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Phagocytic activity of glial cells is essential for proper nervous system sculpting, maintenance of circuitry, and long-term
brain health. Glial engulfment of apoptotic cells and superfluous connections ensures that neuronal connections are appropri-
ately refined, while clearance of damaged projections and neurotoxic proteins in the mature brain protects against inflamma-
tory insults. Comparative work across species and cell types in recent years highlights the striking conservation of pathways
that govern glial engulfment. Many signaling cascades used during developmental pruning are re-employed in the mature
brain to “fine tune” synaptic architecture and even clear neuronal debris following traumatic events. Moreover, the neuron-
glia signaling events required to trigger and perform phagocytic responses are impressively conserved between invertebrates
and vertebrates. This review offers a compare-and-contrast portrayal of recent findings that underscore the value of investi-
gating glial engulfment mechanisms in a wide range of species and contexts.
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Introduction
The nervous system contains two major cell types, glia and
neurons. Glia likely evolved with sense-organ formation,
cephalization, and development of interneuron-enriched cir-
cuits (Verkhratsky and Butt, 2013). Glia:neuron ratios track
with neural function complexity, with the human brain con-
taining roughly equal numbers of neurons and glia (Goodman
et al., 2009; Herculano-Houzel, 2014; von Bartheld et al.,
2016). Glia closely associate with neurons, reciprocally moni-
toring and responding to altered activity (Hidalgo et al., 2011;
Corty and Freeman, 2013; Allen and Eroglu, 2017). Indeed,
glia-neuron interactions are absolutely critical for nervous
system development and functions.

One mechanism by which glia modulate neural development,
homeostasis, and circuit function is by engulfing degenerating
neurons, projections, and synaptic material (Schafer and Stevens,
2013; Wilton et al., 2019). This has been observed across species
(Drosophila, mouse, human, zebrafish) in both the CNS and
PNS. Glial engulfment of neuron fragments eliminates exuberant
projections in development and removes synapses that fail to
adequately mature. Since synaptic plasticity and structural refine-
ment are thought to be the cellular basis of learning and memory
(Nimchinsky et al., 2002; Segal, 2005; Calabrese et al., 2006; Harms
and Dunaevsky, 2007), glial engulfment in fully developed animals
presumably also has profound impacts on cognitive function. In
both the CNS and PNS of adult animals, multiple glia types across
various species clear degenerating neural debris after injury
(Freeman, 2015; Vilalta and Brown, 2018; Wilton et al., 2019).
Given these roles, it is not surprising that defective glial engulfment
is implicated in various neurologic disorders of development
(e.g., autism), function (sensory/cognitive impairment), and aging
(e.g., Alzheimer’s disease, Parkinson’s disease) (Nedergaard and
Verkhratsky, 2012; Chung et al., 2015). However, almost 200 years
after being discovered by Dutrochet (1824), the regulatory logic by
which glia regulate engulfment of neuron fragments remains poorly
defined at molecular resolution.

Numerous in vitro and in vivo models ranging from
Caenorhabditis elegans to mammals are being used to explore
glial phagocytic activity, and there are striking molecular similar-
ities across these systems and species. This alludes to deep evolu-
tionary conservation, and perhaps origins, of this critical glial
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function. Briefly, as summarized in Table 1 and Figure 1, two
well-established “eat me” signals that mark neuron fragments for
engulfment by glial cells are phosphatidylserine (PS) and
secreted complement proteins. This is true for both synaptic
fragments of living neurons and dying cells. PS is recognized
by one of a handful of known or putative PS receptors,
including CED-1/MEGF10/Draper1/Jedi1, MerTK, CED-7/
ABC transporter and integrins. Some of this recognition is
mediated by cognate bridging molecules, such as Gas6 and
MFGE8, which act at the intercellular interface and facilitate
binding of PS to PS receptors. Secreted complement factors,

such as C1q and C3, which are recognized by cognate com-
plement receptors on various glial subtypes, also serve as tags
to promote phagocytic clearance (Luchena et al., 2018).
Finally, while studies indicate that additional receptors may
be at play, these await identification. Downstream effectors
include components of the machinery that transmits phago-
cytosis signals (Mao and Finnemann, 2012; Ziegenfuss et al.,
2012; Tasdemir-Yilmaz and Freeman, 2014; Morizawa et al.,
2017). This includes the small GTPase Rac1/CED-10, which
is known to mediate cytoskeletal remodeling; the phagocyto-
sis adapter PTB domain containing protein CED-6/dCED-6/
GULP1; and the signaling adapter proteins CED-2/CrkII and
CED-12/dCED-12/ELMO1.

A comprehensive discussion of glial engulfment is beyond the
scope of this minireview. Instead, we highlight recent advances
identifying novel cell-biological contexts and mediators of glial
phagocytosis in development (zebrafish neural crest cells), func-
tion (C. elegans sense-organ glia), brain health (interleukins, PS
recognition), and disease (microglia in retinitis pigmentosa [RP]
progression) (Fig. 1). We note that, in addition to engulfment by
glia, synaptic elimination can occur through cell-intrinsic mecha-
nisms and other signaling cues (semaphorins, ephrins, C1qI1/
Bai3). We refer readers to a number of excellent in-depth reviews
for both of these topics (Schafer and Stevens, 2013; Freeman,
2015; Riccomagno and Kolodkin, 2015; Neniskyte and Gross,
2017; Luchena et al., 2018; Wilton et al., 2019).

