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Abstract

Introduction: Reactive carbonyl species including methylglyoxal (MGO) are oxidation 

metabolites of glucose and precursors of advanced glycation end products (AGEs). They are 

important mediators of cellular oxidative stress and exacerbate skin complications. Published data 

supports that certain phenolic compounds can exert cellular protective effects by their antioxidant 

activity. A phenolic-enriched maple syrup extract (MSX) was previously reported to show 

protective effects against AGEs- and MGO-induced cytotoxicity in human colon cells but its skin 

protective effects remain unknown.

Objective: The protective effects of MSX were evaluated against hydrogen peroxide (H2O2)- and 

MGO-induced cytotoxicity in human keratinocytes (HaCaT cells).

Methods: Cellular viability and antioxidant activity were evaluated by the luminescent cell 

viability CellTiter-Glo® assay and the reactive oxygen species (ROS) assay, respectively. A 

single-cell gel electrophoresis (Comet assay) was used to measure the strand breaks in the DNA of 

HaCaT cells.

Results: MSX (at 50 μg/mL) ameliorated H2O2- and MGO-induced cytotoxicity by increasing 

cell viability by 21.5 and 25.9%, respectively. MSX reduced H2O2- and MGO-induced ROS 

production by 69.4 and 56.6%, respectively. MSX also reduced MGO-induced DNA damage by 

47.5%.
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Conclusion: MSX showed protective effects against H2O2- and MGO-induced cytotoxicity in 

HaCaT cells supporting its potential for dermatological and/or cosmeceutical applications.
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1 INTRODUCTION

Skin aging and skin complications associated with many systemic disorders such as diabetes 

are linked to the accumulation of a group of proteins known as advanced glycation 

endproducts (AGEs) (Ahmed, 2005; Gkogkolou & Böhm, 2012). The formation of AGEs is 

a non-enzymatic process in which reducing sugar molecules e.g. glucose, interact with free 

amino acids of biological macromolecules including protein, DNA, and lipids to form 

covalent-bond Maillard reaction products. This Maillard reaction leads to the generation of a 

group of unstable compounds known as Schiff bases (aldehyde- or ketone-like chemicals in 

which the carbonyl moiety is replaced by an imine or azomethine group), which can further 

undergo a series of chemical rearrangements to form stable keto-amine adducts known as 

Amadori products. Both Schiff bases and Amadori products react with amino acids of 

proteins to form cross-linked protein complexes and undergo multi-step reactions including 

oxidation, dehydration, and polymerization to form late stage AGEs. During the formation 

of AGEs, glucose and Amadori products are oxidized to generate highly reactive dicarbonyl 

chemicals including 3-deoxyglucosone (3-DG), glyoxal (GO), and methylglyoxal (MGO) 

(Desai & Wu, 2007). These reactive dicarbonyl species (RCS) are regarded as metabolites of 

sugar molecules and are known to exacerbate the formation of AGEs. As the precursors of 

AGEs, RCS can induce intracellular oxidative stress and cause damage to human dermal 

cells including fibroblasts and keratinocytes, which can further lead to accelerated skin aging 

(Roberts, Wondrak, Laurean, Jacobson, & Jacobson, 2003). Therefore, AGEs inhibitors have 

immense potential for the management of skin complications including those associated 

with diabetes mellitus (Ahmed, 2005). Considerable research efforts have been directed 

towards the development of AGEs inhibitors for the treatment of AGE-mediated skin 

complications associated with diabetes mellitus (Rahbar, Kumar Yernini, Scott, Gonzales, & 

Lalezari, 1999). Several synthetic chemicals, including aminoguanidine, are promising 

AGEs inhibitors but many have failed drug approval due to their adverse effect profile 

(Abdel-Rahman & Kline Bolton, 2002; Nilsson, 1999). Conversely, natural products, 

including several food-derived phenolic compounds (e.g. curcumin, epigallocatechin gallate, 

and flavonoids including kaempferol, luteolin, quercetin, naringenin, and rutin) are generally 

regarded as safe and have been reported to inhibit AGEs formation (Wu, Huang, Lin, & Yen, 

2011; Wu & Yen, 2005). In addition, a growing body of data suggests that these phenolic 

AGE-inhibitors can exert protective effects on keratinocytes by reducing cellular oxidative 

stress (Babu, Sabitha, & Shyamaladevi, 2006; Huang et al., 2007).

