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A central goal of neuroscience research is to understand how experiences modify brain circuits to guide future adaptive
behavior. In response to environmental stimuli, neural circuit activity engages gene regulatory mechanisms within each cell.
This activity-dependent gene expression is governed, in part, by epigenetic processes that can produce persistent changes in
both neural circuits and the epigenome itself. The complex interplay between circuit activity and neuronal gene regulation is
vital to learning and memory, and, when disrupted, is linked to debilitating psychiatric conditions, such as substance use dis-
order. To develop clinical treatments, it is paramount to advance our understanding of how neural circuits and the epige-
nome cooperate to produce behavioral adaptation. Here, we discuss how new genetic tools, used to manipulate neural
circuits and chromatin, have enabled the discovery of epigenetic processes that bring about long-lasting changes in behavior
relevant to mental health and disease.
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Introduction
In 1942, Waddington coined the term “epigenetics” to explain
phenotypic changes that occur with cellular differentiation
throughout development (Waddington, 1942). As the brain
and other tissues develop, cells progress through an elaborate
process of fate specification involving accumulation of epige-
netic signatures that direct gene expression through the mo-
lecular organization of chromatin, a compact composite of
DNA and histone proteins (Rivera and Ren, 2013). All histones
can undergo a multitude of post-translational modifications that
dynamically regulate DNA accessibility and, ultimately, govern
gene transcription. In their entirety, these epigenetic features
have been denoted the epigenome, which operates at the inter-
section of genome, cellular activity, and the environment.

Over the past two decades, numerous chromatin-modifying
and -remodeling enzymes have been discovered, many of
which not only play roles during development but also have
critical functions for epigenetic processes in differentiated

cells, including activity-dependent transcription in mature
neurons (Levenson and Sweatt, 2006). Early evidence for a key
role of chromatin regulation in neurons derived from studies
focused on histone acetylation, often by manipulating the
opposing activities of two families of epigenetic “writer” and
“eraser” enzymes: the histone acetyltransferases (HATs) that
acetylate histones and the histone deacetylases (HDACs) that
remove acetyl groups. Histone acetylation was shown to relax
the compact chromatin structure, thus rendering genes accessible
to the transcriptional machinery and supporting gene activation
(Shahbazian and Grunstein, 2007). In addition, acetylation and
numerous other post-translational modifications of histones gen-
erate binding sites for “reader” proteins that coregulate gene
expression; indeed, the majority of HAT and HDAC enzymes
also contain bromodomains that allow their recruitment and
binding to acetylated chromatin (Zaware and Zhou, 2019).

In the adult brain, histone acetylation was found to have
broad effects on chromatin function and gene expression across
different brain regions and neuronal subtypes, and is most
famously implicated in processes of learning and memory (Gräff
and Tsai, 2013; Peixoto and Abel, 2013; Mews et al., 2017, 2019).
In recent years, an avalanche of epigenetic mechanisms has been
discovered that likewise influence gene expression involved in
memory formation. These include not only numerous other his-
tone marks, such as methylation, phosphorylation, ubiquityla-
tion, and sumoylation, but also histone protein variants,
chromatin looping, long noncoding RNAs (lncRNAs), DNA
methylation, and DNA damage (Wood et al., 2006a; Zovkic et
al., 2014; Madabhushi et al., 2015). The ever-expanding
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complexity of chromatin dynamics is highlighted by new reports
revealing that histones can be directly targeted and modified by
serotonin and dopamine, two neurotransmitters that regulate
neuron activity during memory storage and retrieval (Farrelly et
al., 2019; Lepack et al., 2020).

Both transient and long-lasting changes in neuronal chroma-
tin structure are emerging with essential roles for memory and
the expression of complex behaviors; and it is evident that dysre-
gulation in these processes is central to vulnerability, manifesta-
tion, and trajectory of mental health disorders (Bastle and Maze,
2019). One such example is substance use disorder, where chro-
matin-based processes have been linked to persistent changes in
neural circuit activity and behavior (Mews and Calipari, 2017;
Nestler and Lüscher, 2019). However, although years of research
have shown that epigenetic mechanisms are critical to learning
and behavioral control, the fundamental question of how epige-
netic processes within neural circuits help transform experiences
into long-term memory remains to be fully understood.

Neuronal activity shapes the epigenome
The epigenome operates at the interface of the environment and
the genome, and is readily manipulated by neuronal circuit activ-
ity to coordinate circuit-specific gene expression that supports
neural plasticity (Levenson and Sweatt, 2005; Campbell and
Wood, 2019; Nestler and Lüscher, 2019). When organisms navi-
gate an environment, various stimuli activate neural circuits that
are involved in processing remarkably complex sensory informa-
tion, which can differ in valence, novelty, salience, and motiva-
tional value. Any given stimulus may activate only a small
coordinated group of neurons, referred to as ensemble, leading

to plasticity within neural circuits that determines how cells are
recruited in the future (Poo et al., 2016). To support such stimu-
lus-induced plasticity and to precisely guide adaptive behavior,
brain circuits are structurally reorganized involving activity-de-
pendent gene expression (Alberini and Kandel, 2014; Rotem et
al., 2015; Fernandez-Albert et al., 2019; Josselyn and Tonegawa,
2020; Marco et al., 2020).