Glial engulfment in development
During development, proper shaping of the CNS and PNS is nec-
essary to form a functional and adaptable organism. But develop-
ment is not simply a generative process. It also includes a
significant sculpting component, which is thought to properly
tune the system for efficiency and plasticity. Therefore, it is not
unexpected that neuronal death and degeneration are prevalent

Table 1. Glia engulf neurons and neural fragments in several contextsa

Context System Ligand Glia Receptor Effectors References

Development Development and

metamorphosis (Drosophila)

PS, Toll-6 Surface glia, neuropil glia, cell

body glia, peripheral glia, astrocyte

CED-1/Draper; SIMU/Stabilin2;

Toll receptor

CED-2/CrkII; CED-5/Mbc; dCED-12;

dCED-6/GULP; dSARM

Cantera and Technau, 1996; Awasaki and Ito, 2004

Watts et al., 2004; Kurant et al., 2008;

Tasdemir-Yilmaz and Freeman, 2014;

Etchegaray et al., 2016

McLaughlin et al., 2019

Neuromuscular junction (mouse) ? Terminal Schwann cells ? ? Bishop et al., 2004; Song et al., 2008;

I.W. Smith et al., 2013

Retina (mouse) C1q Microglia Csf1r ? Anderson et al., 2019

dLGN (mouse) PS, neuron activity Astrocyte CED-1/MEGF10 ? Chung et al., 2013

PS, CD47, C1q, IL33, C3 Microglia CR3, GPR56, IL1RL1 ? Stevens et al., 2007; Schafer et al., 2012;

Lehrman et al., 2018; Vainchtein et al., 2018;

T. Li et al., 2020; Scott-Hewitt et al., 2020

Hippocampus (mouse) PS, C1q, CX3CL1 (fractalkine) Microglia TREM2, CX3CR1 P38/MAPK; cytokine signaling Paolicelli et al., 2011;b Filipello et al., 2018;

Scott-Hewitt et al., 2020

Function Retina (mammals) PS, Gas6 RPE glia-like cell MeRTK, integrins CED-10/Rac1 GTPase, FAK Finnemann and Silverstein, 2001;

Feng et al., 2002; Finnemann, 2003;

Mao and Finnemann, 2012

Hippocampus (mouse) C1q Microglia ? ? C. Wang et al., 2020

Injury Nerve injury (Drosophila) Insulin-like peptides Ensheathing glia CED-1/Draper, insulin-like

receptor

CED-12/Crk/Mbc/dCED-12; DRK/DOS/SOS;

CED-10/Rac1 GTPase; STAT92E; AP-1

MacDonald et al., 2006;

Doherty et al., 2009, 2014;

Ziegenfuss et al., 2012; Lu et al., 2014;

Musashe et al., 2016

Striatum ischemia (mouse) PS Microglia CED-7/ABC1 ? Morizawa et al., 2017

Cortex injury

(mouse)

ATP Astrocyte ? Burda et al., 2017

a Work in multiple systems highlights relevant molecules and mechanisms by which glia engulf in development, neural function, and following injury (summarized here).
b Fractalkine signaling; also, other brain regions not listed.

Figure 1. Recent insights into glial engulfment across species in the contexts of develop-
ment. In zebrafish, IL-1b triggers neural crest cells to phagocytose neuron debris during de-
velopment. Microglia in the mouse CNS recognize PS as an “eat me” signal to initiate
phagocytosis through the opsonin C1q and likely various receptors, including TREM2. Top,
Magenta represents cellular source of ligand. Bottom, Green represents engulfing cell. ?,
Indirect evidence.
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during development and are important for the removal of excess
cells, refining neuronal connectivity, and editing developmental
errors that may stochastically arise, to enable optimal nervous
system functions (Arya and White, 2015).

In the CNS, mesodermal lineage microglia participate in de-
velopmental synaptic pruning of several brain regions. Notably,
pruning by microglia is not restricted to engulfment of neurites
and synapses: recent work in zebrafish indicates that microglia
also engulf myelin sheaths of oligodendrocytes during develop-
ment (Hughes and Appel, 2020). Moreover, phagocytic sculpting
of retinal structure also involves glial-glial engulfment interac-
tions involving microglia. In the postnatal mouse, subsets of reti-
nal astrocytes undergo cell death and are cleared by local
microglia to ensure proper vascular development and function
in the mature eye (Puñal et al., 2019). The underlying neuronal
cues that specify which synapses are to be eliminated remain
largely unknown.

Several receptors and secreted factors in microglia, including
CR3/Mac1, TREM2, GPR56, P2yR12, Cx3Cr1, and complement
proteins mediate developmental synaptic pruning across multi-
ple regions (Paolicelli et al., 2011; Schafer et al., 2012; Sipe et al.,
2016; Filipello et al., 2018; T. Li et al., 2020). For example, in the
visual system, complement factors C1q and C3 contribute to syn-
aptic removal by microglia in a CR3-dependent manner (Stevens
et al., 2007; Schafer et al., 2012; Vasek et al., 2016). Complement-
independent microglial synaptic elimination has been demon-
strated in the hippocampus (Paolicelli et al., 2011; Weinhard et
al., 2018) and barrel cortex (Gunner et al., 2019). Further, the
TAM (Tyro/Axl/Mer receptor tyrosine kinase family) receptor
MerTK is expressed in microglia and regulates its phagocytosis
of apoptotic cells in adult mouse neurogenic regions and neuro-
degeneration models (Fourgeaud et al., 2016). It remains unclear
whether these pathways are temporally or spatially regulated
during developmental pruning, and whether these mechanisms
mediate function independently or cooperatively. Readers are
referred to comprehensive reviews on these topics (Stephan et
al., 2012; Schafer and Stevens, 2015; Luchena et al., 2018; Wilton
et al., 2019).

