature
(calculated from the 30 cycles) for each participant. The RMSE
values were low with very high correlation values (table 1).
Very similar results were also found for the reliability between
different days for both pedalling and walking (table 1).

Lastly, we assessed the sensitivity of the relevance scores for
the number of participants used for training the models. To this
end, we trained several SVM models with the same parameters
but with a different number of participants included during
training. We used 18 model configurations (i.e. subsample
sizes ranging from N= 6 to N = 74 with steps of 4) and com-
pared their relevance scores with the relevance scores from
the original model (N= 78 during training, i.e. baseline data;
example provided in figure 4c). For each of these model con-
figurations, we trained 78 models, one for each participant
with N− 1 other, randomly chosen participants. We found
high correlation values after comparing the mean relevance
scores of each participant with the relevance scores from their
baseline data (N= 78, day 1). There was a trend of increasing
correlation coefficients with increasing subsample size (ranging
from 0.84 for N= 6 to greater than 0.99 for N= 74 for pedalling
(figure 4a) and from 0.86 forN= 6 to 1.00 forN= 74 for walking
(figure 4b)). This indicates that the relevance results are rela-
tively robust even when using a small sample of participants
for training of the model. Together with the high consistency
found in all the robustness analyses, it suggests that the rel-
evance scores and, therefore, the muscle activation signatures
have a physiological origin rather than being mostly explained
by aspects of the methodology.

3.4. Determination of individual muscle activation
signatures

Here, we propose a simple methodology for generating a
graphical signature map depiction of muscle activation signa-
tures for each individual participant (figure 5). For each
individual, these signature maps highlight the period(s) of the
cycle during which the muscle(s) exhibited a relevance score
greater than 0.2 for all 30 cycles. Signature maps represent a
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tool that allows for easy and rapid interpretation of each
individual’s muscle activation signature, as depicted for all
78 participants in figures 6 and 7. Based on these signature
maps, it is clear that the signatures are unique to each participant
and task.

From these signature maps, we determinedwhich muscles
were more often included in the participants’ signatures. This
analysis revealed that these muscles differed significantly
between participants. Each of the eight muscles was part of
the signature of at least several participants (table 2). However,
certain muscles, such as RF, TA and BF, seemed to be part of
the signature of participants more often than other muscles.
On the other hand, the GL muscle was often part of the signa-
tures for pedalling but less so for walking, which highlights
the notion of task specificity for an individual’s muscle
activation signatures.

Figure 8a shows that the periods during which high
relevance scores occurred varied greatly between individuals.
High relevance scores for VL and VM muscles occurred
mostly around the top dead-centre of the cycle as well as
when the pedal was at 90° during the downstroke phase.
For walking, we observed that for muscles such as RF, TA
and BF, although the phase of high relevance was spread
out over the entire gait cycle, there were two distinct points
in time that seemed to contain unique information for
many participants, as seen by the darker colours in figure 8b.
4. Discussion
Although variability of muscle activation strategies between
different individuals is well documented, the idea that each
individual exhibits unique activation strategies is relatively
novel. Based on the observation that machine learning algor-
ithms can accurately identify individuals based on their
muscle activation patterns, Hug et al. [9] suggested the exist-
ence of individual muscle activation signatures. However,
Hug et al. [9] did not provide information regarding the
decisions made by the algorithms in making a particular classi-
fication, making it impossible to provide conclusive evidence of
the physiological origin of the signatures. In the current work,
we developed an approach based on the use of LRP that
allowed us to map out the individual muscle activation signa-
tures of 78 participants. The robustness and low sensitivity to
the trained model (i.e. the low influence of the combination
and number of participants used to train the model) of our
results provide strong evidence of a physiological origin of
the activation signatures and thus of their physiological and
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day 1. Each row shows the signature map for a single participant (P), starting with participant number 1 at the top of the left panel and ending with participant
number 78 at the bottom of the right panel. The example participants (P2, P3 and P7) for figures 2 and 4 are indicated. Each colour represents a different muscle, as
shown on the right.
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potentially clinical relevance. Identification of these signatures
is a crucial step towards a better understanding of human
movement in the context of health and disease.

4.1. From relevance scores to muscle activation
signatures: methodological considerations

The LRP technique applied to interference EMG signals
demonstrated which muscles and associated time periods
were the most relevant for identifying an individual during
cycling or walking by providing time-varying relevance
scores. Verifying the reliability of these relevance scores
was a prerequisite to confirm the existence of physiological
signatures of movement production (table 1). First, we con-
firmed the consistency of the relevance scores between
cycles when tested on the same day, during the same task/
condition and with the same electrode placement. Second,
we demonstrated the consistency of the relevance scores
when they were extracted from cycling at different intensities.
Third, to rule out the possible effect of electrode placement,
we tested the robustness of the signatures between two sep-
arate days. We observed that the relevance scores had high
reliability. Finally, we demonstrated that the relevance
scores were relatively insensitive to the number of partici-
pants used to train the models (figure 4). Together, these
analyses provide strong evidence that the signatures originate
from physiological features unique to each individual rather
than from methodological features.