Our laboratory has initiated a research program focused on the identification of AGE 

inhibitors from several medicinal plants and functional foods (foods that provide health 

benefits in addition to macro- and micronutrients) (Liu et al., 2014, 2017; Liu et al., 2016; 

Ma et al., 2016; Ma et al., 2018, 2015; Sun et al., 2016; Zhang, Ma, Liu, Yuan, & Seeram, 
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2015). Among these natural products, we reported that phenolic-enriched extracts of 

pomegranate fruit (Punica granatum) and red maple leaves (Acer rubrum) showed potent 

inhibitory effects against AGEs formation and protected human keratinocytes against 

oxidative stress induced cytotoxicity (Liu et al., 2014; Ma et al., 2016; Liu et al., 2019). In 

addition, we also reported that a polyphenol-enriched maple syrup extract (MSX) showed 

inhibitory activity against AGEs formation and protective effects against AGEs- and MGO-

induced cytotoxicity in normal human colon cells (Liu et al., 2017). MSX has also been 

reported to show a diverse range of biological activities including antioxidant, anti-diabetic, 

anti-inflammatory and anti-neuroinflammatory effects (Liu et al., 2017; Ma et al., 2016; 

Nahar, Driscoll, Li, Slitt, & Seeram, 2014; Zhang et al., 2014) but its skin protective effects 

in human keratinocytes remain unknown. Herein, we evaluated the protective effects of 

MSX against hydrogen peroxide (H2O2)- and MGO-induced cytotoxicity, as well as its 

antioxidant and cellular DNA protection activities in human keratinocytes (HaCaT cells).

2 MATERIALS AND METHODS

2.1 Materials

A standardized food grade phenolic-enriched maple syrup extract (MSX), which contains 

over 90% of phenolic compounds (determined by High-performance liquid chromatography, 

liquid chromatography-mass spectrometry, and nuclear magnetic resonance methods), was 

prepared in our laboratory as previously reported (Li & Seeram, 2010, 2011; Liu, Ma, & 

Seeram, 2016; Zhang et al., 2014). Our previous phytochemical characterization studies of 

MSX led to the isolation and identification of several phenolic sub-classes including lignans, 

gallic acid derivatives and other phenolic acids, coumarins, and stilbenes (Zhang et al., 

2014). However, lignans are the major type of phenolics present in MSX. Other minor 

constituents in MSX include ash (ca. 2.21%), fiber (ca. 11%), minerals (ca. 788.6 mg/100g), 

amino acids (ca. 31.7 mg/100g), organic acids (ca. 796.9 mg/100g), and vitamins (ca. 

16670.7 mg/100g) (Zhang et al., 2014). Methylglyoxal (MGO), hydrogen peroxide (H2O2), 

crystal violet staining agent, trypsin solution, dimethyl sulfoxide (DMSO), and 2’,7’-

dichlorofluorescin diacetate (DCFDA) were purchased from Sigma-Aldrich (St. Louis, MO, 

USA). Dulbecco’s modified Eagle’s medium (DMEM) and fetal bovine serum (FBS) were 

purchased from Gibco BRL (Ground Island, NY, USA). A luminescent cell viability 

CellTiter-Glo® (CTG 2.0 assay) kit was purchased from Promega (Fitchburg, WI, USA). 

Comet assay kit was purchased from TREVIGEN (Gaithersburg, MD, USA).

2.2 Cell culture and cell viability

Human keratinocytes (HaCaT cells) were obtained from American Type Culture Collection 

(Manassas, VA, USA). HaCaT cells were maintained in DMEM supplemented with 5% FBS 

at 37 °C under an atmosphere of 5% CO2. Cellular viability was assessed using the 

luminescent cell viability CellTiter-Glo® (CTG 2.0 assay). Briefly, HaCaT cells were 

seeded at 5×104 cells/mL to 50–60% confluency in a 96-well microplate. HaCaT cells were 

exposed to the test compounds at different concentrations (6.25 – 100 μg/mL) for 24 h. Then 

the CTG 2.0 agent was added in a 1:1 ratio with existing media and mixed for 5 min on an 

orbital shaker prior to luminescence measurement using a plate reader (Spectramax M2, 

Molecular Devices, Sunnyvale, CA, USA).
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2.3 Effect of MSX on H2O2 or MGO induced cell toxicity

HaCaT cells were seeded at 5×104 cells/mL to 60% confluency in a 96-well microplate. 