Ectodermal lineage-derived astrocyte glia of the CNS also
contribute to remodeling of immature neuronal circuitry. The
first description of this was in the dLGN, the key thalamic relay
nucleus of the visual system (Chung et al., 2013). Astrocytes
remove weak synapses that fail to stabilize using the receptors
CED-1/Draper1/MEGF10 and MerTK (Chung et al., 2013).
Intriguingly, loss of the TREM2 receptor in microglia causes
aberrantly increased astrocytic pruning activity, beyond what
might be expected for mere compensatory changes (Jay et al.,
2019). Further, in the developing mouse dLGN, ablating MerTK
causes a transient increase in microglial engulfment, indicating
a possible compensatory mechanism for impaired astrocyte
engulfment (Chung et al., 2013). These studies suggest that astro-
cytes and microglia may cooperate for efficient developmental
pruning, but how astrocytes regulate engulfment or coordinate
with microglia remains poorly defined.

In the PNS, terminal Schwann cell glia at the developing neu-
romuscular junction clear shed axosome debris (small vesicles
released from axons) and remove supernumerary synapses
(Bishop et al., 2004; I. W. Smith et al., 2013; Darabid et al., 2014;
Lee et al., 2016). This engulfment correlates with neuronal activ-
ity, since weaker neuromuscular junction terminals are preferen-
tially eliminated. Although the mechanisms underlying this
process and its relationship to neuronal activity are not well
defined, they include roles for the glial isoform of Neurofascin

(Nfasc155) and neuregulin Type III (NRG1 Type III) on motor
axon nerve terminals (Roche et al., 2014; Lee et al., 2016). Roles
for engulfment by other peripheral glia in sculpting sensory cell/
neuron number or shape during development have not yet been
reported.

The importance of glia-dependent phagocytosis and pruning
of neural fragments during early development is uncontested.
However, our understanding of the cellular and molecular mech-
anisms that mediate these glial functions remains superficial.
Two insights into developmental pruning are summarized as fol-
lows (Fig. 1): (1) identification of a new cell type phagocytosing
dying neuron debris in the developing zebrafish (Zhu et al.,
2019); and (2) establishment of PS exposure as an “eat me” signal
for microglial pruning in development (Scott-Hewitt et al.,
2020).

Migratory neural crest cells phagocytose dead cells in the develop-
ing nervous system
Cell death is an important component of development, and it
produces substantial amounts of debris that must be cleared.
Currently, the mechanisms responsible for clearing this debris
remain poorly understood. For example, neural tube closure gen-
erates a significant amount of cellular debris during early neuro-
genesis (Schluter, 1973; Weil et al., 1997; Buss et al., 2006). This
debris is efficiently cleared, although myeloid-derived phagocytes
have not yet colonized the trunk (Herbomel et al., 1999). Using
in vivo, time-lapse imaging in zebrafish, we discovered that neu-
ral crest cells are phagocytic during early development (Zhu et
al., 2019). We showed that these cells migrate toward dead cells
using recruitment mechanisms (e.g., IL-1b ) similar to those
used by professional phagocytes, and they process engulfed ma-
terial, such as other phagocytes via PI(3)P1 and Lamp11 phago-
somes (Zhu et al., 2019). Intriguingly, we observed that crest cells
even migrate into the ventral spinal cord via transition zones and
phagocytose debris in the CNS (something we observed when
studying glial dynamics at these locations, but did not under-
stand) (C. J. Smith et al., 2016). Together, our findings reveal a
novel role for neural crest cells in debris clearance in the CNS
and PNS during early development, before the infiltration of pro-
fessional phagocytes. This new role of neural crest cells during
early neural development places them among a growing list of
nonprofessional phagocytes, including glia in the embryonic
Drosophila CNS, zebrafish epithelial cells, PNS satellite glia, reti-
nal cells, and neuronal progenitors, that function when profes-
sional phagocytes are not present or sufficient to clear debris.
This reveals a broader context in which the immune system
interacts with the nervous system; and many questions remain,
including how the nonprofessional and professional phagocytes
interact during these early stages just after myeloid cell infiltra-
tion, and how debris clearance is coordinated when professional
and nonprofessional phagocytes coexist.

Coupling early circuit development with specific genetic
manipulations, imaging tools, and behavioral assays will provide
insight into the roles that neural crest cells play as phagocytes
and molecular mechanisms that drive both professional and
nonprofessional phagocytes during neural development. This
will lead to a deeper understanding of fundamental processes
that build the nervous system and provide insight into what
could also go awry in neurodevelopmental disorders.

The role of PS in microglial pruning of synaptic elements
The signals specifying which neuronal structures (e.g., axons,
synaptic boutons, and postsynaptic elements) are targeted
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for elimination by microglia, and how these signals may be
regulated, remain largely unknown. Although the secreted
complement proteins C1q and C3 label a subset of retinoge-
niculate synapses in the dLGN, the molecules that recruit
complement and microglia to specific axons and synaptic
elements remain elusive. Similarly, although the role of neu-
ronal activity in synaptic refinement (Katz and Shatz, 1996;
Hua and Smith, 2004; Hooks and Chen, 2006; Huberman,
2007; Burbridge et al., 2014) and microglial-mediated synaptic
pruning has also been well established (Schafer et al., 2012; Sipe et
al., 2016), how activity is translated into local downstream cues
mediating engulfment is not well understood.

