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Abstract

Lead (Pb) in drinking water has re-emerged as a modern public health threat which can vary 

widely in space and in time (i.e., between homes, within homes and even at the same tap over 

time). Spatial and temporal water Pb variability in buildings is the combined result of water 

chemistry, hydraulics, Pb plumbing materials and water use patterns. This makes it challenging to 

obtain meaningful water Pb data with which to estimate potential exposure to residents. The 

objectives of this review paper are to describe the root causes of intrinsic Pb variability in drinking 

water, which in turn impacts the numerous existing water sampling protocols for Pb. Such 

knowledge can assist the public health community, the drinking water industry, and other 

interested groups to interpret/compare existing drinking water Pb data, develop appropriate 

sampling protocols to answer specific questions relating to Pb in water, and understand potential 

exposure to Pb-contaminated water. Overall, review of the literature indicated that drinking water 

sampling for Pb assessment can serve many purposes. Regulatory compliance sampling protocols 

are useful in assessing community-wide compliance with a water Pb regulatory standard by 

typically employing practical single samples. More complex multi-sample protocols are useful for 

comprehensive Pb plumbing source determination (e.g., Pb service line, Pb brass faucet, Pb solder 

joint) or Pb form identification (i.e., particulate Pb release) in buildings. Exposure assessment 

sampling can employ cumulative water samples that directly capture an approximate average 

water Pb concentration over a prolonged period of normal household water use. Exposure 
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assessment may conceivably also employ frequent random single samples, but this approach 

warrants further investigation. Each protocol has a specific use answering one or more questions 

relevant to Pb in water. In order to establish statistical correlations to blood Pb measurements or to 

predict blood Pb levels from existing datasets, the suitability of available drinking water Pb 

datasets in representing water Pb exposure needs to be understood and the uncertainties need to be 

characterized.
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1. Introduction

More than a decade after the Washington DC water lead (Pb) crisis (Edwards et al., 2009; 

Edwards, 2014), new correlations between elevated water Pb and elevated childhood blood 

Pb in Flint, MI (Hanna-Attisha et al. 2016) reinvigorated public interest on drinking water as 

a Pb exposure source. This motivated new exposure and blood Pb modeling predictions 

based on available and hypothetical Pb datasets (Stanek et al., 2020; Zartarian et al., 2017).

If Pb contamination of drinking water was consistently uniform across and within residences 

and buildings, then any sampling protocol would be capable of capturing that fixed Pb 

concentration. It could then be extrapolated to potential ingestion exposure with knowledge 

of the amount of water consumed. However, Pb in drinking water can vary widely in space 

and in time (i.e., between homes, within homes and even at the same tap over time), as the 

combined result of water chemistry, hydraulics, Pb plumbing sources and water 

consumption patterns among individuals (Fig. 1). This makes it challenging to obtain 

meaningful water Pb data with which to estimate potential exposure to residents and may 

have at least partly contributed to the perception that water Pb is a small contributor to blood 

Pb (Triantafyllidou and Edwards 2012).

Historically, studies used Pb datasets obtained by a variety of sampling protocols to assess 

the contribution of water Pb to the body’s total Pb burden (Table 1). However, if the ultimate 

goal is drinking water Pb exposure characterization, defined as the quantitative assessment 

of the ingested Pb which combines Pb concentration and volume of water consumed (U.S. 

EPA 2019), then collected samples should capture the spatial/temporal variability of water 

Pb that consumers cumulatively ingest during their water use patterns. Understanding the 

root causes of intrinsic Pb variability in water and the numerous existing water sampling 

protocols for Pb will assist the public health community, the drinking water industry and 

other interested groups to:

• interpret/compare existing drinking water Pb data obtained by various sampling 

protocols,

• develop appropriate sampling protocols to answer specific questions relating to 

Pb in water, and
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• specifically evaluate the potential exposure to Pb-contaminated water and its 

potential error bounds

2. Factors affecting Pb variability in drinking water

Early research set the groundwork of Pb variability in drinking water (e.g., Britton and 

Richards, 1981; Kuch and Wagner, 1983; Schock, 1990; Sheiham and Jackson, 1981; 

Wagner and Kuch, 1981). Subsequent advances allowed further exploration of the root 

causes of variability, classified into 3 general categories below.

2.1. Water chemistry and hydraulic changes

A plethora of water chemistry parameters (Box 1) affect how quickly dissolved Pb is 

released into the water (kinetics), the maximum dissolved Pb concentration reached at 

equilibrium (plumbosolvency) and the resulting corroded Pb pipe surface composition 

(corrosion scale chemical and hydraulic durability). Reviews of water chemistry and Pb 

plumbing corrosion as they affect Pb release can be found elsewhere (AWWARF, 1990; Kim 

et al., 2011; Lytle and Schock, 2000; Schock et al., 1996; Schock and Lytle, 2011).