In this study, the muscle activation signatures were
extracted from interference electromyography. In order to
understand the physiological meaning of the features extracted
from these signatures (derived from the EMG patterns of eight
muscles), it is important to consider the interpretation of inter-
ference EMG amplitude as a neural strategy. First, it is well
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Table 2. Number of participants (total N = 78) for whom each muscle was part of their signature. This analysis was performed using the mean relevance
vector per participant for all 78 participants. VL, vastus lateralis; RF, rectus femoris; VM, vastus medialis; GL, gastrocnemius lateralis; GM, gastrocnemius medialis;
SOL, soleus; TA, tibialis anterior; BF, biceps femoris long head.

condition

muscle incidence

VL RF VM GL GM SOL TA BF

pedalling 29 57 45 54 43 33 45 53

walking 29 48 19 21 33 35 46 51
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known that EMG signals are affected by non-physiological fac-
tors such as the thickness of the subcutaneous fat layers, the
shape of the volume conductor and the location of the electro-
des [15]. To minimize the impact of these non-physiological
factors, we normalized the EMG signals to the peak EMG
amplitude measured during the task [16]. In other words, we
considered the time-varying profile of the EMG signalswithout
any information regarding their actual magnitude with respect
to maximal activation. Second, it is important to note that inter-
ference electromyography does not provide direct information
about the neural drive, i.e. the number of motor neuron
action potentials [17,18]. Instead, interference EMG amplitude
is more closely related to muscle activation, which is related
to the number of muscle fibre action potentials [17,18]. Note
that the relationship between neural drive and muscle acti-
vation depends on the size of the active motor units, i.e. the
number of muscle fibres within each motor unit. Based on
these considerations, we considered the normalized time-vary-
ing EMG profiles to be time-varying muscle activation profiles
and interpreted our results as the existence of individualmuscle
activation signatures. Future work is needed to confirm that
these signatures originate from unique neural strategies.

4.2. Neuromechanical coupling to explain the
uniqueness of muscle activation strategies

There is strong coupling between the neural drive to a muscle
and several biomechanical factors that influence the muscle’s
force generation [19,20]. In other words, muscle activation
may be tuned to each individual’s specific anatomy and to
the biomechanical properties of their musculoskeletal system.
For example, tendon compliance affects the time required for
force transmission between the onset of muscle fibre shortening
and torque production. It varies substantially (up to 60%)
between individuals and between different muscle–tendon
units [21]. To account for the longer delay in force transmission
in a more compliant tendon, the muscle would have to be acti-
vated earlier or more (or both) when compared with a muscle
with lower in-series tendon compliance. Furthermore, the
different combinations of tendon compliance and muscle archi-
tecture generally observed between individuals [22] probably
induces further variation in the timing and magnitude of
muscle activation [23]. Similarly, an individual’s anthropome-
try will affect segmental inertial properties and muscle
moment arms involved in joint rotations, which in turn may
affect the requirements of muscle activation [24]. Such anatom-
ical and biomechanical variations between individuals would
give rise to unique differences in their time-varying patterns
of activation in order to meet the requirements of force pro-
duction for motor tasks. Of note, it is possible that the
influence of these structural and biomechanical features on
the time-varying EMG profiles was partly cancelled out by
our normalization procedure. However, this normalization pro-
cedure affected only the amplitude of activation, keeping the
inter-individual differences in activation timing unchanged.

It was recently postulated that motor unit recruitment, at
least in respiratory muscles, may not follow the generally
accepted size principle in which motor units are recruited in
order of increasing size [25], but rather that they are recruited
with respect to their mechanical advantage [26]. Given the



GM

(a)

(b)

VL

TA
SOL
GM
GL
VM
RF

BF

VL

TA

SOL

GL

VM

RF

BF

Figure 8. Incidence of features in the signatures. Incidence of muscles in the muscle activation signatures from all participants over the pedalling (a) and walking (b)
cycle. Each colour represents a muscle, as shown on the right of (a). The colour gradient represents the incidence of participants having that specific muscle as part of
their signature at that point of the cycle, with lighter colours representing fewer participants and darker colours representing more participants. The maximal incidence
(darkest colour, i.e. the colour used in the muscle legend) is set at N = 15. The figure provides a graphical overview of all the signatures from the testing group (baseline,
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until the second part of the downstroke. This indicates that the variation in the phase of the cycle during which unique features occurred for this dataset varied more in
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high variability in muscle biomechanical properties between
individuals, it is likely that muscle activation patterns are also
tuned to account for these degrees of freedom. The constant
nature of these factors over the short term would explain why
these unique activation signatures are robust within each indi-
vidual. It is important to note that a causal relationship
between mechanical and neural aspects of muscle contraction
has not been established and it remains possible, although less
likely, that variability of muscle properties among individuals
is due to different activation strategies. Regardless of the
cause–effect order, there is a large amount of evidence for neuro-
mechanical coupling,which provides a plausible explanation for
the observed muscle activation signatures.