After 12 h incubation, cells were pre-treated with different concentrations of MSX (12.5, 25, 

and 50 μg/mL) for 2 h. Cells were washed with PBS twice and treated with H2O2 (400 μM) 

or MGO (400 μM) and then cell viability was determined using the CTG 2.0 assay.

2.5 Crystal violet staining

Crystal violet staining solution was prepared by dissolving 5 g of crystal violet powder into 

100 mL 20% aqueous ethanol. HaCaT cells seeded at 25×104 cells/mL to 80% confluency in 

6-well plates. Cells were fixed with 75% ethanol for 15 min at room temperature and 

incubated with staining solution for 10 min, followed by washing with PBS for 5 times. 

Images were captured with a fluorescence microscope cells imaging system (EVOS; 

Invitrogen, Waltham, MA, USA).

2.6 Reactive oxygen species (ROS) assay

HaCaT cells were seeded at at 5×104 cells/mL to 50–60% confluency in a 96-well 

microplate. After 12 h incubation, cells were pre-treated with MSX (12.5, 25, and 50 μg/mL) 

for 2 h and medium was replaced with fresh medium containing DCFDA (20 μM). Then 

cells were treated with H2O2 (400 μM) or MGO (400 μM) for 24 h. The fluorescence signals 

were read at excitation and emission wavelengths of 485 and 525 nm, respectively, using a 

plate reader (Spectra Max M2 spectrometer, Molecular Devices, Sunnyvale, CA, USA).

2.7 Comet assay

Comet assay, a single-cell gel electrophoresis that is used to measure the strand breaks in the 

DNA of HaCaT cells, was performed according to the instructions of the manufacturers 

(Trevigen, Gaithersburg, MD, USA). Briefly, HaCaT cells were seeded at about 5×104 

cells/mL to yield 70–90% confluence in a 6-well plate. Cells were pre-treated with MSX (50 

μg/mL) for 2 h and then washed with PBS twice followed by treatment of H2O2 (400 μM) or 

MGO (400 μM) for 24h. Cells were then collected and combined with melted LMAgarose (a 

1% low melting agarose in PBS that is designed for the Comet assay) at a ratio of 1:10 (v/v). 

Then the respective suspensions were transferred onto comet slides and incubated with cell 

lysis at 4 °C for 12 h. The slides were immersed into alkaline unwinding solution for 20 min 

and subjected to electrophoresis in an alkaline electrophoresis solution at 21 volts for 30 

min. Slides were fixed in 75% ethanol and stained in diluted SYBR GOLD solution 

(1:3000). SYBR GOLD is a cyanine dye that exhibits higher binding affinity to nucleic acids 

including double- or single-stranded DNA. Comet images were captured with EVOS 

fluorescence microscope and the percentage of tailed cell DNA were analyzed with CASP 

software program (Końca et al., 1981).

2.8 Statistical analysis

All data was expressed as the mean ± the standard error of the mean (S.E.M.). The 

significance of differences was determined using a two-way analysis of variance (ANOVA) 

followed by a post hoc Student-Newman–Keuls multiple comparison test (SNK). A 

threshold of p value < 0.05 was considered the cut-off for statistical significance of results.
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3 RESULTS AND DISCUSSION

3.1 MSX ameliorates H2O2- and MGO-induced cytotoxicity

Reactive carbonyl species exacerbate cellular oxidative stress and suppress cell viability 

(Desai & Wu, 2007). Therefore, we first evaluated whether MSX can reduce H2O2- and 

MGO-induced toxicity in HaCaT cells. As shown in Figure 1 A, MSX at concentrations 

ranging from 6.25 – 100 μg/mL did not affect cell viability of HaCaT cells (viability > 

98.0%), and concentrations of 12.5, 25, and 50 μg/mL were selected for further evaluations. 