Seasonal fluctuations in incoming water chemistry and temperature may affect Pb corrosion 

reactions and result in temporal changes to Pb release (Deshommes et al., 2013; Jarvis et al., 

2018; Masters et al., 2016a; Ngueta et al., 2014; Schock and Lemieux, 2010). Lead 

corrosion scales often have multiple layers of varying composition which are controlled by 

water chemistry. An outermost corrosion scale layer with high Pb solubility or low 

mechanical durability can be more susceptible to Pb release due to the inherent water 

chemistry or due to hydraulic changes (Del Toral et al., 2013; Sandvig et al., 2008; 

Wasserstrom et al., 2017). Water chemistry changes and hydraulic changes can release 

particulate Pb in a seemingly random fashion, further contributing to variability (Masters et 

al., 2016b; Schock, 1990; Triantafyllidou and Edwards, 2012). Capturing total Pb release 

(particulate and dissolved Pb) with standard sampling protocols is challenging, given the 

unpredictable nature of particulate release (Clark et al., 2014; Triantafyllidou and Edwards, 

2012).

2.2. Lead spatial variability in plumbing

Premise plumbing systems are complex pipe networks in buildings that deliver water to 

drinking water outlets, such as devices intended for consumptive purposes (e.g., drinking 

water faucets, drinking water fountains, icemakers), and fixtures intended for non-

consumptive purposes (e.g., garden faucets, utility sinks, showerheads, toilets, furnace 

humidifiers, bathroom faucets). Some water outlets may be used for both purposes by 

design, practicality, or personal behavior. Lead in water may originate from a variety of 

plumbing sources (Fig. 2), which can differ in type, number, location, diameter and length 

within and between premise plumbing systems. For simplicity, premise plumbing in this 

work refers to all building types (e.g., residential homes, residential apartment complexes 

and non-residential buildings like schools), although specific discussions may apply more to 

one building type than to others.
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2.2.1. Pb service lines and other Pb pipes—Major Pb sources in some US 

buildings (e.g., homes) are “legacy” Pb service lines (LSLs), Pb goosenecks, or other Pb-

lined pipes (Fig. 3) which were installed prior to the 1986 US Pb ban and have not yet been 

replaced (Sandvig et al., 2008). These are made of pure Pb materials or pure Pb linings 

(100% Pb) and are often hidden underground or inside walls unbeknownst to residents. 

Service lines (or else communication pipes) are the specific pipes that connect premise 

plumbing to the water main, whereas goosenecks (or else pigtails) are shorter pipe segments 

connecting the service line to the water main (Figs. 2, 3). Houses without an LSL can still 

have unknown sections of Pb pipe inside the residence, or a Pb gooseneck connection to the 

main. In some areas of the US, particularly in the Northeast and Midwest, Pb-lined 

galvanized service lines and pipes were also used (Fig. 3).

In many systems, the highest water Pb levels originate from the LSL, but the degree of Pb 

release from LSLs may vary from house to house. For example, longer LSLs create a greater 

chance that the consumer may receive elevated water Pb at the tap. In a field study in 

Chicago, LSL length in sampled homes varied greatly between 43 and 159 feet (13–48 m), 

while the distance from the kitchen tap to the beginning of the LSL ranged from 3 to 87 feet 

(0.9–26.5 m) (Del Toral et al. 2013).

This variability depends on the premise (particularly kitchen) plumbing configuration and on 

the house location relative to the water main location (usually under the street). In some 

cases, LSLs are shorter because they enter a home at the front (Fig. 4, scenarios 1 and 2), 

whereas longer LSLs may enter at the back (Fig. 4, scenario 3). In addition, the location of 

the kitchen at the front (Fig. 4, scenario 1) or the back of a home (Fig. 4, scenarios 2 and 3) 

increases the distance from the primary Pb source (LSL) to the primary water consumption 

outlet (kitchen faucet). In other cases, homes with longer yards that are located further from 

the street or water main (Fig. 4, scenario i) or larger homes with larger premise plumbing 

systems (Fig. 4, scenario ii), may fall under any of the scenarios 4.1, 4.2, 4.3, further 

affecting LSL length and distance. The variable lengths and distances from kitchen taps to 

LSLs make it impossible to universally capture the Pb contribution from the LSL within a 

single water sample volume sequentially collected at the kitchen faucet (Del Toral et al., 

2013; Deshommes et al., 2016; Hayes et al., 2013; Triantafyllidou et al., 2015).