Upon neuronal stimulation, calcium influx and G protein-
coupled receptors activate intracellular signaling cascades,
including the PKA and MAPK/ERK pathways, that transmit
information about circuit activity into the cell nucleus, where
epigenetic processes drive and maintain changes in gene tran-
scription (Gräff and Tsai, 2013) (Fig. 1). To make genes
involved in neural plasticity accessible to RNA polymerase,
the compact chromatin structure must be temporarily
“opened.” This process involves the recruitment of chroma-
tin-modifying enzymes to immediate-early genes (e.g., Fos,
FosB, and Junb), which become rapidly induced and subse-
quently regulate numerous other genes that encode membrane
receptors and neuronal signaling proteins, which, in turn,
modify the excitability and connectivity of neural circuits
(Mews and Calipari, 2017). Notably, while it is well established
that transient changes in chromatin mediate acute transcrip-
tion in response to neuronal activity, evidence has been accu-
mulating that certain epigenetic marks have long-lasting
effects on gene expression that outlive the initial transient sig-
nal of neural stimulation (Robison and Nestler, 2011; Fischer,
2014). In this view, epigenetic signatures emerge as vital mo-
lecular components of the memory engram. They are pre-
dicted to maintain changes in neural circuits that lastingly
adapt behavior to the environment.
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Figure 1. Epigenetic mechanisms regulate cell type-specific gene expression involved in memory storage. Histone modifications, such as acetylation and methylation, regulate gene expres-
sion in response to experience (e.g., Mews et al., 2017). Newly developed sequencing technology enables the study of gene expression at the single-cell level and allows insight into the enor-
mous heterogeneity of gene activity profiles within defined neuronal populations. For example, snRNA-seq performed on hippocampal brain tissue enables cluster analysis that groups
individual single-cell transcriptomes by subregion and cell type. This approach can identify sets of marker genes whose expression distinguishes any such cluster. Shown is a projection of indi-
vidual cells following global dimensionality reduction that congregate into clusters representing the hippocampal subregions CA1, CA2, and CA3, the subiculum (SUB1-SUB3), the dentate gyrus
(DG), and GABAergic interneurons (GABA). Epigenetic mechanisms also act at the synapse, where microRNAs and lncRNAs regulate the localized translation and stability of mRNA transcripts
that encode proteins central to synaptic plasticity (Park et al., 2017; Madugalle et al., 2020).
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Epigenetic regulation in learning and memory
Neuronal activity results in dynamic gene expression that sup-
ports synaptic plasticity required for long-term memory and
future behavioral responses (Zovkic, 2020). Because epigenetic
mechanisms are central to this process, the question of how ge-
nome-wide changes in neuronal chromatin may dictate circuit-
and engram-specific plasticity has become a significant focus of
ongoing research (Nestler and Lüscher, 2019). Advancing our
understanding of such chromatin-based mechanisms in memory
is anticipated to not only have wide-ranging impact in molecular
neuroscience but also across clinical research on memory-related
disorders.

As outlined above, at the cellular level, the initial encoding of
memory involves activity-dependent gene expression that neces-
sitates dynamic chromatin changes. As early as 1979, it was
found that brain chromatin becomes acetylated when rats
undergo memory consolidation (Schmitt and Matthies, 1979).
However, the mechanistic insight from such early observations
was limited because the genomic regions that underwent histone
acetylation could not be identified. More recent studies using
chromatin immunoprecipitation revealed that memory-related
histone acetylation is specific to the regulatory enhancer and pro-
moter regions of individual genes, including immediate-early
genes that have long been implicated in learning and memory
(e.g., Erg1, Fos, and Bdnf). All these genes become quickly upreg-
ulated at the time of their transiently increased acetylation state
(Korzus et al., 2004; Peleg et al., 2010; Oliveira et al., 2011;
Bannerman et al., 2014; Mews et al., 2017).