Both H2O2 and MGO (at 400 μM) significantly induced cytotoxicity by reducing cell 

viability by 59.2 and 61.7%, respectively. Treatment of MSX (12.5, 25, and 50 μg/mL) 

increased the viability of cells exposed to H2O2 by 11.0, 14.1, and 21.5%, respectively, as 

compared to the model (H2O2-treated) group (Figure 1 B). MSX also reduced MGO-

induced cytotoxicity by increasing cell viability by 25.9% at concentration of 50 μg/mL 

(Figure 1 C). This protective effect was further supported by data obtained from crystal 

violet staining assay. Treatment of MSX maintained the normal shape of cell nuclei, as 

compared to H2O2 and MGO challenged cells, which had irregular shaped nuclei (Figure 1 

D). This finding is in agreement with our previously reported study showing that phenolics 

from a commercially available standardized pomegranate fruit extract (Pomella®) attenuated 

H2O2-induced cytotoxicity in HaCaT cells (Liu et al., 2019).

3.2 MSX reduces H2O2- and MGO-induced cellular reactive oxygen species (ROS)

Hydrogen peroxide (H2O2) and MGO induce cytotoxicity in HaCaT cells by mediating the 

production of cellular reactive oxygen species (ROS) (Roberts et al., 2003). Levels of ROS 

in HaCaT cells were elevated by 8.18- and 2.24-fold when cells were stimulated by H2O2 

(200 μM) and MGO (400 μM), respectively, as compared to the control group. Treatment of 

MSX reduced the production of ROS in cells exposed to H2O2 and MGO in a concentration 

dependent manner. MSX (12.5, 25, and 50 μg/mL) reduced H2O2- and MGO-induced ROS 

production by 44.4, 59.0, and 69.4%, and 34.9, 51.3, and 56.6%, respectively, as compared 

to the model group (Figure 2). This is in agreement with our previously reported studies 

showing that MSX exerts cytoprotective effects by attenuating cellular ROS in normal 

human colon CCD-18Co cells (Liu et al., 2017) and murine microglial BV-2 cells (Ma, et 

al., 2016).

3.3 MSX maintains MGO-induced cellular DNA damage

Reported studies suggested that MGO can bind to nucleotides and induce DNA chain 

fracture in human skin cells (Roberts et al., 2003). The protective effects of MSX against 

H2O2- and MGO-induced DNA damage were evaluated in the Comet assay. As shown in 

Figure 3 A, MGO (400 μM) significantly increased the levels of fractured DNA chain in 

HaCaT cells (by 73.9%) and the treatment of MSX (50 μM) maintained the integrity of 

DNA structures in HaCaT cells with a lower percentage of tailed DNA (47.5%; Figure 3 A 

lower panel). Treatment of H2O2 (400 μM) did not result in DNA damage in HaCaT cells as 

shown in the comet assay (Figure 3 B), suggesting that different mechanism(s) are involved 

in the oxidative stress induced cell damage. This difference was in agreement with our 

previously reported observation where H2O2 induced cell apoptosis (Liu et al., 2019) while 

MGO did not show apoptotic effects in HaCaT cells (data not shown). Although several 
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synthetic small molecules including penicillamine (Roberts et al., 2003) and N-

acetylcysteine (Yang et al., 2014) are reported to show protective effects, to the best of our 

knowledge, this is the first report showing that a polyphenol-enriched natural product extract 

protects the integrity of DNA in HaCaT cells from MGO induced damage.

TRANSLATIONAL THERAPEUTIC IMPLICATIONS OF OUR RESEARCH

A growing body of basic pharmacological research support the utilization of several natural 

polyphenols to combat AGEs-mediated dermatological dysfunctions and skin disorders 

induced by oxidative stress (Ho & Wang, 2013; Jeanmaire, Danoux, & Pauly, 2001). Several 

of these polyphenols are found in plant based-diets including in fruits, vegetables, grains, 

and plant-derived beverages (Khan, Liu, Wang, & Sun, 2020). Therefore, because of their 

inherent lack of toxicity and natural origin, these polyphenols show great promise for 

preventive and therapeutic effects against skin aging, skin damage and cutaneous toxicity, 

including ulcer, burns, and wounds (Działo et al., 2016). Moreover, several clinical studies 

support the skin protective effects of polyphenols and their dermatological applications 