2.2.2. Brass, bronze, Pb solder and galvanized pipes—Even with no pure Pb 

plumbing, buildings may still contain a wide array of fittings and devices containing Pb 

brass/bronze alloys (e.g., components in kitchen faucets or in water fountains, water meters, 

valves, elbows, ferrules) or Pb solder contributing Pb to water (AWWARF-TZW, 1996; 

AWWARF, 1990; Elfland et al., 2010; Karalekas et al., 1975; Sandvig et al., 2008; van den 

Hoven and Slaats, 2006). Such plumbing alloys have much lower Pb content relative to pure 

Pb sources but have been shown to release more Pb than LSLs in some water systems 

(Triantafyllidou et al. 2015).

Pb content was limited to less than 0.2% by weight in solder and to less than 8% by weight 

in brass in 1986 in the US (e-CFR 2020). The allowable Pb percentages were further 

modified to a 0.25% weighted average for wetted surfaces in order to meet the new “lead-

free” requirement that took effect in 2014 (US Congress 2011). However, many houses and 
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buildings retain “legacy” brass/bronze fittings and solders of higher Pb content from 

previous installations, whereas plumbing alloys with higher Pb content may still be illegally 

or unintentionally used in new buildings (Elfland et al., 2010; Triantafyllidou and Edwards, 

2012).

Instances of high water Pb levels in buildings have been attributed to a legacy Pb brass ball 

valve (Elfland et al. 2010) or other Pb brass components (Government of Western Australia 

2017) and to legacy Pb solder (Triantafyllidou and Edwards 2012). Even “lead-free” brasses 

containing a small percentage of Pb can potentially release consequential amounts of Pb into 

water. Current industry standards by NSF International did not anticipate the significant 

lowering of public health goals (e.g., the American Academy of Pediatrics 2016 

recommendation of <1 μg/L Pb in school water). As a result, certified “lead-free” 

commercial plumbing products were found to leach Pb > 1 μg/L in one laboratory study 

(Parks et al. 2018).

Galvanized steel pipe can also be a source of Pb. The zinc lining contains 1% Pb that can 

leach into water (Leroy 1993), whereas the iron in the pipe can sorb Pb from upstream 

sources such as LSLs for eventual and substantial Pb release into drinking water even after 

the LSL has been removed (AWWARF-TZW, 1996; Clark et al., 2015; HDR, 2009; 

Hoekstra et al., 2004; McFadden et al., 2011; Pieper et al., 2017; Sandvig et al., 2008).

2.3.  Lead temporal variability

The most understudied contributor to water Pb variability is arguably the impact of water use 

pattern, which determines the stagnation duration and pathways of flow as water contacts 

Pb-containing plumbing sources. Water use within buildings is intermittent and varies by the 

hour, day, and season due to resident schedule/lifestyle activities and weather. House age, 

number of residents and socioeconomic status all affect the frequency, duration, and 

intensity of water use (Buchberger and Wells, 1996; Del Toral et al., 2013). A list of 

questions on daily habits (Box 2) demonstrates how complex individual water use patterns 

can be.

The Water Research Foundation (WRF) reported that toilet flushing accounted for the 

largest indoor use of water in surveyed US single-family homes (24%), followed by faucets 

(20%), showers (20%), clothes washers (16%), leaks (13%), bathtubs (3%), other/

miscellaneous (3%), and dishwashers (2%) (WRF 2016). Even if most of the demand is not-

consumptive (i.e., not for drinking or cooking), any use causes water to move through the 

relevant plumbing branch and affects Pb levels in shared plumbing.

Hydraulic modeling of flow paths associated with different simulated water uses in an actual 

3-level premise plumbing layout containing a 60-ft service line (Burkhardt et al. 2019), can 

provide insights into how water moves through a residence (Fig. 5). Collecting a 1-L cold 

water sample at the kitchen tap after stagnation does not capture water that stagnated within 

the LSL (Fig. 5b). Taking a warm shower (Fig. 5c) utilizes both hot and cold water, with the 

hot water quality impacted by the size of the hot water heater (Hawes et al. 2017). Like the 1 

L sample, a 16-ounce (500 mL) glass of cold water (Fig. 5d) moves water along the same 

path, but only represents the first 13 feet (3.96 m) of plumbing. Even non-consumptive uses 
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like watering the lawn (Fig. 5e) share plumbing branches with the kitchen faucet and may 

thus affect the Pb content in the next glass of water.