Further, early experiments showed that memory storage can
be blocked by pharmacological inhibition of protein synthesis af-
ter learning, and that this sensitive period coincides with the
transient phosphorylation of CREB (Bourtchouladze et al.,
1998). Kinases activate this transcription factor on neuronal
stimulation and release of cAMP or Ca21. Phosphorylated CREB
protein binds to cAMP response elements in the DNA and
recruits a key HAT enzyme involved in memory, the CREB-
binding protein (CBP/KAT3A), to increase acetylation and
expression of its target genes (Gerritsen et al., 1997; Gräff and
Tsai, 2013; Bridi et al., 2017). The functional importance of his-
tone acetylation for memory formation was subsequently dem-
onstrated in genetic mouse models in which the activity of CBP
was reduced (Alarcón et al., 2004; Wood et al., 2005, 2006b;
Barrett et al., 2011; Oliveira et al., 2011). Correspondingly, mem-
ory consolidation could be enhanced when the catalytic activity
of HDACs was blocked pharmacologically, resulting in increased
histone acetylation (Levenson et al., 2004; Fischer et al., 2007,
2010; Vecsey et al., 2007; Stefanko et al., 2009; Haettig et al.,
2011).

Interestingly, HDAC inhibitor (HDACi) administration alone
generally has little effect on gene expression and produces few
side effects across different brain areas and tissues (J. Chandra et
al., 2011; Gräff et al., 2014). To explain this phenomenon, the
concept of cognitive epigenetic “priming” was put forward.
Accordingly, HDACi treatment enhances histone acetylation to
prime genes for rapid activation. It thus amplifies the induction
of transcriptional programs downstream of learning-related cir-
cuit activity and neuronal signaling, thereby boosting memory
formation (Gräff and Tsai, 2013). Follow-up studies have corro-
borated the link between histone acetylation, stimulus-depend-
ent gene expression, and different phases of memory, thus
supporting a mechanism whereby HDACi-induced epigenetic
priming may ameliorate memory (Burns and Gräff, 2020). In
addition to histone acetylation, many other neuro-epigenetic

processes have emerged with critical roles for activity-dependent
transcription and synaptic plasticity, highlighting the importance
of epigenome regulation in information storage and normal
brain function (for review, see Campbell and Wood, 2019).
However, despite this scientific progress, the chromatin-based
mechanisms that precisely govern gene expression in neuronal
ensembles for memory storage, maintenance, and retrieval
remain not fully understood.

A valuable approach that emerged in recent years to investi-
gate epigenetic processes within engram ensembles relies on the
activity-dependent expression of reporter proteins. By taking
advantage of this tactic to label engram cells, a new study deter-
mined that ensembles are indeed marked at the epigenetic level,
as memory encoding was found to have lasting effects on chro-
matin accessibility and promoter–enhancer interactions (Marco
et al., 2020). Interestingly, the encoding of contextual fear mem-
ory was characterized by widespread increases in enhancer acces-
sibility without the expected transcriptional changes, indicating a
potential priming mechanism. Indeed, reactivation of engram
neurons on memory recall revealed that a large subset of these
“primed” enhancers forms de novo promoter–enhancer interac-
tions, associated with robust gene expression that regulates local-
ized protein synthesis and synaptic morphogenesis (Marco et al.,
2020). Similarly, a different study recently demonstrated that
stimulation of excitatory hippocampal neurons induces gene
loops and lastingly strengthens promoter–enhancer interactions
that become an enduring feature of epigenomic signatures linked
to neuronal activation (Fernandez-Albert et al., 2019). Together,
these data suggest that one of the ways neurons are incorporated
into ensembles involves epigenetic plasticity, providing experi-
mental evidence for epigenetic priming in engram neurons
(Marco et al., 2020).

Notably, the transcriptional program induced on reactivation
of engram neurons includes the expression of proteins involved
in mRNA transport and synapse-localized translation (Marco et
al., 2020). Studies have previously shown that thousands of plas-
ticity-related transcripts localize to the synaptic neuropil (Cajigas
et al., 2012), far outside the cell nucleus. Activity-dependent
translation of these protein-coding transcripts plays a crucial role
in synaptic plasticity, and miRNA-dependent mechanisms are
emerging with essential functions in controlling this process
(Fig. 1). Synapse-localized mRNA transcripts were found to be
translationally repressed by microRNAs, reminiscent of a trans-
lational regulatory mechanism that may bring about synapse-
specific modifications in an activity-dependent manner (Chern
et al., 2019). Indeed, research led by T.A.’s group at the
University of Iowa revealed that microRNAs could be degraded
by the translin/trax RNase complex on neuronal stimulation,
which reverses translational silencing and therefore disinhibits
the synthesis of synaptic proteins needed for long-term memory
consolidation (Fu et al., 2016; Park et al., 2017; Baraban et al.,
2018). Given the importance of such local processes for synaptic
plasticity and brain function (Martin et al., 2000; Sutton and
Schuman, 2006), miRNA-dependent regulation of local transla-
tion appears to be a neuro-epigenetic strategy that is critical to
mental health and disease (Hu and Li, 2017).