Several immune signals contribute to the regulation of synap-
tic pruning by microglia. For example, neuronal CD47, a well-
known “don’t eat me” signal, regulates microglial pruning in an
activity-driven manner through interaction with the microglial
receptor, SIRP a. CD47-null mice exhibit enhanced synaptic
engulfment, synapse elimination, and fewer synapses in adult-
hood (Lehrman et al., 2018). Moreover, loss of CD47 occurs on
less-active retinal inputs in vivo, suggesting a model in which
“eat me” signals, such as C1q, localize to weak synapses, whereas
“don’t eat me” signals, such as CD47, are lost from weak synap-
ses (Lehrman et al., 2018). What upstream neuronal signals initi-
ate this process, and do various developing regions have
common signals that can be recognized by a variety of microglial
receptors and secreted proteins?

One immune molecule that regulates phagocytosis in diverse
contexts is the phospholipid PS. Externalization of PS is one of
the first events detected in cells undergoing apoptosis, contribut-
ing to recognition and removal by phagocytes. Transient, local-
ized PS exposure events can also occur in a nonapoptotic
manner, facilitating removal of specific subcellular structures by
phagocytes (Smrz et al., 2007; Segawa et al., 2011). In neurons,
PS exposure can occur locally on injured axons (Shacham-
Silverberg et al., 2018) or dendrites (Sapar et al., 2018), which are
then targeted for elimination while the remaining uninjured cell
structures are spared. Further, microglia express several known
PS-binding receptors that have been implicated in microglial tar-
geting and elimination: TREM2, GPR56, and TAM surface re-
ceptor tyrosine kinase proteins (which bind PS through adapter
proteins, e.g., Gas6 and protein S) TYRO3, AXL, and Mer
(Brown and Neher, 2014; Filipello et al., 2018; Lemke, 2019; T. Li
et al., 2020). C1q can also bind to exposed PS (either directly or
indirectly) and mediate engulfment (Païdassi et al., 2008; Martin
et al., 2012). Indeed, a recent study demonstrated that exposed
PS was sometimes present ex vivo on isolated synaptosomes that
were also tagged with C1q (Györffy et al., 2018).

We have recently shown that synaptic PS exposure occurs
predominantly at presynaptic terminals in both the hippocampus
and the dLGN. We also found that microglia engulf PS-labeled
material in a temporally regulated manner, coinciding with
established periods of microglial pruning. Importantly, local
developmental PS exposure occurs independently of caspase
3-mediated activation and apoptosis (Scott-Hewitt et al., 2020).
Furthermore, in C1q KO animals, which have altered synaptic
refinement and elimination in the visual thalamus (Stevens et al.,
2007), we observed increases in PS-labeled presynaptic terminals,
as well as a decrease in microglial engulfment of PS-labeled ma-
terial (Scott-Hewitt et al., 2020). Together, these findings suggest
that locally exposed PS could be a common neuronal signal dur-
ing developmental pruning, one that may be recognized by sev-
eral glial-expressed receptors and secreted factors. How these
pathways cooperate, in a temporally or spatially specific manner,

and whether PS exposure contributes to microglial synaptic tar-
geting in disease, will be important to examine in the future.

Glial engulfment in neural function
Whereas the importance of glial engulfment in the context of de-
velopment and injury is well established, the role of glial phago-
cytic function in mature neural function remains less clear.
Understanding how glia shape circuit function and activity
requires robust models to reliably monitor significant changes in
neuronal connectivity and signaling.

In the CNS, one established context for glial engulfment in
healthy neural tissue after development is the vertebrate retina,
where RPE glia-like cells engulf fragments of photoreceptor outer
segments (Bairati and Orzalesi, 1963; Young, 1967; Young and
Bok, 1969). This enables renewal and turnover of the outer seg-
ments, thereby presumably maintaining retinal health in the face
of continued phototoxic damage. Perturbations of this process
correlate with loss in visual acuity and retinal degeneration
(Kevany and Palczewski, 2010; Lakkaraju et al., 2020).

A more recently discovered site of glial engulfment in the
healthy, mature CNS is the hippocampus. For example, micro-
glial phagocytosis of synapses between engram cells has recently
been shown to mediate forgetting in healthy hippocampi of adult
mice through the C1q pathway (C. Wang et al., 2020). It is also
suggested that synapse engulfment by astrocytes via ephrin
receptors may affect hippocampal contextual fear memory
(Koeppen et al., 2018). Mechanisms underlying these glial func-
tions are not well established, however. Notably, new insights
into engulfment in the mature brain extend to neural progenitor
cells. Recent work reveals that neural progenitor cells may share
signaling mechanisms with glia (e.g., ATP signaling) to phagocy-
tose apoptotic neurons during adult neurogenesis (Lu et al.,
2011; Leeson et al., 2018).

In the PNS, there is significant turnover and neurogenesis
in the adult enteric nervous system. Resultant dying neuron
debris is phagocytosed by the intestinal tissue-resident mac-
rophages called muscularis macrophages (Kulkarni et al.,
2017). Engulfment functions in other PNS glia have not yet
been described.