Further illustrating these concepts, hydraulic modeling for a simpler linear LSL plumbing 

scenario demonstrated the mostly unrecognized impact of individual water use patterns to 

individual water Pb exposure (Table 2). Specifically, Murray (2017) demonstrated that 

drinking a glass of water did not move the Pb slug far enough from the LSL to affect the 

next glass of water. Brushing teeth or a 1.3-gallon (4.9 L) toilet flush moved the Pb slug 

enough to contaminate the next glass of water, whereas a shower or 3.6 gallon (13.6 L) toilet 

flush flushed out the Pb slug contained within the LSL, resulting in only a small residual Pb 

concentration at the tap.

Riblet et al. (2019) recently filled some of the water use information gaps at 13 inhabited 

Canadian homes, by demonstrating that 50% of water uses drew less than 1 L from kitchen 

taps, with 92% of uses drawing less than 3 L. Elfland et al. (2010) and Nguyen et al. (2012) 

demonstrated the impact of water conservation devices (which in turn impact water use) at a 

university campus on water quality deterioration including water Pb contamination. 

DeSantis (2017) demonstrated the impact of extremes in occupancy to the total water use 

and measured water Pb levels in a US single-family midwestern home served by an LSL 

between 2007 and 2017. Total water usage in the home gradually decreased, as the number 

of residents decreased from 2 to 1 and ultimately to 0 over a decade. This caused Pb 

corrosion scale changes due to prolonged water stagnation within the LSL, which resulted in 

increased water Pb levels. That work brought attention to water quality in vacant/foreclosed 

buildings with LSLs and encouraged water sampling/remediation prior to reoccupation. By 

extension, the implications of prolonged under-occupancy or vacancy in some Pb-containing 

building plumbing networks due to grave circumstances (e.g., the COVID-19 pandemic 

shutdowns) should be considered, particularly in buildings like schools or daycares which 

eventually resume serving sensitive population groups (Proctor et al, 2020; US EPA, 2020).

3. Key water sampling components

Sample volume and water stagnation will be discussed here, but other key water sampling 

components have been reported elsewhere (Britton and Richards, 1981; Clark et al., 2014; 

Deshommes et al., 2010; Hoekstra et al., 2009; Masters et al., 2016b; Triantafyllidou and 

Edwards, 2012; van den Hoven and Slaats, 2006).

3.1. Water sample volume

The volume of water sampled in standard sampling containers (30 mL, 60 mL, 125 mL, 250 

mL, 500 mL, 1 L, etc) essentially equals plumbing distance from the sampled water outlet 

(i.e., volume = distance), as determined by pipe material and internal pipe diameter (Schock 

and Lytle, 2011; Vaccari, 1994). For example, collecting one liter of water coming out of a 

tap after stagnation, corresponds to 17–26 feet (5.2–7.9 m) of plumbing distance depending 

on pipe material, for a typical home pipe internal diameter of ½ inch (Fig. 6). Such volume/

distances will capture water contained within the faucet and an associated short section of 

premise plumbing, impacted by a variety of proximal plumbing devices and materials. But 

they will not capture distal Pb plumbing sources, such as an LSL or Pb gooseneck.
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The sample volume can also cause dilution effects (Cardew, 2000; Del Toral et al., 2013; 

Hayes et al., 2013). For example, a one-liter water sample may dilute the small volume of 

Pb-contaminated water within a leaded kitchen brass faucet, which was found to range 

between 56 and 135 mL (Gardels and Sorg 1989), 65–150 mL (Maas et al. 1992) and 24–

233 mL (Cartier et al. 2012). Considering that water volumes may vary significantly 

between kitchen faucets, bubblers in water fountains, laboratory faucets used in US schools/

hospitals, and janitor/utility sink faucets; a one-size-fits-all approach (like 1 L or 250 mL 

sample volume) cannot answer all the questions surrounding Pb in drinking water (see 

subsequent section on Sampling Protocols).

3.2 Stagnation

The duration of water stagnation prior to sampling is important, because Pb diffuses quickly 

from Pb pipe within the first few hours of stagnation and will eventually reach a 

concentration equilibrium peak (Doré et al., 2019; Schock, 1990). However, long stagnation 

periods are difficult to achieve because they require no water use throughout the entire 

house/building for an extended period of time (Hoekstra et al., 2009; Schock and Lemieux, 

2010). Even non-consumptive water uses, including flushing toilets, furnace humidifiers, 

lawn sprinklers or accidental leaks can compromise water stagnation and the subsequently 

collected water sample.