4.3. Biomechanical and neurophysiological
interpretations

High relevance scores occurred during periods of high rela-
tive EMG amplitude, but not all periods of high relative
EMG amplitude were relevant for participant classification
(figure 3). Indeed, the classification model considered only
a few phases of the cycle from only a few muscles (figures 5
and 6). Of note, the periods of high relevance differed sub-
stantially between pedalling and walking. For example, the
VM and GL muscles were far less frequently part of the sig-
natures in walking than in pedalling (table 2). Figure 5
further highlights these differences in a few participants.
Given the substantial differences in both kinematics and kin-
etics between walking and pedalling, such differences are to
be expected. Even though the muscles used for classification
varied greatly between tasks and between participants, three
muscles (RF, BF and TA) were used more than the other
muscles for both pedalling and walking. This observation
is consistent with our current knowledge of the biomechani-
cal role of these muscles, since the bi-articular RF and BF
muscles mainly transfer energy between joints. Together
with the TA muscle, these muscles contribute to the stabiliz-
ation or control of the motion, which is considered to be a
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secondary role as opposed to contributing to power pro-
duction [27]. This is consistent with the observation that
the degree to which a motor component varies between indi-
viduals depends on the role of that motor component in
movement [28], and that the variability in neural control
between participants is high when the effect on motor
output is low [29].

Several studies have proposed that individuals have
their own ‘motor programme styles’, with considerable vari-
ation between individuals in motor control strategies,
including muscle synergies, but with high consistency
within each individual [30]. Such variation in motor control
strategies has been shown for movement in both humans
[31] and other animals [32] and is consistent with our find-
ings of robust individual muscle activation signatures. Large
variation in neural responses between individuals has also
been reported for odour discrimination tasks in rats [33]
and in the reotaxic response of sea lamprey (Petromyzon
marinus L.; [34]). However, it is important to keep in mind
that the existence of such an inter-individual variability
does not prove the existence of individual signatures.
Using inter-individual differences as evidence of personal
signatures requires two important considerations: first,
these strategies should be robust across multiple sessions.
Second, these strategies should not be exactly the same for
any two individuals, i.e. they should be unique. In the cur-
rent study, we ensured that the activation strategies were
robust and unique. Therefore, to the best of our knowledge,
the current study is the first to provide evidence that
individuals use unique activation (and likely neural) signa-
tures. Collectively, these findings suggest that unique
features may drive the neural strategy for each individual
in several biological processes in both animals and
humans. This emphasizes the need to carefully study indi-
vidual patterns rather than losing useful information by
averaging data from a group of individuals. This can pro-
vide important knowledge that will facilitate a better
understanding of the fundamental principles behind the
neural control of movement.

4.4. Applications and future directions
One strength of our approach is that it can detect small differ-
ences in EMG patterns between individuals that would
probably be missed by a human observer. It is important to
note that it is the combination of the high-relevance periods
of all eight muscles that resulted in highly accurate classifi-
cation, and thus constitutes an individual’s muscle
activation signature. Finding such complex patterns with
these many degrees of freedom is highly difficult for a
human observer, as it would require keen perception com-
bined with expert domain knowledge and a detailed
understanding of the data. In this work, we proposed a sim-
plified depiction of individual muscle activation signatures
(figure 6), which allows a human observer to make fast and
easy comparisons between individuals, with possible clinical
applications. Surface electromyography is widely used in
research settings and in clinical routines to identify abnormal
activation patterns. Although current automated approaches
can distinguish between healthy and pathological EMG sig-
nals [35], these approaches cannot be used for differential
diagnoses, especially in complex neural disorders. This is
mostly because of the large variability found between
individuals and our relatively poor understanding of the rel-
evance of this variability. Our approach allows for this inter-
individual variability to be investigated more in depth.
Future research should, therefore, aim to implement the pro-
posed approach for pathological populations and to verify its
validity and effectiveness in clinical settings.

Multiple scientific domains are transitioning towards per-
sonalized approaches where diagnosis or treatment are based
on individual characteristics [36]. Such personalized
approaches are crucial to improve our understanding of
movement in healthy populations [37] as well as in popu-
lations with neurological disorders [38]. Importantly, these
approaches require the identification of an individual’s
unique features, but this is rarely performed for muscle
activation. Together with subject-specific musculoskeletal
models, the unique activation features could be used to
explore the effect of highly specific and realistic combinations
of neural and biomechanical parameters onmovement. This is
an important future step, since the results from this study
cannot be used to interpret whether these features have
any direct influence on movement kinematics or kinetics.
Owing to the complex interplay between neural and biome-
chanical features during movement [39,40], taking this step
will represent a major advancement in our ability to under-
stand, prevent and treat such neurological disorders. The
proposed technique also has profound implications in the
optimization of bioinspired exoskeletons by optimizing
these devices to individual muscle activation strategies
[41]. Another fast-evolving area that could indirectly
benefit from our approach is the artificial control of
weakened or paralysed muscles through electrical stimulation
[42]. In order to provide optimal electrical stimulations, we
need to first better understand the biological importance of
unique individual muscle activation patterns. Thus, there
are plenty of opportunities for the suggested technique to
contribute to the significant advancement of current
scientific practices.
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