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C H E M I S T R Y

Like dissolves like: A first-principles theory 
for predicting liquid miscibility and mixture  
dielectric constant
Bilin Zhuang1,2,3*, Gabriele Ramanauskaite2, Zhao Yuan Koa2, Zhen-Gang Wang1*

Liquid mixtures are ubiquitous. Miscibility and dielectric constant are fundamental properties that govern the 
applications of liquid mixtures. However, despite their importance, miscibility is usually predicted qualitatively 
based on the vaguely defined polarity of the liquids, and the dielectric constant of the mixture is modeled 
by introducing mixing rules. Here, we develop a first-principles theory for polar liquid mixtures using a statistical 
field approach, without resorting to mixing rules. With this theory, we obtain simple expressions for the mixture’s 
dielectric constant and free energy of mixing. The dielectric constant predicted by this theory agrees well 
with measured data for simple binary mixtures. On the basis of the derived free energy of mixing, we can con-
struct a miscibility map in the parameter space of the dielectric constant and molar volume for each liquid. The 
predicted miscibility shows remarkable agreement with known data, thus providing a quantitative basis for the 
empirical “like-dissolves-like” rule.

INTRODUCTION
Liquid mixtures are ubiquitous. Dielectric constant and miscibility 
are two fundamental properties that govern the various applica-
tions of liquid mixtures. Yet, our understanding of these properties 
is still largely based on experience and experimentation. To deter-
mine whether two liquids mix well with each together, we mostly 
rely on the empirical “like-dissolves-like” rule in terms of the polar-
ity of the two liquids. However, the definition of polarity remains 
vague—a “polarity index” has been defined on the basis of a sol-
vent’s interaction with ethanol, dioxane, and nitromethane (1), but 
this definition is rather arbitrary and has not been widely used in 
subsequent literature. Even with a definition at hand, it is difficult to 
know quantitatively how “like” two liquids need to be in order to be 
miscible. For the dielectric constant  of a binary liquid mixture, 
various expressions in the form of some types of averages have been 
proposed; some typical examples are (2–5)

	​   = ​ x​ A​​ ​​ A​​ + ​x​ B​​ ​​ B​​​	 (1)

	​   = ​ ​ A​​ ​​ A​​ + ​​ B​​ ​​ B​​​	 (2)

	​​  1 ─  ​  = ​  ​​ A​​ ─ ​​ A​​ ​ + ​ ​​ B​​ ─ ​​ B​​ ​​	 (3)

	​​ ​​ ​
1 _ 3​​  = ​ ​ A​​ ​​A​ ​1 _ 3​ ​ + ​​ B​​ ​​B​ ​1 _ 3​ ​​	 (4)

	​   = ​ ​A​ ​​ A​​​ ​​B​ ​​ B​​​​	 (5)

where S denotes the dielectric constant of the pure liquid S, and xS 
and S are the mole fraction and the volume fraction of species S, 
respectively.

Theories on liquid mixtures are generally developed by intro-
ducing mixing rules. Equations 1 to 5 are examples of mixing rules 
for a mixture’s dielectric constant. Mixing rules are assumptions 
that are often introduced for macroscopic quantities such as the di-
electric constant, but they have also been introduced for molecular 
quantities or interactions. For example, in the regular solution 
theory (also called as the van Laar–Scatchard-Hildebrand theory), 
which is the basis of the widely used solubility parameter, the major 
assumption is that the dispersion force between two species is 
the geometric mean of the dispersion forces in the pure substances, 
i.e., (6–8)

	​​ c​ AB​​  = ​ √ 
_

 ​c​ AA​​ ​c​ BB​​ ​​	 (6)

where cSS′ is the per-volume interaction energy between molecules 
of species S and S′. On the basis of this assumption, the free energy 
of mixing is written as

	​  ​f​ mix​​  =   ​​ A​​ ​​ B​​ ​(​​ A​​ − ​​ B​​)​​ 2​ + ​ ​​ A​​ ─ ​v​ A​​ ​ ln ​x​ A​​ + ​ ​​ B​​ ─ ​v​ B​​ ​ ln ​x​ B​​​	 (7)

where S is the solubility parameter of species S, defined as ​​​ S​​  = ​
√ 
_

  ​u​S​ vap​ ​​, with ​ ​u​S​ vap​​ being the energy of vaporization per volume, 
 = 1/(kBT) is the inverse temperature scaled by the Boltzmann 
constant kB, and vS is the volume of a molecule of species S. The 
difference in solubility parameters is now a widely used measure for 
determining the miscibility between two liquids (9, 10). However, 
despite its popularity, miscibility predictions based on Eq. 7 can 
often be quite a bit off, as will be shown later.