Inter-use stagnation, i.e. the time between each water use at the kitchen tap by residents, was 

estimated at 30 min on average by earlier European studies (van den Hoven and Slaats 

2006). This is typically much shorter than the long stagnation required for Pb to reach its 

peak concentration. The range of inter-use stagnation at kitchen taps in one Canadian study 

was recently reported between <15 min (47% frequency) to >6 h (10% frequency) (Riblet et 

al. 2019).

4. Sampling protocols

Sampling protocols for Pb in water can be classified under three general categories 

depending on their ability to answer specific questions related to Pb in water (Table 3). Brief 

descriptions for our classification are provided below, whereas other detailed explanations 

and classifications are also available to the reader (Hoekstra et al., 2009; van den Hoven and 

Slaats, 2006).

4.1. Single sample protocols

Several protocols consist of taking a single water sample from a building faucet or fountain. 

First-Draw (FD) is a single fixed-volume sample taken after long stagnation (e.g., 

overnight) that produces time-amplified “worst case” Pb concentration for the segment of 

piping sampled, when Pb release approaches its equilibrium peak (Lytle and Schock 2000). 

Random Daytime (RDT) is another single fixed-volume sample, but taken without any 

stagnation at a random time during the workday, which is impacted by the random 

residential water use pattern (Hayes and Hydes 2012). 30-Minute Stagnation (30 MS) is a 

single fixed-volume sample taken after pre-flushing and subsequent 30-minute stagnation 
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which captures the average 30-minute inter-use stagnation time identified in older European 

studies (Cardew, 2003; van den Hoven and Slaats, 2006).

These single sample protocols are simple/practical to employ across many homes for 

system-wide compliance with a water Pb regulatory standard (Table 3), but they are not 

meant to provide direct water Pb exposure information for individual households, nor can 

they precisely identify all Pb plumbing sources and their relative importance. For instance, 

the US compares the 90% percentile of FD samples against a 0.015 mg/L (15 μg/L) action 

level (which is not meant to be a health-based standard) under the 1991 Lead and Copper 

Rule (e-CFR 2020) that is currently under revision (US Federal Register 2019). The UK 

compares the 95% percentile of RDT samples against the 10 μg/L World Health 

Organization’s provisional tolerable weekly intake of Pb for children (WHO 2008) under its 

Drinking Water Directive (Drinking Water Inspectorate 2010). The Province of Ontario, 

Canada compares 30 MS samples to Health Canada’s prior Pb maximum acceptable 

concentration (MAC) of 10 μg/L (Government of Ontario 2002). An overview of regulatory 

approaches in other Canadian provinces can be found elsewhere (Dore et al. 2018).

4.2. Sequential (or Profile) sampling

Unlike the previous single samples, profile sampling collects many sequential water samples 

from the same kitchen faucet, after a prescribed stagnation period (Clark et al., 2014; Del 

Toral et al., 2013; Lytle et al., 2019; Vaccari, 1994). The required number and incremental 

volumes of sequential samples to ultimately capture the full volume of water between the 

kitchen faucet and the water main depends on the specific plumbing network. Thus, 

conducting an individual premise plumbing assessment can be very useful, albeit time-

consuming. A sampling plan developed for a particular building may not provide meaningful 

information if used for another building with different plumbing materials, configurations 

and dimensions (i.e., lengths and internal diameters of segments) (see previous section on 

Factors affecting Pb variability in drinking water).

In general, smaller sample volumes can be taken initially (e.g., 30 mL, 60 mL, 125 mL) to 

provide more spatial resolution and pinpoint specific proximal small sources of Pb like brass 

faucet/water fountain components, a brass valve, or a Pb soldered copper joint (Hoekstra et 

al., 2004; Lytle et al., 2019; Vaccari, 1994), since larger samples may reflect multiple small 

Pb components (Fig. 7). Larger sample volumes (e.g., 1 L) taken subsequently can capture 

distal larger Pb segments like LSLs or Pb goosenecks.

Sequential sampling results create a profile of Pb concentration versus water sample volume 

(where water volume = plumbing distance), which can help identify Pb sources along the 

plumbing line, especially LSL peaks (Clark et al., 2014; Del Toral et al., 2013; Deshommes 

et al., 2017; Lytle et al., 2019; Sandvig et al., 2008; van den Hoven and Slaats, 2006). While 

expensive/cumbersome due to the numerous samples, sequential sampling is the most 

comprehensive approach for Pb plumbing source determination (Table 3). Sequential 

sampling further evolved to incorporate high sampling flow rates for particle stimulation 

(Table 3), that better capture particulate Pb in water due to scouring (Clark et al. 2014). 

Profile sampling helps to answer the question of where the Pb is coming from, and in what 

form if high sampling flow rate is incorporated, so that it can be removed/remediated. 
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However, it does not directly answer the question of Pb ingestion exposure in the sampled 

building.