Below, we present two unpublished findings showing that
glial engulfment also dynamically modulates normal sensory per-
ception in the C. elegans PNS and basal excitability in the mouse
CNS (Fig. 2). These studies also extend the role of glial engulf-
ment from the CNS (retinal pigment epithelial [RPE], astrocytes,
microglia) to the peripheral nervous system sense-organ glia.

C. elegans glia dynamically tune engulfment of neuron endings
to modulate animal behavior
The C. elegans nervous system comprises 302 neurons and 56
glia. Glial subtypes in this animal model include astrocyte-like
glia that enwrap the brain neuropil and synapses, mesodermal-
lineage glia, and peripheral sense-organ glia that associate with
cognate sensory neurons (Singhvi and Shaham, 2019). Three
features make studies of glial functions and glia-neuron inter-
actions exquisitely precise in C. elegans. (1) all neurons and
glia in this animal make invariant contacts within a mapped
connectome. This structurally invariant, but behaviorally plas-
tic, neural network drives behaviors, such as sensation, sleep,
mating, locomotion, and memory. (2) C. elegans is optically
transparent, facilitating in vivo microscopy and optogenetics.
Last, its extensive molecular-genetic toolkit allows any glia or
neuron of choice to be individually and reproducibly manipu-
lated. Effects of such perturbation can be queried at multiple

826 • J. Neurosci., February 3, 2021 • 41(5):823–833 Raiders et al. · Molecular Mechanisms of Glial Engulfment



levels, from genetic and genomic analyses, to cell-biological
and functional imaging of neural circuit networks, to animal
behavior and memory assays.

Recent studies of single glia-neuron interactions by us and
others have shown that C. elegans glia share molecular and func-
tional characteristics with glia in other species (Singhvi and
Shaham, 2019), including regulation of neuron shape and func-
tions. For instance, the largest C. elegans sense organ is the
amphid, which comprises 12 sensory neurons mediating percep-
tion of different modalities, and two glia, including the amphid
sheath glia cell (AMsh glia). The AMsh glia associates with all 12
neurons, including the AFD neuron, the animal’s primary ther-
mosensory neuron (Hedgecock and Russell, 1975; Perkins et al.,
1986; Mori and Ohshima, 1995; Inada et al., 2006). Sensory neu-
rons, such as the AFD, must carefully regulate the morphology
of their specialized sensory endings to properly track and encode
environmental information. We and others have shown that
AMsh glia secrete molecular cues to regulate the shape and func-
tions of the AFD neuron, including the ionic milieu around
AFD-neuron endings (Bacaj et al., 2008; Singhvi et al., 2016;
Wallace et al., 2016; Yoshida et al., 2016). All AMsh molecular
cues described thus far through these studies are conserved,
expressed in mammalian glia, and disease-relevant.

Strikingly, glial engulfment had not been described in this
animal model. In monitoring AMsh glia-AFD contact zones in
vivo using transgenically labeled animals, we serendipitously
observed labeled AFD puncta that were discontinuous with the
AFD cell body and within AMsh glia. Subsequent validation stud-
ies confirmed that these puncta indeed reflect fragments of AFD
ending engulfed by the AMsh glia (Raiders et al., 2020). Thus,
engulfment is another glial function conserved in C. elegans. This
finding also identifies thermosensation as a sensory modality, in
addition to mammalian vision, where glial engulfment has been
documented in healthy tissue.

We find that AMsh glial engulfment occurs only in postdeve-
lopmental adult animals. Remarkably, similar to developmental
pruning by astrocytes and microglia, AMsh glial engulfment
tracks AFD neuron activity and the “eat me” signal, PS. In line
with this, we uncovered a role for components of the conserved
apoptotic phagocytosis machinery of C. elegans (Mangahas and

Zhou, 2005; X. Wang and Yang, 2016) also in AMsh glial engulf-
ment of AFD endings. Some of these proteins are orthologs
of molecules previously implicated in glial engulfment in
Drosophila (CED-12/ELMO, CED-10/Rac1 GTPase) and mam-
malian retina (Rac1 GTPase) (Kevany and Palczewski, 2010;
Freeman, 2015) (Table 1). In addition, we uncovered two novel
mediators for glial engulfment, including a PS receptor and a
regulator of PS exposure (Raiders et al., 2020). These findings
underscore the analogous molecular mechanisms of glial engulf-
ment across species (C. elegans to human), systems (CNS/PNS),
and context (development, injury, function), and they highlight
the speed and precision this experimental setting affords.

Importantly, our ability to probe glial engulfment with single-
cell precision in vivo revealed two fundamental attributes of this
process: (1) C. elegans AMsh glia actively drive the extent of
engulfment rather than passively clear shed neuron debris; and
(2) AMsh glia-regulated engulfment dynamically modifies AFD
neuron shape and tunes thermotaxis behavior of adult animals
(Raiders et al., 2020). Together, these studies provide an explicit
demonstration that engulfment of a single neuron by a single glia
directly modulates neuron shape and animal behavior. Whether
dynamic glial engulfment similarly tunes sensorineural functions
and animal behavior in other animal models will be fascinating
to explore.