In this work, we develop a molecular-based theory for liquid 
mixtures of dipole molecules using a field-theoretic approach. A 
key effect in liquids of dipole molecules is the reaction field—the 
polarization in the surrounding medium induced by a tagged dipole 
(11). Because of this effect, a mean-field approach is insufficient to 
capture the dielectric properties of a polar liquid (12, 13). We have 
recently shown that a nonperturbative treatment based on a renor-
malized Gaussian fluctuation theory (12) can naturally account for 
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the reaction field effects and yield good predictions for the dielectric 
constant for a single-component fluid. This work generalizes that 
theory to liquid mixtures, with the goal to (i) predict the dielectric 
constant for the mixture and (ii) predict the miscibility between any 
two liquids based on their dielectric constants and molar volumes. 
We note that Fredrickson and coworkers (13–16) have published 
a series of papers that treat the polarization effects in liquids and 
liquid mixtures using a field-theoretic approach. Their discussions 
of liquid miscibility focused on nonpolar liquids (i.e., without per-
manent dipoles) and the comparisons to experimental data in-
volved the use of adjustable parameters. Furthermore, their work 
used a bare one-loop expansion, which we have shown to give less 
accurate predictions on the dielectric constant of polar liquids than 
our renormalized Gaussian fluctuation theory (12). Instead of the 
one-loop expansion, we use a variational method to account for the 
reaction field effects. This results in a systematic treatment of 
dipole-dipole interactions in a liquid mixture and provides a theory 
that accurately describes liquid miscibility and mixture dielectric 
constant.

RESULTS AND DISCUSSION
Mixture dielectric constant
For isotropic liquids, our theory results in the following simple ex-
pression for the dielectric constant of a mixture

	​​​  ( − 1 ) (2 + 1)  ─   ​  =  3y​(​​ ​ 2 ​y​​ 2​ + 3y + 9 ─ 
​(y + 3)​​ 2​

 ​​ )​​​​	 (8)

where ​y  = ​ ​ S​​ ​ ​​ ̄ ​​S​ 2 ​ ​​ S​​ _ 3 ​​ 0​​ ​​ , with S being the number density, ​​​ ̄ ​​ S​​​ the effec-
tive dipole moment of species S in the mixture, and 0 the per-
mittivity of vacuum. y is a dimensionless parameter characterizing 
the strength of dipolar interactions. Equation 8 is valid when there 
is no spatial inhomogeneity caused by the applied electric field. 
With Eq. 8, we can obtain the dielectric constant of the mixture us-
ing the dielectric constants of the pure components, without any 
fitting parameters or invoking ad hoc mixing rule: Given the di-
electric constants S of the pure liquids, we obtain the effective di-
pole moments ​​​ ̄ ​​ S​​​ by applying Eq. 8 to each pure liquid. Then, with 
data on the density of the mixture and the mixture composition, S 
for each solvent in the mixture can be computed. Applying Eq. 8 
to the mixture using ​​​ ̄ ​​ S​​​ and S then yields the dielectric con-
stant of the mixture. Using water-methanol mixture as an exam-
ple, we compare the prediction of our theory (shown as the red 
solid line) with measured data (shown as crosses) in Fig. 1. We see 
that the prediction by our theory agrees very well with the mea-
sured data.

