Table 1.
Name | Estimate (β) | t Statistics | p value | CI (95%) | Model fits |
---|---|---|---|---|---|
Equation 1: ve ∼ β0 + β1 · (ΔVA)½ + β2 · ΔVA + β3 · P + β4 · (ΔVA)½:P + β5 · ΔVA:P + (1/subj) | |||||
Intercept (ΔVA)½ ΔVA P (ΔVA)½:P ΔVA:P |
−2.0029 2.0629 0.0231 0.0636 −0.1427 −0.0513 |
−3.2469 16.5643 0.9645 0.4070 −0.7676 −1.4370 |
0.0012 0.0000 0.3348 0.6840 0.4427 0.1507 |
−3.2120, −0.7938 1.8188, 2.3070 −0.0238, 0.0700 −0.2427, 0.3700 −0.5070, 0.2216 −0.1214, 0.0187 |
BIC: 109,000 AIC: 108,940 LL: −54,460 |
Equation 1: vae ∼ β0 + β1 · (ΔVA)½ + β2 · ΔVA + β3 · P + β4 · (ΔVA)½:P + β5 · ΔVA:P + (1/subj) | |||||
Intercept (ΔVA)½ ΔVA P (ΔVA)½:P ΔVA:P |
0.0017 0.8909 −0.0635 −0.0006 −0.7178 0.0733 |
0.0228 10.1074 −3.7469 −0.0053 −5.4568 2.8981 |
0.9818 0.0000 0.0002 0.9958 0.0000 0.0038 |
−0.1435, 0.1469 0.7181, 1.0636 −0.0967, −0.0303 −0.2172, 0.2161 −0.9757, −0.4600 0.0237, 0.1229 |
BIC: 98656 AIC: 98,595 LL: −49,290 |
Equation 2: vae ∼ β0 + β1 · (ΔVA)½ + β2 · ΔVA + β3 · RAV + β4 · P + β5 · (ΔVA)½:P + β6 · ΔVA:P + (1/subj) | |||||
Intercept (ΔVA)½ ΔVA RAV P (ΔVA)½:P ΔVA:P |
0.0540 0.8369 −0.0510 0.0262 −0.0002 −0.7137 0.0746 |
0.7247 9.4553 −2.9898 5.8954 −0.0015 −5.4320 2.9523 |
0.4686 0.0000 0.0028 0.0000 0.9988 0.0000 0.0032 |
−0.0921, 0.2001 0.6634, 1.0104 −0.0844, −0.0176 0.0175, 0.0349 −0.2166, 0.2162 −0.9713, −0.4562 0.0251, 0.1241 |
BIC: 98,631 AIC: 98,562 LL: −49,272 |
CI, 95% confidence interval (parametric); AIC, Akaike information criterion; LL, log-likelihood. Top section reveals the linear and nonlinear dependency of the ve on multisensory discrepancy (ΔVA), which did not differ between paradigms (P). Middle section reveals the linear and nonlinear dependency of the vae on multisensory discrepancy, which both differed between paradigms. Bottom section comparing models 1 and 2 shows that some of the variance in the aftereffect is also explained by the response in the AV trial (RAV).