4.3. Pb exposure sampling

Determining human exposure to Pb at the tap is the most complex water sampling endeavor, 

because the sampling protocol must capture Pb spatial and temporal variability under typical 

water use over a period of time. Further, assessing average water Pb potential exposure at the 

community level is different than average Pb potential exposure at the individual resident or 

household level.

4.3.1. Community assessment of water Pb exposure—Single-sample protocols 

(Table 3) do not represent average water Pb consumption in individual households (Hayes, 

2009; Hoekstra et al., 2008). For instance, FD captures one worst-case stagnation scenario 

out of the infinitely numerous water stagnation possibilities (Cartier et al. 2011), whereas 30 

MS captures one estimate of the average inter-use stagnation time (Jackson 2000). Single 

RDT in a home captures one random water use pattern during the workday.

If a statistically sufficient number of single RDT samples is collected throughout homes of a 

community, then a range of inter-use stagnation times can be captured to approximate 

average water Pb exposure in that community (Cardew, 2003; Cartier et al., 2011; Sandvig et 

al., 2008; Schock, 1990). The RDT approach may therefore be suitable for assessment of 

average water Pb exposure system-wide but not in individual homes. Conceptually however, 

many RDT samples collected in the same home over time may statistically approximate 

average water Pb exposure in that home, although this concept requires further exploration 

to avoid potential biases.

Comparative studies in different countries reached different conclusions regarding the best 

single-sample protocol for approximating system-wide average water Pb exposure (Riblet et 

al., 2019; van den Hoven et al., 1999), but they used a reference protocol for their 

comparison, namely composite proportional sampling.

4.3.2. Household assessment of water Pb exposure—Composite proportional 
sampling was developed in the late 1970s in the Netherlands (Haring, 1984; van den Hoven, 

1987) by attaching a sampling device to the kitchen tap that diverts a fixed percentage of 

water, usually 3–5%, into a large sampling bottle each time water is drawn for consumption 

and the user flips the side-stream diversion switch (Fig. 8) (Anjou Recherche, 1994; van den 

Hoven and Slaats, 2006). After a defined period, usually ranging from one day (Clement et 

al. 2000) to one or two weeks (Riblet et al. 2019), the resulting composite water sample is 

analyzed to produce an average water Pb concentration. The total water volume consumed 

can also be estimated, so that the average Pb exposure dose (i.e., average Pb mass that would 

be ingested over that period) can be calculated. The composite sample is considered more 

representative of average Pb exposure than any of the single samples, because it directly 

samples an approximate average water Pb concentration over a prolonged period of normal 

household water use.
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The composite proportional devices must be designed and oriented in a way that accurately 

captures particulate lead. The user-operated proportional sampling devices are considered 

inconvenient and cumbersome by residents (Clement et al., 2000; Meranger and 

Subramanian, 1984) with the possibility of improper use (Hoekstra et al. 2009). 

Additionally, due to the needed sampling device, extra counter space and longer duration, 

this sampling protocol can be more expensive than other sampling protocols and was not 

deemed suitable for community sampling (van den Hoven 1987).

Manual composite sampling is a simpler approach dating back to the 1970s, when 

researchers collected a quart (i.e., 0.95 L) of water from the kitchen tap every night at dinner 

(Karalekas et al. 1975), or at each meal (Greathouse et al., 1976; Worth et al., 1981) or other 

variations of water volume/timing of sampling that focused on water consumption of bottle-

fed infants (Lacey et al., 1985; Sherlock and Quinn, 1986). Schock et al. (2019) recently 

proposed returning to this approach, by collecting a pre-determined amount of water each 

time the water is drawn for drinking or cooking and accumulating that water for a specific 

amount of time in a large container for subsequent Pb analysis of the cumulative water 

volume. This simpler manual approach does approximately capture the cumulative water Pb 

concentration by simple analysis of the composite sample. But it does not precisely track the 

total water volume because it collects identical water volumes at each water use, unlike the 

composite proportional sampling device which captures percentages and can thus back-

calculate more precisely the total water volume consumed. Jarvis et al. (2018) collected sub-

samples from each measured drink consumed at home over three days. They used a 

measuring cup to record water volume before it was consumed and analyzed the sub-

samples rather than a composite water sample, which is more precise but more costly/

cumbersome.