Drugs of abuse co-opt activity-dependent transcription to
influence neuronal function
Together, the discoveries mentioned above offer significant
insight into epigenetic regulation of activity-dependent tran-
scription in learning and memory. This process is vital to basic
behavioral control and can be dysregulated by a wide range of
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psychiatric disease states. Preclinical research has revealed that
alterations in chromatin and gene expression underlie various
memory-related brain disorders, with substance use disorder
(the primary focus of this review) being widely studied. In sub-
stance use disorder, drugs of abuse hijack processes in the brain
that control reward learning to drive aberrant behavioral
responses that develop with repeated exposure to these drugs
(Volkow and Morales, 2015). The neural source of these behav-
ioral changes has been linked to dysfunction in neural circuits
across the brain (Koob and Volkow, 2016); however, pinpointing
the molecular and epigenetic drivers that allow these circuit
changes to persist throughout prolonged periods of withdrawal
has been difficult because of the complicated technical nature of
these studies.

Despite their very different chemical structures and initial
protein targets, drugs of abuse ultimately converge by producing
long-lasting changes in gene regulation in a central brain region
of reward, the nucleus accumbens (NAc) (Robison and Nestler,
2011; Mews and Calipari, 2017). In the NAc, drugs of abuse ele-
vate dopamine levels and consequently alter transcriptional pro-
grams that are believed to promote long-lasting synaptic and
behavioral adaptations (Day et al., 2007). The NAc is primarily
composed of two distinct types of medium spiny neurons
(MSNs), the D1 and D2 dopamine receptor-expressing subtypes,
which exhibit dramatic differences in activity and effects on drug

reward (Surmeier et al., 2007; Lobo and Nestler, 2011). However,
even with well-studied drugs, such as cocaine, drug-induced
transcriptional responses in the NAc remain poorly understood
because of cellular heterogeneity and complex drug actions
via multiple neurotransmitter systems. To overcome these
challenges, high-throughput single-nucleus RNA-sequencing
(snRNA-seq) is being used in newer studies to transcriptionally
define drug-induced gene expression signatures with single-cell
resolution (Savell et al., 2020) (Fig. 2).

To create a comprehensive molecular atlas of cellular sub-
types in the NAc, a recent study from J.D.’s group at the
University of Alabama at Birmingham used snRNA-seq and
defined cell type-specific responses to acute drug experience in a
rat model system of cocaine experience (Savell et al., 2020). This
transcriptional map enabled the identification of specific neuro-
nal subpopulations that are activated by cocaine and allowed
characterization of an immediate-early gene expression program
that is upregulated in subclusters of D1-MSNs following cocaine
experience (Fig. 2). This set of dopamine-responsive genes was
enriched for CREB-binding motifs, indicating that classical
CREB-mediated induction of immediate-early genes drives the
dopamine-induced gene expression program. Computational
analyses further revealed that multiple genes exhibited high pre-
dictive power in marking the cocaine-activated subcluster, indi-
cating that key neuronal genes (e.g., the postsynaptic scaffold
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Figure 2. Single-nucleus RNA-seq reveals cell-specific transcriptional response to cocaine. a, Global dimensionality reduction clustering (UMAP) of 15,631 individual NAc nuclei identifies 16
transcriptionally distinct cell classes of the rat NAc, including MSNs expressing Drd1 and Drd2 mRNA. b, Circos plot of differentially expressed genes 1 h after cocaine administration, analyzed
within each cell type. Cocaine differentially expressed genes are most abundant in Drd1-MSNs, followed by astrocytes. c, UMAP plot from a in gray with the representative expression of Fosb,
a cocaine-responsive immediate-early gene. Fosb mRNA expression is increased in a small fraction of “activated” Drd1-MSNs. Data from Savell et al. (2020).
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protein gene Homer1 and the neurotrophin receptor Ntrk2) may
facilitate the recruitment of individual cells into an ensemble
encoding drug-related memory (Fig. 2).

To further characterize the neuronal response to this dopa-
mine-mediated gene expression, a large-scale CRISPR/dCas9-
based activation strategy was engineered that re-creates the
induction of this gene expression program. By conjugating
domains of known enzymatic transcriptional activators (e.g.,
VP64, to CRISPR/dCas9 fusion proteins that are targeted to spe-
cific gene-regulatory loci), genes that are central to dopamine-
mediated gene expression can be directly activated (Savell et al.,
2019). The multiplexed induction of the core immediate-early
gene program (Dopaplex) initiated a secondary synapse-centric
transcriptional profile, and not only altered striatal physiology in
vitro, but also enhanced cocaine sensitization in vivo (Savell et
al., 2020). These findings illustrate how recent advances in
genetic tools and sequencing technology enable the characteriza-
tion of activity-related transcriptional responses, both across the
genome and with cellular precision. Notably, this study also
demonstrates that drug-responsive gene programs are sufficient
to initiate physiological and behavioral adaptations to drugs of
abuse. However, there are still gaps in knowledge regarding the
cellular and molecular mechanisms that underlie the disruptions
in neural plasticity and motivation caused by repeated exposure
to drugs of abuse.