(Gianeti, Mercurio, & Maia Campos, 2013; Mirnezami, Jafarimanesh, Rezagholizamenjany, 

Alimoradian, & Ranjbaran, 2020; Palmer & Kitchin, 2010). The skin protective effects of 

dietary polyphenols as well as their therapeutic potential for the treatment of skin disorders 

have been reviewed in several articles (Daniyal et al., 2019; Działo et al., 2016; Svobodová, 

Psotová, & Walterová, 2003; Zillich, Schweiggert-Weisz, Eisner, & Kerscher, 2015). For 

instance, the skin protective effects of honey, a natural sweetener, has been supported by 

empirical evidence and modern scientific studies (Bogdanov, Jurendic, Sieber, & Gallmann, 

2008; Saranraj & Sivasakthi, 2018). Published data suggest that honey is suitable as a 

remedy for skin conditions including wounds and burns (Burlando & Cornara, 2013; 

McLoone, Warnock, & Fyfe, 2016). Apart from bioactives including amino acids, vitamins, 

minerals, and phenolics, some honey, for e.g. Manuka honey, has been reported to contain 

MGO, which partially contributes to its antimicrobial activity (Alvarez-Suarez, Gasparrini, 

Forbes-Hernández, Mazzoni, & Giampieri, 2014). To date, the skin protective effects of 

maple syrup, a plant derived natural sweetener, are unknown. Therefore, we evaluated the 

cytoprotective effects of a phenolic-enriched maple syrup extract (MSX) on human 

keratinocytes HaCaT cells against oxidative and glycative stress induced cytotoxicity. MSX 

at non-toxic concentrations (ranging from 6.25 – 100 μg/mL) reduced H2O2- and MGO-

induced cytotoxicity and production of ROS in HaCaT cells. Results from the Comet assay 

showed that MSX can protect the integrity of DNA of HaCaT cells from MGO-induced 

DNA damage. It is possible that the protective effects of MSX in skin cells are involved with 

several molecular pathways, such as activation of extracellular signal-regulated kinases 

(ERK) 1/2 phosphorylation, which was observed in our previously reported study (Liu et al., 

2017). Further studies on the underlying mechanism(s) of the skin protective effects of MSX 

are warranted. In summary, the findings from the current study support the protective effects 

of MSX in keratinocytes and its potential for dermatological and/or cosmeceutical 

applications.
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Abbreviation

MGO methylglyoxal

AGEs advanced glycation end products

MSX maple syrup extract

ROS reactive oxygen species

RCS reactive dicarbonyl species

FBS fetal bovine serum

DCFDA 2’,7’-dichlorofluorescin diacetate

DMEM Dulbecco’s modified Eagle’s medium

CTG CellTiter-Glo®
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FIGURE 1. 
Effects of MSX on the cell viability of H2O2 and MGO challenged HaCaT cells. MSX 

(6.25-100 μg/mL) were nontoxic to HaCaT cells, A. HaCaT cells were pretreated with MSX 

(12.5, 25, and 50 μg/mL) for 2 hours, then treated with H2O2 (400 μM; B), or MGO (400 

μM, C). Representative images of cells stained with crystal violet reagent. HaCaT cells were 

pretreated with MSX and then exposed to H2O2 or MGO, D. ##Compared to control P < .01; 

*compared to model P < .05, **Compared to model P < .01, ***compared to model P 
< .001
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FIGURE 2. 
Effects of MSX on the production of ROS in HaCaT cells in the DCFDA assay. HaCaT cells 

were pretreated with MSX (12.5, 25, and 50 μg/mL) for 2 hours and then treated with 

DCFDA reagent (20 μM) followed by incubation with H2O2 (200 μM) for 1 hour, A; or with 

MGO (400 μM) for 24 hours, B. Levels of cellular ROS were determined by measuring the 

fluorescent intensity of cells. ##Compared to control P < .01; **compared to model P < .01
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FIGURE 3. 
Effects of MSX (50 μM) on the integrity of DNA in MGO- and H2O2-challenged HaCaT 

cells, A and B. Representative fluorescent images of SYBR GOLD stained comet slides 

captured by EVOS microscope system. The percentages of tailed DNA were measured from 

at least fifty randomly selected cells and analyzed with CASP software. ***Compared to 

control P < .001; #compared to model P < .05
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