CNS-derived interleukin-33 promotes activity-dependent micro-
glial synapse engulfment and restricts seizure susceptibility
Innate immune signaling regulates tissue development and ho-
meostasis, including the remodeling of neuronal synapses in the
CNS. Immune dysfunction is implicated in the pathogenesis of
neurodevelopmental disorders, including epilepsy (Ravizza et al.,
2006; Aronica et al., 2007; Vezzani et al., 2015), a predisposition
for episodes of hypersynchronous neuronal activity, or seizures
(Scharfman, 2007; Jiruska et al., 2010). Because microglia are the
dominant immune cells in the brain parenchyma, they are a
potential mechanistic link between immune activation and epi-
lepsy (Eyo et al., 2017; X. Zhao et al., 2018). Therefore, defining
molecular regulators of microglial-synapse interactions is a topic
of emerging interest.

Microglia engulf synapses during development (Stevens et al.,
2007; Paolicelli et al., 2011; Schafer et al., 2012; Vainchtein et al.,
2018) and can also promote synapse formation during adult
learning (Parkhurst et al., 2013; Miyamoto et al., 2016).
Microglia contact neuronal dendritic spines in an activity-de-
pendent manner (Wake et al., 2009; Tremblay et al., 2010; Y. Li
et al., 2012; Eyo et al., 2014, 2015; Madry et al., 2018), indicating
that they are directly or indirectly responsive to neuronal activity.
Although microglial identity depends partly on lineage-deter-
mining transcription factors, such as PU.1, microglial function is
shaped by an exquisite sensitivity to environmental cues, such as
TGF-b , that can rapidly alter microglial identity in response to
injury, pathology, or neuronal activity (Butovsky et al., 2014;
Gosselin et al., 2014,2017; Lavin et al., 2014; Hrvatin et al., 2018).
However, the link between microglial transcriptional responses
to immune signaling and their functional outputs, such as
engulfment, is not well described.

The IL-1 family member interleukin-33 (IL-33) is a novel reg-
ulator of microglial synapse remodeling during development and
in adult plasticity (Vainchtein et al., 2018; Nguyen et al., 2020),
and it also plays important protective roles in the context of neu-
rodegeneration and after injury (Gadani et al., 2015; Pomeshchik
et al., 2015; Fu et al., 2016; Lau et al., 2020). Microglia respond to
IL-33 via the obligate coreceptor Il1rl1, and global deletion of

Figure 2. Recent insights into glial engulfment across species in the contexts of function.
In C. elegans sense-organ, glia dynamically engulf fragments of an associated neuron ending
by repurposing components of the phagocytosis machinery. In the mouse thalamus, micro-
glia engulf neuron fragments using IL-33 ligand and IL1RL1 receptor signaling. For color
code, see Figure 1. ?, Indirect evidence.
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Il33 or Il1rl1 during development causes defective microglial
engulfment of excitatory synapses and circuit hyperexcitability
(Vainchtein et al., 2018). One of the first brain regions to express
IL-33 is the thalamus, where expression begins around postnatal
day 5 (Vainchtein et al., 2018), and increases as synapses mature
(Golshani et al., 1998; Yoshida et al., 2009; Takeuchi et al., 2014,
2017). Notably, the thalamus is a key relay station of the brain,
and hyperactivity of the reciprocal connections between thala-
mus and cortex is a well-described circuit that can drive seizures
(Blumenfeld, 2005; Paz et al., 2010, 2013; Makinson et al., 2017).

In recent work, we define the impact of IL-33 on the micro-
glial epigenomic and transcriptomic landscape and identify the
scavenger receptor MARCO and neuronal activity as two factors
that modulate IL-33-dependent microglial engulfment. We fur-
ther demonstrate that IL-33 is required to regulate excitatory and
inhibitory synapse numbers during postnatal development and
restrict seizure susceptibility by early adulthood. These data
reveal an integral role for IL-33-dependent microglial activation
in orchestrating excitatory/inhibitory synaptic balance and in
regulating seizure susceptibility during brain development.

Glial engulfment in injury
Across species, many classes of glia display enhanced phago-
cytic activity in response to acute injury, as well as chronic
neurodegenerative conditions. For example, in the inner ear
of chick and mouse, glial-like support cells phagocytose hair
cell debris when they become damaged (Wan et al., 2013;
Monzack et al., 2015). In the brain, phagocytic activity of acti-
vated microglia and astrocytes has been well documented fol-
lowing traumatic injury, stroke, and in various disease states
(Neher et al., 2012; Verkhratsky et al., 2016; Tremblay et al.,
2019; Wilton et al., 2019; Hilu-Dadia and Kurant, 2020).
These engulfment responses are often neuroprotective, clear-
ing antigenic cell fragments and toxic protein aggregates (e.g.,
amyloid-b ) from the CNS. Interestingly, astrocyte-microglia
interactions can also occur in injury states. For example, in
some contexts, activated microglia secrete factors, including
C1q, IL1, and TNFa, to inhibit phagocytic activity of astro-
cytes (Liddelow et al., 2017). Finally, broad inflammation in
the CNS results in microglial engulfment of astrocytic end feet
at the blood–brain barrier, which promotes dysfunctional cer-
ebral vasculature (Haruwaka et al., 2019).

Peripheral Schwann cells also clear debris after acute and
chronic insults. Schwann cells remove myelin following sciatic
nerve injury through autophagy and the TAM receptors Axl and
MertK (Brosius Lutz et al., 2017), and also phagocytose periph-
eral nerve terminals in a mouse model of motor axon neuropathy
(Cunningham et al., 2020). Mechanisms driving this engulfment
are not well elucidated. Whether myelinating oligodendrocyte
glia in the CNS clear debris after injury also remains unclear.