Often, the density of the liquid mixture is not available and we 
have to predict the mixture’s dielectric constant on the basis of 
pure-liquid properties. To do so, we assume that there is no volume 
change upon mixing by writing S = S/vS, where S is the (nominal) 
volume fraction of species S, and vS is the volume per molecule for 
the pure liquid S, given by the molar volume divided by Avogadro’s 
number. This leads to ​y  = ​ ​ S​​  ​​ ̄ ​​S​ 2 ​ ​​ S​​ / (3 ​​ 0​​ ​v​ S​​)​. Under this assump-
tion, the prediction of our theory is plotted with the red dashed line 
in Fig. 1 and compared to the dielectric mixing rules given by Eqs. 1 
to 5. As can be seen, the prediction of our theory without knowledge 
of the mixture density is comparable to the volume-fraction mixing 

rule and better than all other mixing rules. We also observe that the 
slight deviation of our theory from the volume-fraction mixing rule 
is negative. To predict a positive deviation from the volume-fraction 
mixing rule, we need a negative volume change upon mixing so 
that the dipole moments of the species interact more strongly in the 
mixture.

Under the assumption of no volume change upon mixing, we 
have found that the mixture dielectric constant of many liquids can 
be quite accurately described by our theory and follows approxi-
mately the volume-fraction mixing rule, as shown in Fig. 2. For 
cases where the mixture dielectric constant deviates slightly from 
the volume-fraction mixing rule, such as hexane–ethanol and acetone–
cyclohexane mixtures, our theory provides a better prediction 
than the volume-fraction mixing rule. In rare cases, such as in the 
water–dimethyl sulfoxide (DMSO) mixture, the mixture dielectric 
constant shows substantial positive deviation from the volume-
fraction mixing rule. This strong deviation suggests that the mix-
ture is strongly nonideal that we must take into account additional 
correlations beyond the level of theory in this work. In the case of 
the water–DMSO mixture, it has been shown that water and DMSO 
form stronger hydrogen bonds than the hydrogen bonds in pure 
water (17).

We note that our theory makes good predictions even for liquid 
mixtures including nonpolar substances such as hexane and cyclo-
hexane, as shown in Fig. 2, even though the theory is developed for 
molecules with permanent dipole moments. This suggests that, for 
the purpose of predicting dielectric constant of the liquid mixture 
and liquid miscibility (see Fig. 3F), one can approximate induced-
dipole interactions using an effective permanent dipole moment 
determined by the dielectric constant.

Liquid miscibility
Assuming no change in volume upon mixing, our theory re-
sults in the following free energy of mixing for a homogeneous 
mixture
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Fig. 1. Dielectric constant of water-methanol mixture.  denotes the volume 
fraction of methanol in the mixture. The predictions by the theory in this work with 
and without mixture density data are compared with the measured data (36) and 
with the predictions by the dielectric mixing rules (Eqs. 1 to 5).
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	​​


 ​
f
​ mix​​ =​ 
​
 ​​ 

​​ 1 ─ 2 ​​(​​​​ 
S
​ ​ ​ ​​ S​​ ​y​ S​​ ─ ​v​ S​​ ​​ )​​ ​ ln (1 + ​​ S​​ ​​ S​​ ​y​ S​​)  ─ ​​ S​​ ​​ S​​ ​y​ S​​ ​​

​   
​− ​ 1 ─ 2 ​ ​​ 

S
​ ​​(​​ ​ ​​ S​​ ─ ​v​ S​​ ​ ln (1 + ​y​ S​​ ) ​)​​ + ​​ 

S
​ ​ ​ ​​ S​​ ─ ​v​ S​​ ​ ln ​​ S​​​

​​	 (9)

where yS is the value of y for the pure liquid S.
Since yS can be mapped to the dielectric constant S of the pure 

liquid S through Eq. 8 and molecular volume vS is simply the molar 
volume divided by Avogadro’s number, Eq. 9 can be used to predict 
the liquid miscibility based on the dielectric constant and molar 
volume. For two liquids to be completely miscible, fmix must be 
convex over all compositions. We can use this condition to generate 
a miscibility map for a given host liquid with other liquids. In 
Fig. 3 (D to F), we show the miscibility maps for water, methanol, 
and cyclohexane as host liquids. Liquids whose parameter values 
fall within the yellow region are completely miscible with the host 
liquid, while those that fall within the red region are immiscible 
at least for some compositions. We find remarkable agreement 
between our theoretical prediction and actual miscibility for these 
liquids. For comparison, we include miscibility maps for the same sets 
of liquids predicted by the regular solution theory (Fig. 3, A to C). 
We see that the predictions from the regular solution theory are 
quite a bit off for many liquids, especially with water and methanol 
as the host liquids. Just as for the dielectric constant, our theory 
makes good prediction for the miscibility involving the nonpolar 
cyclohexane (Fig. 3F), reaffirming the efficacy of treating induced-