Dopamine-regulated gene programs and the role of
transcription factors in motivation
Early studies investigating transcriptional changes in the NAc
and other brain regions involved in reward discovered that the
transcription factor DFosB becomes upregulated with chronic
drug exposure (Nestler et al., 2001). This protein is a unique
member of the AP1 family of transcription factors, as its excep-
tional stability causes it to accumulate to high levels with
repeated drug exposure. This uncommon stability of DFosB
presents an attractive candidate mechanism through which tran-
sient gene expression induced by drugs of abuse can produce
persistent changes in gene regulation.

More recent evidence from M.K.L.’s group at the University
of Maryland indicates that another transcription factor, early
growth response 3 (Egr3), also plays a key role in the response to
drug-related dopamine signaling and the transition to substance
use disorder (R. Chandra et al., 2015). Their research showed
that repeated exposure to cocaine has opposite effects on Egr3
expression in D1 and D2 subtypes of NAc MSNs (R. Chandra et
al., 2015). Further, when Egr3 expression was genetically dis-
rupted in either MSN subtype in mice, both cocaine-seeking and
sensitization behaviors were blunted. Examination of candidate
target genes with Egr3 binding sites revealed that many chroma-
tin-modifying enzymes are putative transcriptional targets of
Egr3, including histone lysine demethylases (HDMs). Moreover,
Egr3 was found to regulate two key mitochondria-related mole-
cules that support synaptic plasticity in the NAc, namely, Drp1,
which mediates fission, and PGC-1a, a transcriptional activator
(Z. Li et al., 2004; X. Li et al., 2010; Cheng et al., 2012; R.
Chandra et al., 2017b; Divakaruni et al., 2018; Cole et al., 2020).
Circuit-specific reduction of Drp1 expression in D1-MSNs
resulted in markedly lowered drug-seeking behavior after co-
caine self-administration. Correspondingly, disruption of mito-
chondrial fission was found to blunt cocaine-induced synaptic
plasticity in D1-MSNs (R. Chandra et al., 2017a). Furthermore,
enhancement of PGC-1a in either D1-MSNs or D2-MSNs bidir-
ectionally altered cocaine-induced behaviors (R. Chandra et al.,

2017b). Consistent with its role in regulating these transcrip-
tional targets, genetic disruption of Egr3 in D1-MSNs was shown
to prevent cocaine-induced mitochondrial fission in these neu-
rons (Cole et al., 2020).

The link between Egr3, histone-modifying enzymes, and mi-
tochondrial molecules suggests that cocaine induces circuit-spe-
cific epigenetic adaptations in the striatum, linked to disturbed
neuron plasticity and disrupted motivation (R. Chandra et al.,
2017a; Engeln et al., 2020). It is also plausible that Egr3 controls
its own transcription by influencing the expression and abun-
dance of gene-regulatory HDMs. Mechanistic insight into these
questions may be gained by using newly developed genetic tools
that use CRISPR fusion proteins, discussed above, to engineer
the epigenome at these central cocaine-regulated genes. These
cutting-edge tools can be used to manipulate histone methylation
at the Egr3 promoter and at mitochondrial protein genes, to
determine whether circuit-specific epigenetic regulation of these
targets influences cocaine-induced transcription and drug-
related behaviors.

Epigenetic priming supports persistent changes in activity-
induced transcription
An ongoing focus of research into the molecular pathology of
substance use disorder is exploring mechanisms that preserve
altered patterns of gene regulation across the brain’s reward cir-
cuitry. Long after the initial effects of chronic drug exposure
have faded, changes in the transcriptional states of drug-respon-
sive neurons can persist, even throughout prolonged withdrawal
(Feng et al., 2014; Maze et al., 2014; Walker et al., 2018).
Permanent modifications in chromatin structure are hypothe-
sized to cause these lasting changes in gene transcription. Akin
to epigenetic priming mechanisms in learning and memory that
mediate enhanced transcriptional responses to neuronal reacti-
vation on memory recall (Gräff and Tsai, 2013; Marco et al.,
2020), changes in chromatin may influence reward-related gene
expression on a timescale that extends far beyond the initial drug
stimulus. Such lasting aberrations in the epigenome may also
contribute to maladaptive behaviors in substance use disorder.
Indeed, epigenetic remodeling has emerged as a potent regulator
of drug-induced plasticity and is implicated in addiction to
stimulants, opiates, ethanol, and nicotine (Walker et al., 2015).
However, the relationship between drug-induced epigenetic
modifications and aberrant gene regulation that contributes to
relapse remains unclear.