Composite Pb accumulation passive sampling is a theoretical approach mentioned by 

Cantor et al. (2013). A variation of it was somewhat explored by Deshommes et al. (2017), 

although it was explored at the household point of entry and not the point of use in that 

study. It is currently under development/refinement (Lytle and Schock 2019) and thus not 

included in Table 3 because it is not currently used in practice. It is based on the ability of 

appropriately certified point of use (POU) filtration devices to remove soluble and 

particulate Pb from water at the tap used for consumption (cooking and drinking). Rather 

than actively sampling water, Pb in the drinking water that passes through the faucet-

mounted POU device is trapped on the filtration media and concentrates over time. At the 

end of the filter’s service life (or some specified volume of filtered water), the filter cartridge 

can be removed from the device and the Pb can be extracted from the filter media.

If the POU device has a flow totalizer that tracks the total volume of water that passes the 

device, then an average Pb concentration can be calculated by dividing the Pb mass extracted 

(μg Pb) by the volume filtered (liters). Since only water for consumption passes the sampling 

device, the final concentration reasonably reflects exposure. Ultimately, the premise of this 

approach relies on the ability to quantitatively extract the accumulated Pb from the POU 

filtration media. It warrants further exploration, with Pan et al. (2020) recently reporting 

promising results from various POU filter Pb extraction approaches.
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Although not perfect, composite Pb accumulation passive sampling is conceptually more 

representative of average Pb exposure than other protocols, as is composite proportional 

sampling. However, the average Pb exposure calculated from one week of sampling may still 

not be representative of Pb exposure throughout the year (Hoekstra et al. 2004), because of 

the aforementioned variations in water corrosivity coupled with different work or 

recreational patterns from day to day, week to week, or over the year. Therefore, potential 

exposure will vary over time, and multiple composite sampling events would ideally be 

needed to obtain the most realistic and accurate estimates.

Even within a household, individual residents will not have the same water Pb exposure, 

because of the many variables previously discussed. Sampling to isolate individual Pb 

potential exposure is almost impossible, unless individual water consumption patterns can be 

separated from the rest of the household such as in the case of formula-fed infants in Lacey 

et al. (1985). It is important to mention that exposure to water Pb is a combination of 

drinking water consumption inside and outside the home (e.g., at daycare, school, or at 

work), which further complicates matters. Still, the resolution of the composite proportional 

sampling or composite Pb accumulation passive sampling goes down to capturing average 

water Pb potential exposure at the household level, which is an advancement over single-

sample protocols that are intended for other purposes.

5. Discussion

Review of the literature yielded the following conclusions:

• Residential water sampling for Pb assessment is a flexible tool with many 

purposes. No single universally applicable sampling protocol exists, and each 

protocol has a specific use toward answering one or more questions relevant to 

Pb in water.

• Understanding the inherent variabilities (spatial and temporal) of Pb release into 

drinking water is essential to accurate data interpretation for a given sampling 

intention, particularly for the complex task of exposure estimation. For instance, 

water Pb regulatory sampling protocols employ practical single samples that 

were not meant to estimate potential water Pb exposure at the household level, 

nor were they all necessarily intended to relate to health-based Pb standards. Few 

sampling protocols are designed to approximate human exposure by Pb ingestion 

through water.

• Different water sampling protocols (including different sample volumes under 

otherwise identical sampling instructions) will yield different Pb concentrations 

from different sources/forms of Pb. Understanding the detailed differences in 

sampling protocols is critically important when comparing existing Pb results 

from different studies.

• In order to establish statistical correlations of drinking water Pb concentrations to 

blood Pb measurements or to predict/estimate blood Pb levels from existing 

datasets, the limitations of available drinking water Pb datasets in representing 

water Pb exposure need to be understood and the uncertainties need to be 
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discussed (as was done in Stanek et al., 2020; Zartarian et al., 2017). Sampling 

biases may relate poorly to the probable amount of Pb ingestion and may 

underestimate or overestimate the impact of water Pb ingestion on blood Pb.

Review of the literature yielded the following recommendations:

• Caution is advised when loosely using the term “exposure assessment” for all 

water Pb sampling protocols, given that most sampling protocols cannot 

accurately represent Pb exposure. This is especially important in relatively rare 

events causing acute Pb exposures, as explained in Triantafyllidou and Edwards 

(2012).

• Health professionals are encouraged to explore water sampling protocols that 

better capture household water Pb potential exposures during environmental 

assessments of Pb-poisoned children. That could potentially uncover a 

previously unknown water Pb problem as contributing to elevated blood Pb. 

Currently, health departments in the US may not test the water for Pb at all 

during a home evaluation. If water is tested, health departments follow common 

single-sample protocols that were developed for other purposes such as 

regulatory sampling, in the absence of other guidance (Triantafyllidou and 

Edwards 2012).