dipole interactions using an effective permanent dipole moment. 
The only clear discrepancies among this set of liquids are the five 
data points for water (the three black dots in the red region and the 
two red crosses in the yellow region in Fig. 3D): acetic acid, tetra-
hydrofuran, and 1,4-dioxane are miscible with water but our theory 
predicts them to be immiscible; 2-butanone and 1-butanol are 
immiscible with water but our theory predicts them to be miscible. 
These anomalies are likely due to molecule-specific hydrogen bond-
ing effects that our theory does not take into account. For example, 
acetic acid is known to form dimers in the pure liquid, which break 
up upon solvation in water, so the use of Eq. 8 on the pure acetic 
acid underestimates the dipole moment of the acetic acid molecule 
(18, 19). Given the complexity in hydrogen bonding in the aqueous 
environment, some discrepancies between the predictions from our 
theory and the experimental data are understandable.

The miscibility between two liquids is determined by the mismatch 
in both the dielectric constant and the molar volume. For two 
liquids A and B of equal molar volume, the free energy of mixing 
can be written in the form ​ ​f​ mix​​ ≈   ​​ A​​ ​​ B​​  ​(​y​ A​​ − ​y​ B​​)​​ 2​ + ​​ S​​ ​​​ S​​ _ ​v​ S​​ ​ ln ​​ S​​​ 
when it is expanded to the second order in yA − yB, with  being a 
constant. Thus, at the lowest order, the energy change due to mixing 
is consistent with that of the regular solution theory as presented 
in Eq. 7. The better prediction given by the free energy in this 
work (Eq. 9) is due to consideration of the molecular volume differ-
ence and the higher-order terms that result from the variational 
treatment.

In conclusion, using field-theoretic variational methods, we 
have formulated a first-principles molecular-based theory for dipole-
dipole interactions in liquid mixtures. Without invoking any mix-
ing rules as in many simple theories for liquid mixtures, our theory 
yields simple expressions for the dielectric constant of a mixture 
and free energy of mixing; predictions from our theory are in good 
agreement with the experimental data. In particular, for miscibility 
between liquids, we have shown that our theory makes accurate 
predictions based on the pure-liquid dielectric constants and molar 
volumes, thus providing a quantification for the well-known like-
dissolves-like rule.

Liquid miscibility is a central consideration in many fields of 
science and technology, including separation/extraction (20, 21), 
advanced materials formulation (22, 23), food (24) and pharmaceu-
tical (25, 26) formulations, environment and sustainability (27, 28), 
and even outer-space planet formation (29). Often, multicompo-
nent mixtures are involved. The sheer number of different kinds 
and compositions of the mixtures makes it impossible to perform 
exhaustive experiments or simulations. A simple predictive theory 
is necessary to explore the many possibilities offered by mixtures. 
Our theory is a step in this effort.

METHODS
Model
We consider a liquid mixture at uniform density in an applied field 
E0(r). E0(r) will eventually be taken to be spatially uniform. For each 
species S in the liquid, there are NS molecules. The molecules are 
modeled as nonpolarizable, each having a permanent dipole mo-
ment ​​​ ̄ ​​ S​​​ and volume vS. The microscopic state of the fluid can be 
specified by the set of positions {rS,i} and the dipole vectors {S,i} of 
all molecules, where the subscripts S,i refer to the ith molecule of 
type S.
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Fig. 2. Dielectric constants of binary mixtures. (A) aqueous mixtures (B) non-
aqeuous mixtures. The mixtures are labeled as A-B, with A and B representing the 
names of the solvents.  is the dielectric constant of the mixture, and  is the vol-
ume fraction of component B. The solid line is the dielectric constant predicted by 
our theory and the squared points represent measured data (36).
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To describe the electrostatic energy of the fluid mixture, we first 
introduce a microscopic polarization ​​  P​(r)​, given by