Below is a summary of recent studies describing examples of
both protective and disease promoting roles for glia in various
model systems (Fig. 3).

Glial phagocytic responses to neural injury in Drosophila
The adult fruit fly (Drosophila melanogaster) offers a convenient,
genetically tractable, in vivo system to investigate pathways that
govern glial phagocytic reactions to neurodegeneration. In flies,
the transmembrane receptor Draper is essential for glial clear-
ance of degenerating neuronal projections during developmental
pruning and after acute nerve injury (MacDonald et al., 2006;
Ziegenfuss et al., 2012; Lu et al., 2014; Tasdemir-Yilmaz and
Freeman, 2014). The related mammalian receptors (MEGF10/

Jedi) are also essential for proper glial sculpting of the forming
CNS (Wu et al., 2009; Chung et al., 2013). In addition, the family
of Draper/MEGF10 receptors tap into common intracellular
transduction cascades, including Src tyrosine kinases, Jun ki-
nases, and cytoskeletal remodelers (e.g., Rac1 GTPase) (Doherty
et al., 2009; Ziegenfuss et al., 2012; Lu et al., 2014; Logan, 2017;
Purice et al., 2017; Winfree et al., 2017).

One pressing question in the field of glial immunity is
related to activation of glial engulfment responses. How do
injured (or apoptotic) neurons signal to glial cells to elicit pro-
tective immune responses, including clearance of neural de-
bris? Recent work in the adult fly now reveals that acute nerve
injury triggers insulin-like signaling cascades in responding
glial cells (specifically, ensheathing glia) and, subsequently,
upregulation of the Draper receptor (Musashe et al., 2016).
Activation of glial insulin-like signaling likely occurs through
calcium-dependent release of insulin-like peptide ligands
from severed axons (Musashe et al., 2016). In mammals, acti-
vation of insulin-like signaling in the brain is indeed neuro-
protective in acute injury and disease models, although the
specific effects of insulin/IGF signaling on glial engulfment
function, and specifically expression of MEGF10, remains to
be determined. Notably, during Drosophila development, apo-
ptotic neurons promote Draper upregulation in local cortex
glial cells through an alternative mechanism. Specifically,
dying neurons release ligands to activate glial Toll-like recep-
tors, which, in turn, upregulate Draper transcription in a
FoxO-dependent manner (McLaughlin et al., 2019). Together,
these studies reveal that a variety of conserved signaling cas-
cades orchestrate glial phagocytic function in the fly by con-
verging on the Draper/MEGF10 engulfment pathway.

As described above, dying neurons (or degenerating neuronal
fragments) often present the inner membrane leaflet phospho-
lipid PS to tag themselves for phagocytic removal. Indeed, this
process can be observed and manipulated in both the developing
and adult CNS of the fly (Hakim-Mishnaevski et al., 2019; Hilu-
Dadia and Kurant, 2020), and recent work suggests that abnor-
mal expression of the glial engulfment receptors Draper or six

Figure 3. Recent insights into glial engulfment across species in the context of injury/dis-
ease. In Drosophila, nerve injury induces release of insulin-like peptides and the comple-
ment-like thioester factors (TEPs). Insulin signaling drives engulfment of neuron debris
through CED-1/Draper upregulation. In the retina of a RP mouse model, the proinflammatory
cytokine CCL5 is upregulated and microglia exhibit elevated CD68 and Iba1, suggestive of an
activated state that exacerbates neuron loss. For color code, see Figure 1. ?, Indirect
evidence.
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microns under (SIMU) can trigger degeneration of select mature
neurons, promoting PS presentation, and subsequent clearance
(Hilu-Dadia and Kurant, 2020). How glial cells nonautono-
mously promote stress and, ultimately death, of discrete neuro-
nal subtypes remains to be determined.

Finally, it now clear that secreted complement proteins (e.g.,
C1q/C3) also mark select neurites and synapses for removal by
glial cells (Schafer and Stevens, 2015). Although flies lack an
adaptive immune system, they do possess several genes that
encode secreted complement-like factors, namely, thioester-con-
taining proteins (TEPs), which similarly coat invading pathogens
and apoptotic cells to be recognized by phagocytes. Interestingly,
recent work indicates that at least one secreted TEP serves as a
ligand for the Draper receptor in the developing salivary gland
(Lin et al., 2017). Moreover, our laboratory has shown that
TEPs are transcriptionally upregulated in phagocytic glia in
response to acute nerve injury and required for proper glial
clearance of degenerating axons (Purice et al., 2017; Boisvert
and M.L., unpublished data). Together, these findings fur-
ther highlight the conservation of extrinsic and intrinsic glial
signaling pathways to maintain optimal brain function,
health, and synaptic architecture.