• The complexities brought up are not meant to discourage measurement of Pb in 

drinking water. It is understandable that practical considerations including 

sampling costs, simplicity, timeliness and consumer acceptance need to be 

factored in when selecting an appropriate sampling protocol. Future study 

designs for estimating the relationship of drinking water Pb to Pb exposure need 

to carefully balance the logistics of data collection with the benefits/limitations 

of different sampling protocols. It will likely be necessary to establish clear 

limitations/caveats to the ability to extrapolate from much of the existing Pb 

water data, as well.
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Box 1

Some main drinking water chemistry parameters affecting Pb release. The list is not 

meant to be exhaustive.

• pH and alkalinity/Dissolved Inorganic Carbon (DIC)

• Oxidant type (e.g., chlorine, chloramine, dissolved oxygen) and concentration

• Oxidation Reduction Potential (ORP)

• Corrosion inhibitor type (e.g., none, orthophosphate, orthophosphate/

polyphosphate blend, silica) and concentration

• Chloride and sulfate

• Iron, calcium, manganese, aluminum

• Natural Organic Matter (NOM)
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Box 2

Questions relating to building water use, as they may affect water movement in plumbing 

and subsequent Pb concentrations in water.

• How many people use water each day?

• What are the water uses, and in what order?

• Which water outlet is used, and when?

• How long did the water stand in which part(s) of the piping?

• What is the water pathway through the plumbing, each time a faucet or 

appliance is turned on?

• How much does the pattern of use vary from day to day, week to week, month 

to month?

• Are school or work-related activities the same or different from the prior day/

week/month?

• Are there visitors who change the water use pattern?
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Fig. 1. 
General factors contributing to lead (Pb) variability in the drinking water that is consumed or 

sampled.
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Fig. 2. 
Illustrative premise plumbing configuration in a home. Water reaches outlets for 

consumptive and non-consumptive uses by following hot and cold lines specific to the 

plumbing design of each home. Redrawn and modified from https://

www.finehomebuilding.com/membership/pdf/5798/021216063.pdf
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Fig. 3. 
(a) Full lead service line in the ground, (b) privately-owned lead service line partially 

replaced by copper pipe with a wiped solder joint in the ground, (c) lead gooseneck that was 

excavated, (d) lead-lined iron service line that was excavated and cut open to expose the 

lead-lining.
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Fig. 4. 
Illustrative schematic of the kitchen tap relative to the service line, for homes of different 

kitchen configurations (scenario 1–3). If home distance from the street varies and home size 

varies (scenarios i and ii), then the relative plumbing lengths are complicated further, 

depending on which kitchen configuration (scenario 1–3) applies. Modeled after Chicago 

(Del Toral et al., 2013), where the service line ends at the water meter which is typically 

located inside the home. In other cities the water meter can be outside of the home, and the 

configurations may be different.
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Fig. 5. 
(a) Premise plumbing system simulated in EPANET, and water flow paths resulting from 

various assumed water uses: (b) collecting 1-L sample at kitchen tap after stagnation, (c) 

taking a warm shower, (d) collecting a 16-ounce (500 mL) glass of water, (e) flushing the 

toilet, (f) watering the lawn. Red/blue segments highlight water (hot/cold) that would be 

consumed by a given activity, whereas gray segments highlight water that would be moved. 

Remaining segments, not highlighted for a given activity, represent stagnant water which 

would not be directly impacted by the water activity. Not to scale. (For interpretation of the 
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references to colour in this figure legend, the reader is referred to the web version of this 

article.)
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Fig. 6. 
Correspondence of one liter of water sample volume to pipe length, for typical pipe 

materials and nominal sizes. cPVC: Chlorinated Polyvinylchloride, Pb: lead, GS: 

Galvanized steel, Cu-M: Copper type M. Not to scale. Note: GS pipe may undergo severe 

corrosion (i.e., tuberculation) that can substantially decrease internal diameter.
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Fig. 7. 
Estimated correspondence between water sample volume and Pb plumbing source in 

example configurations of a) water faucet, and b) water bubbler. Sample volumes were 

overlaid on top of schematics from the US EPA’s 3Ts guidance (2018). Specific brands/

models may differ from the estimated correspondences illustrated here.

Triantafyllidou et al. Page 28

Environ Int. Author manuscript; available in PMC 2022 January 01.

E
PA

 A
uthor M

anuscript
E

PA
 A

uthor M
anuscript

E
PA

 A
uthor M

anuscript



Fig. 8. 
Composite proportional sampling device. Reprinted from Aqua 1987 vol 6, van den Hoven. 
A New Method to Determine and Control Lead Levels in Tap Water. Copyright (2004).
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