Recent investigations into relapse-associated gene expression
revealed that, following cocaine self-administration, large sets of
genes are transcriptionally primed within the NAc and other
reward-related brain regions (Walker et al., 2018). These primed
genes remain highly responsive to drug-related circuit activity
even after prolonged withdrawal, and among them are synaptic
proteins that contribute to drug-related adaptations on the cir-
cuit level, such as AMPAR and NMDAR subunits (Pierce et al.,
1996; Reid and Berger, 1996; Baker et al., 2003; Kourrich et al.,
2007; Kau et al., 2008). Notably, cocaine-related increases in
striatal AMPAR expression have been linked to the insertion of
AMPARs that lack the GluR2 subunit, which renders them cal-
cium-permeable (Conrad et al., 2008). This shift in synaptic re-
ceptor composition likely augments calcium-mediated signaling
cascades that potentially reinforce cocaine-induced chromatin
changes with potent effects on drug craving.

Bioinformatic analysis predicts well-known transcription fac-
tors as upstream regulators of relapse-related gene expression:
among the highest-ranked factors are, again, CREB and AP1,
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thus validating prior work on the initial actions of
drugs of abuse discussed earlier. Remarkably, within a
given brain region, different sets of transcripts are
regulated by each identified transcription factor before
and after chronic drug exposure (Walker et al., 2018).
These findings indicate an essential layer of regulation,
in addition to altered signaling because of structural
changes at the synapse: the epigenetic landscape may
ultimately determine the inducibility of discrete gene
programs that characterize substance use disorder. A
fundamental challenge is to determine the drug-related
changes in chromatin for each neuronal subtype. As
the functionally distinct D1 and D2 MSN subtypes ex-
hibit dramatic differences in activity and effects on
drug reward, ongoing work aims to investigate the dis-
crete chromatin alterations in these separate striatal
circuits.

One recent approach to detect “open” chromatin
regions that are indicative of active gene transcription
or priming is the use of assay for transposase-accessi-
ble chromatin with sequencing (Buenrostro et al.,
2015). Using fluorescence-activated nuclei sorting
coupled to assay for transposase-accessible chromatin
with sequencing, chromatin accessibility has been
surveyed genome-wide in purified populations of D1 and D2
MSNs to assess changes after acute or chronic cocaine expo-
sure, and after prolonged withdrawal (Mews et al., 2018). These
preliminary data indicate that chromatin “opening” occurs
selectively in D1 MSNs on acute exposure to cocaine. This co-
caine-related accessibility is also linked to the induction of neu-
ronal gene programs outlined above (P.M. and Eric J. Nestler,
unpublished observations). Notably, although preliminary,
these neuron-subtype-specific data indicate that D1 chromatin
accessibility persists even after prolonged withdrawal from
chronic cocaine exposure. It suggests that epigenome remodel-
ing in D1 MSNs may mediate the enduring effects of drug ex-
posure on striatal gene regulation. We posit that chronic
cocaine exposure alters the chromatin landscape in D1 MSNs
in a way that primes drug-related gene expression programs,
which ultimately support the enduring changes in synaptic con-
nectivity and behavior (Mews et al., 2018).

Circuit-specific adaptations in the striatal epigenome of
males and females control the transition to addiction
Whereas a large amount of work has focused on the transcrip-
tional and epigenetic processes that are dysregulated to drive
substance use disorder, one often overlooked factor is the contri-
bution of biological sex to these processes (Zachry et al., 2019).
Notably, the sex-specific effects of cocaine in the NAc have been
identified as key factors that enhance motivation for cocaine in
females. Thus, studies that define the interplay between neu-
ronal activation and long-term epigenetic remodeling are crit-
ical to understanding and treating addiction disorders in both
sexes (Johnson et al., 2019). To this end, an ongoing study is
combining cocaine self-administration in male and female
C57BL6/J mice with transcriptional and proteomic profiling
to identify unique molecular signatures that underlie drug-
induced plasticity.

As many have reported previously, in rodents, females are
more motivated to self-administer both natural reinforcers and
cocaine, suggesting that females may be more vulnerable to the
reinforcing properties of drugs, especially stimulants (Becker et
al., 2017). Further, differences in motivation for natural

reinforcers suggest key differences between males and females
at baseline that could interact with drug-induced plasticity to
alter the trajectory of cocaine-induced changes within the
brain (Kutlu et al., 2020). To investigate this sexual dichot-
omy, E.S.C. and her group at Vanderbilt University recently
assessed cocaine-induced sex-specific alterations in the
proteomic and transcriptional landscape that occur inde-
pendently of differences in drug intake. Notably, even in sit-
uations where drug consumption was matched between the
sexes, robust differences in cocaine-induced proteomic regu-
lation emerged. These studies found that cocaine-induced a
sex-specific proteomic signature that was nearly nonoverlap-
ping between males and females.