Microglial pruning in RP
Microglia are the resident macrophages and primary defenders
of the neural retina. In a healthy retina, resting microglia are
localized in the inner layer, among retinal interneurons and reti-
nal ganglion cells, the output cells of the retina. Upon infection or
in response to cell injury, retinal microglia become activated and
migrate to the site of injury to protect the retina reducing inflamma-
tion and thus retinal degeneration by phagocytosing foreign bodies
and/or cellular debris (Silverman and Wong, 2018). However, in
chronic damage, such as in inherited retinal degenerations, micro-
glia may either protect the retina (Silverman et al., 2019) or aggra-
vate the degenerative process (L. Zhao et al., 2015; C. Wang et al.,
2020). Knowing the either protective or aggravating role of micro-
glia for each disease is an important step toward providing treat-
ment. One of the most important group of inherited retinal
degenerations, characterized by death of photoreceptors, is
called RP. RP usually progresses slowly with loss of night
vision followed by progressive loss of daylight vision in mid-
dle age (Ferrari et al., 2011). While inactivation of microglia
in a specific type of RP has been shown to delay retinal
degeneration (Eyo et al., 2014), their involvement in all the
different types of RP is still to be determined. The role of
microglia in RP because of mutation in the gene encoding
the receptor tyrosine kinase Mer (MerTK) is still unclear.
MerTK dysfunction causes an unusually severe form of RP in
human patients with blindness in teenage years (Mackay et
al., 2010). MerTK-dependent RP (mutMerTK RP) mutant
mice (Nandrot et al., 2000; Duncan et al., 2003) lack MerTK
activity and mimic the symptoms of human RP with rapid
postnatal retinal degeneration and apoptosis of rod photore-
ceptors by postnatal day (PN) 25 (Dowling and Sidman,
1962; Mazzoni et al., 2019). Rod dysfunction and death in
mutMerTK RP are not rod cell autonomous because MerTK
is not expressed by rods. Instead, it serves as an engulfment
receptor for neighboring RPE cells during daily clearance of
spent rod outer segment debris as part of a lifelong mainte-
nance program of outer segment renewal. Distress of rods is
thus secondary to failure of debris clearance by mutMerTK
RPE cells. This does not explain, however, the fast rate of progres-
sion of mutMerTK RP, which is especially intriguing because

outer segment renewal commences in mice/rats only after eye
opening (around PN 16). Not surprisingly, in advanced stage of
the disease, abnormal presence of activated microglia in the photo-
receptor layer of mutMerTK retina is found and has been thought
to clear cellular debris (Thanos, 1992; Kohno et al., 2015; Di
Pierdomenico et al., 2017). While these data support a role for
microglia in the severity of mutMerTK RP, depletion of microglia
in rats presenting a natural deletion for MerTK gene (RCS rats)
from PN 15 show no benefit to photoreceptors and actually wor-
sen visual function (He et al., 2019). However, most recently, the
Finnemann laboratory found activated microglia in the photore-
ceptor layer of the RCS rat retina as early as PN 20, an age before
detectable outer segment debris buildup, let alone photoreceptor
apoptosis (Lew et al., 2020), suggesting a role for microglia in addi-
tion to the late-stage clearance of cellular debris. Moreover, the
proinflammatory cytokine CCL5, known to be a chemoattractant
for microglia, is elevated as early as PN 14 in RCS rat retina.
Strikingly, PN 14 RCS retina also show elevated levels of microglia
proteins Iba-1 and CD68, indicating microglia activation before
migration and, remarkably, before eye opening, at which age outer
segment renewal becomes fully active. Several strategies to reduce
microglia starting at PN 10 were effective in slowing the rate of
photoreceptor loss and partly preserving rod function (Lew et al.,
2020). Notably, these approaches included applying tamoxifen
nonsystemically, as eye drops. These recent advances by the
Finnemann laboratory reveal that microglia in mutMerTK RP
play roles unrelated and before clearance of dying rods or their de-
bris, which accelerate the rate of retinal degeneration. The specific
nature and cell type of origin of the stimuli that activate microglia
remain to be identified. It is tempting to speculate that modulating
such stimuli (e.g., by decreasing activation before onset of symp-
toms) in inherited mutMerTK RP might extend useful vision to
human patients with mutMerTK RP.

In conclusion, insights into the critical glial function of phag-
ocytosis are rapidly evolving. Advent of new molecular genetic
technologies has provided power and renewed excitement in
investigating the active role of glia in modulating neural func-
tions, including through engulfment. Yet, it is clear that many
fundamental attributes of glial engulfment remain unexplored
at the level of molecular mechanism and single-cell resolu-
tion. New signaling effectors will undoubtedly continue to be
discovered, but, more importantly, the developmental and
functional consequences of glial engulfment programs need
to be further elucidated.

Nonetheless, it is already apparent that mechanisms of glial
engulfment are broadly conserved across systems, contexts, and
species, suggesting that molecular insight from facile genetic
models will facilitate rapid dissection of how phagocytic activity
of glia contributes to formation, function, and disease of the
nervous system. For example, microglial synaptic targeting not
only occurs in development, but also in vulnerable brain regions
of several disease models (Neher et al., 2012; Y. Wang et al.,
2015; Hong et al., 2016; Schafer et al., 2016; Vasek et al., 2016;
Werneburg et al., 2020).

The explosion of developmental genetic systems examining
glial engulfment of neuron fragments is providing rapid insights
into how neuronal activity directs innate glial responses, engulf-
ment, and, ultimately, mature circuitry. An important area where
many pressing questions remain is how glial phagocytic responses
subtly influence developed brain circuits. This is especially relevant
because even fine modulations of synaptic connectivity alter learn-
ing and memory, sleep patterns, circadian rhythms, and suscepti-
bility to disease. Finally, there are important outstanding questions
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to explore regarding aged brain function and neurodegenerative
disorders. In what contexts are glial phagocytic responses benefi-
cial, and in which instances are they detrimental? As we move for-
ward, continued comparative analyses of glial engulfment across
species and systems (central and peripheral glia) will offer exciting
new opportunities to understand nervous system formation and
homeostasis.
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