	​​   P​(r ) = ​​ 
S
​ ​​ ​ 
i=1

​ 
​N​ S​​

 ​ ​​ S,i​​ ​h​ S​​(r − ​r​ S,i​​)​	 (10)

where hS(r − rS,i) is a function describing the local spread of the 
molecular polarization around the center of mass of the molecule. 
This function is defined in the same spirit as the local molecular 
charge distribution in (30). If we model the molecules as point 
dipoles, then hS(r − rS,i) = (r − rS,i). However, to render a finite 
self-energy for the dipoles, we allow a finite spread in the distribu-
tion. Mathematically, the only requirement for hS is that its integral 
in space is equal to 1, i.e., ∫dr hS(r − rS,i) = 1. In this work, to keep 
the mathematics simple while describing the physics sufficiently, 
we assume a uniform molecular polarization in a sphere of volume 
​​v​ S​ ′ ​​ around the center of the molecule, i.e.,

	​​​ h​ S​​(r − ​r​ S,i​​ ) = ​
{

​​​​​ 
1 ─ ​v​ S​ ′ ​ ​ ​ 

0
 ​​ if ∣  r − ​r​ S,i​​ ∣  < ​​ (​​ ​ 3 ​v​ S ​ ′ ​ ─ 4 ​​)​​​​ 

​1 _ 3​
​​  

 otherwise
 ​​​​	  (11)

The “dipole volume” ​​v​ S​ ′ ​​ can be considered an adjustable param-
eter to be obtained by fitting the pure-component dielectric constant. 
However, to make a priori predictions free of fitting parameters, we 
take this dipole volume to be the same as the physical volume by 
setting ​​v​ S​ ′ ​  = ​ v​ S​​​. An alternative form for hS that describes the molec-
ular polarization as a Gaussian distribution around the center of 
mass is discussed in the Supplementary Materials.

In terms of the polarization ​​  P​(r)​, the electrostatic energy of the 
fluid is

	​ U  = ​  1 ─ 2 ​∫dr∫d​r ′ ​ ​̂  P​(r ) T(r − ​r ′ ​ ) ​  P​(​r ′ ​ ) −  ∫ dr ​̂  P​(r ) · ​E​ 0​​(r)​	 (12)

where T(r) = −∇∇(1/40∣r∣) is the dipole-dipole interaction 
tensor. A detailed discussion of the relevant mathematical properties 
of T(r) has been presented in our earlier work in (12). Particularly 
useful is the Fourier transform of T(r) given by ​​ ~ T​(k ) = kk / ​​ 0​​ ​k​​ 2​​. 
Here, we use a tilde above a quantity to denote the Fourier trans-
form ​​ ~ f ​(k ) = ∫ dr f(r ) ​e​​ −ik·r​​.

We consider a grand canonical ensemble of a fluid mixture 
under chemical potential S for each species S at temperature T and 
volume V. The grand partition function of the system is

	​ Ξ  = ​​   ​ 
​N​ A​​=0

​​​​ 
∞

 ​ …​​  ​ 
​N​ B​​=0

​​​​ 
∞

 ​ ​  ​e​​ ​​ A​​​N​ A​​​ ─ ​N​ A​​ ! ​ …​ ​e​​ ​​ B​​​N​ B​​​ ─ ​N​ B​​ ! ​  Z​	 (13)

where A and B are representative labels of the solvent species and 
the “…” means similar summations and factors for other species 
need to be included if there are more than two species in the mix-
ture. Z is the canonical partition function given by

	​ Z  = ​ ∏ 
S
​ ​​​ ∏ 

i=1
​ 

​N​ S ​​
 ​​∫​ d ​r​ S,i​​ ─ 

​​S​ 3 ​
  ​∫​ d ​​ S,i​​ ─ 4  ​ ​e​​ −U​​	 (14)

In Eq. 14, S is the thermal de Broglie wavelength of species S, 
and the integral over the solid angle S,i accounts for the orientational 
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degrees of freedom of the dipoles (since their magnitudes are fixed). 
It should be understood that in addition to the electrostatic interac-
tions, there are also short-ranged excluded volume repulsions be-
tween molecules. Such interactions could be modeled, for example, 
by a local incompressibility constraint. However, for a homoge-
neous mixture with uniform density, such a constraint amounts to 
a simple shift in the chemical potentials under a mean-field treat-
ment of the excluded volume effects; this is explicitly demonstrated 
in section S2. To avoid undue amount of mathematical details in 
the theory, here, we consider the effect of short-ranged excluded 
volume through the shifted chemical potentials, which can be deter-
mined by the liquid densities.