Intriguingly, analysis of upstream regulators identified multi-
ple activity-dependent HATs that are regulated by cocaine in
both males and females. As discussed above, dynamic histone
acetylation is an essential mediator of transient gene expression
directed by transcription factors in response to neuronal activa-
tion. Indeed, cocaine self-administration was associated with
increased acetylation of the same histone lysine residues in
both sexes, while the specific transcriptional outputs were
distinct. Together, these data suggest that cocaine engages
shared intracellular signaling cascades and HATs that, how-
ever, mediate sex-specific gene acetylation and differential
transcription. Conceivably, males and females are charac-
terized by distinct circuit-specific epigenetic signatures,
which collectively determine what genes may respond to in-
tracellular signaling by cocaine, therefore priming differen-
tial downstream transcriptional programs and sex-specific
protein expression. In this context, it will be of interest to
investigate the sex-specific role of other chromatin modifi-
cations linked to activity-dependent gene regulation, such
as relatively stable methylation of histones and the DNA
itself. Whereas the transcriptional response to cocaine is
sex-specific, the indistinguishable behavior at these time
points suggests that mechanisms driving cocaine-induced
plasticity and behavioral control occur through different
molecular effectors. These data highlight that understand-
ing the unique sex-specific mechanisms that drive cocaine
use disorder will be essential to developing widely effica-
cious treatments.

Figure 3. Alcohol metabolism and gut microbiome affect epigenetic regulation in the brain. Alcohol is
metabolized in the liver to acetate, which is released into circulation and enters the brain. In neurons, ace-
tate is used by ACSS2 to generate acetyl-CoA, boosting histone acetylation, and gene expression involved in
memory (Mews et al., 2019). SCFA metabolites are produced by bacterial fermentation of fiber. The three
most abundant of these (acetate, butyrate, and propionate) have been shown to regulate the catalytic ac-
tivity of HAT and HDAC enzymes that influence gene expression and behavior (Kiraly et al., 2016). Created
with www.BioRender.com.
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Emerging players in the epigenetic regulation of memory-
related gene expression
We are still at the frontier of understanding how epigenetic regu-
lation governs brain function in mental health and disease.
While histone modifiers, such as histone methyltransferases
(HMTs), HDMs, HATs, and HDACs, have been a focus of epige-
netic regulation, there are other epigenetic factors that continue
to emerge, such as the generation of metabolites used in histone
modification or regulation by different classes of noncoding
RNAs that have potent effects on activity-dependent gene
expression, learning and memory, and disease states.

Chromatin as a hub connecting metabolism to epigenetic regula-
tion in the brain
In recent years, chromatin-bound metabolic enzymes have
emerged as important players in epigenetic regulation (Boon et
al., 2020), leading to a fundamental shift in models of transcrip-
tional regulation and implicating epigenetic-metabolic processes
in brain function and behavior. Provocative findings of meta-
bolic enzymes regulating histone acetylation indicate that the
production of metabolic cofactors directly on chromatin may
allow the plasticity, dynamism, and speed required for hippo-
campal learning and memory (Mews et al., 2017; Sharma and
Rando, 2017). Several acetyl-CoA-generating enzymes reside
directly inside the cell nucleus and were found to drive gene
expression programs by fueling local histone acetylation with
this key metabolite (Wellen et al., 2009; Comerford et al., 2014;
Pietrocola et al., 2015; Mews et al., 2017). In the hippocampus,
the metabolic enzyme acetyl-CoA synthetase 2 (ACSS2) directly
binds to chromatin at key neuronal genes and interacts with
CBP to promote histone acetylation locally, thereby supporting
the transcription of plasticity-related genes during memory
encoding (Mews et al., 2017) (Fig. 3).

New findings indicate that histone acetylation in the brain
may also be under the direct influence of extracellular levels of
acetate (Soliman and Rosenberger, 2011; Mews et al., 2017,
2019). Notably, a major source of acetate is breakdown of alcohol
in the liver, leading to rapidly increasing blood acetate (Sarkola
et al., 2002; Pardo et al., 2013), the critical substrate used by the
metabolic enzyme ACSS2 to produce acetyl-CoA in neurons. A
recent report by Mews et al. (2019) used mass spectrometry to
track the fate of isotopically labeled alcohol, which revealed that
alcohol-derived acetate is rapidly incorporated into brain histo-
nes. The direct contribution of alcohol to histone acetylation was
found to rely on the catalytic activity of neuronal ACSS2, and be-
havioral experiments confirmed that this metabolic-epigenetic
process plays an important role in alcohol-related learning by
coordinating alcohol-induced gene expression in the hippocam-
pus (Mews et al., 2019) (Fig. 3).

The link between alcohol metabolism and histone acetylation
in the brain suggests that other external sources of acetate (pri-
marily sour foods and the gut microbiome) may similarly affect
histone acetylation to modulate memory (Cryan and Dinan,
2012; Mao et al., 2020; Moffett et al., 2020). Indeed, recent evi-
dence has demonstrated that the gut microbiome has marked
effects on neuronal function and behavior (Moffett et al., 2020).
Gut-derived short-chain fatty acids (SCFAs) are well docu-
mented to inhibit HDAC activity and alter transcription factor
activity (Davie, 2003; Shah et al., 2006). New evidence from
mouse models of morphine disorder further showed that
replacement of SCFA metabolites reverses the behavioral and
transcriptional effects of microbiome depletion (Hofford et al.,
2020). Together, these new studies add important mechanistic

insight into the role of gut-brain signaling for molecular and be-
havioral changes in mental health and disease, especially sub-
stance use disorders.

lncRNA in the epigenetic regulation of memory-related gene
expression
Another nontraditional but potent class of epigenetic regulators
is lncRNAs, which have recently gained widespread attention
because of their multidimensional capacity as decoys for tran-
scription factors, modular scaffolds, and guides to direct chroma-
tin modifiers within the nucleus (Mercer and Mattick, 2013).
lncRNAs, defined as any RNA longer than 200 bases that do not
code for protein, represent the most abundant family of noncod-
ing RNA in the brain. lncRNAs are expressed in a highly cell-
type- and spatiotemporally restricted manner (Mercer et al.,
2008), which uniquely positions them to mediate rapid adaptive
neuronal responses. Not surprisingly, lncRNA activity has been
implicated in the regulation of gene expression underlying
depression, impulsivity, and anxiety. For example, the lncRNA
Gm12371 was recently shown to influence hippocampal dendri-
tic morphology and synaptic plasticity (Raveendra et al., 2018).

Research on how lncRNA activity regulates fear extinction by
T.B.’s group at the University of Queensland has yielded new
insight into this process. In fear conditioning, animals learn
about associations between predictive cues and aversive out-
comes, such as a tone predicting foot shock, which drives the
conditioned behavioral response (freezing) to the previously
neutral cue. In fear extinction, animals experience the condi-
tioned cue in the absence of the aversive outcome. Thus, extinc-
tion is a learning process where animals learn that the previous
cue-outcome relationship no longer exists. Similar associative
learning processes are critical mediators of substance use disor-
der, where animals learn to associate environmental cues with
drug effects. These associations, and an impaired ability to
update them when they no longer exist, are critical mediators of
relapse. Thus, defining the neural mechanisms mediating extinc-
tion learning has been a major focus of neuroscience research.

Using a targeted RNA sequencing approach, T.B.’s group dis-
covered a significant number of novel experience-dependent
lncRNAs, including a unique population with features of func-
tional enhancer RNAs, as indicated by increased chromatin
accessibility and marked by acetylation of histone H3 lysine 27.
More than 100 lncRNAs derived from putative enhancer ele-
ments were induced by fear extinction learning, including a
novel activity-induced lncRNA that they have named ADRAM
(activity-dependent lncRNA associated with memory), whose
expression is necessary for fear extinction. Notably, ADRAM
does not regulate proximal gene expression by forming a DNA:
RNA hybrid, referred to as R-loop, or by long-distance DNA-
DNA interactions, as previously observed for enhancer RNAs,
but instead serves as a guide. ADRAM interacts with the brain-
enriched chaperone protein 14-3-3 to recruit the histone-mod-
ifying enzyme CBP to the promoter of the memory-associated
immediate-early gene NR4A2, resulting in enhanced expres-
sion of NR4A2 (T.B., unpublished observation). Notably,
knockdown of ADRAM disrupts this interaction and blocks
the learning-induced expression of NR4A2, thus impairing fear
extinction memory. Together, these findings broaden our
understanding of the scope of experience-dependent lncRNA
activity in the adult brain and highlight enhancer-derived
lncRNAs, including ADRAM, as key drivers of the epigenetic
regulation of gene expression in memory processes.
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In conclusion, looking forward, a deep mechanistic under-
standing of how neural circuit activity and the epigenome inter-
act to integrate a plethora of stimuli and shape behavior will pave
the way for new therapeutic interventions in neuropsychiatric
disease. One major challenge has been to functionally link epige-
netic changes (at specific loci, in specific cells) to behavioral out-
comes. Innovative and evolving CRISPR-based technology, as
outlined in this review, allows targeted modification of key gene-
regulatory chromatin loci to assay effects on behavior in preclini-
cal animal models and will help advance mechanistic studies of
reward processing and higher brain function (Xu and Heller,
2019; Yim et al., 2020). Such investigation into the complexity of
epigenetic mechanisms at play across the distinct neuronal cell
types and circuits of the adult brain promises significant insight
about new targets to combat neuropsychiatric disorders, such as
substance use disorder.
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