Statistical field theory
The configurational integral in the partition function is intractable 
due to the pairwise dipole-dipole interactions in the liquid. To 
move forward, we decouple these pairwise interactions using the 
Faddeev-Popov method (31–33). This method allows us to trans-
form the pairwise interaction into the interaction between polariza-
tion and a fluctuating field. By this method, we arrive at the formally 
exact field-based grand partition function

	​ Ξ  =  ∫DP∫DG ​e​​ −L[P,G]​​	 (15)

where the effective field-theoretic action L is

	​​
​L​[​​P, G​]​​ =​

​ ​​
​
 ​​ 

​​1 _ 2​∫ dr∫ dr′P​(​​r​)​​T ​(​​r − r′​)​​P​(​​r′​)​​​

​    ​  + i∫ drP​(​​r​)​​ · G​(​​r​)​​ − ∫ drP​(​​r​)​​ · ​E​ 0​​​(​​r​)​​​​   
  ​ − ​Σ​ 

S
​ ​​(​​ ​λ​ S​​∫ dr∫ d ​Ω​ S​​​e​​ i∫dr′​h​ S​​​(​​r′−r​)​​​𝛍​ S​​·G​(​​r′​)​​​​)​​​

 ​​	 (16)

In the above expression, we have defined ​T  =  T​ and ​​E​ 0​​  =   ​E​ 0​​​ 
to simplify notation. ​​​ S​​  = ​ e​​ ​​ S​​​ / (4 ​​S​ 3 ​)​ is the scaled fugacity of spe-
cies S. P and ​iG​ are, respectively, the fluctuating polarization and 
the conjugate fluctuating electric field, both of which are integrated 
over in Eq. 15.

The variational approach
Through the field-theoretic transformation, evaluation of the parti-
tion function has been recast as integrals over fluctuating field 
variables. However, the last term in Eq. 16 that describes the inter-
actions between single dipoles with the fluctuating field ​iG​ makes 
the overall form of the field-theoretic action non-Gaussian. As a 
result, the field-based partition function cannot be evaluated exactly. 
A popular approximation to tackle this difficulty is the self-consistent 
field approximation, which takes the saddle-point value of the 
field-theoretic action L. However, as alluded to earlier, this approx-
imation does not capture the reaction field effect, which is impor
tant to the physics of a polar liquid (12, 13). In our earlier work, we 
introduced a variational approach to provide an approximate 
treatment to the partition function, allowing the reaction field 
effects to be captured (12). In this work, we extend the treatment 
to polar liquid mixtures. The variational approach is carried out 
by first introducing a Gaussian reference action L0, so that we 
can obtain an approximation for the grand potential W through 
an upper bound given by the Gibbs-Feynman-Bogoliubov in-
equality (34)

	​ W  ≤  − ln ​Ξ​ 0​​ + ​⟨L − ​L​ 0​​⟩​ 0​​​	 (17)

where the right-hand side of Eq. 17 is an upper bound of W. Ξ0 is 
the reference partition function given by

	​​ Ξ​ 0​​  =  ∫DP∫ DG ​e​​ −​L​ 0​​[P,G]​​	 (18)

and ⟨𝒪⟩0 is the average of an observable 𝒪 evaluated in the reference 
ensemble, i.e.,

	​​ ⟨O⟩​ 0​​  = ​   1 ─  
​Ξ​ 0​​

 ​∫ DP∫ DG O [ P, G] ​e​​ −​L​ 0​​[P,G]​​	 (19)

For simplicity in notation, we regard the right-hand side of 
Eq. 17 as the working expression for the grand potential and replace 
the ≤ sign by = sign.

The reference action must be sufficiently simple so that Eq. 17 
can be evaluated. Ideally, it should also be as close to the original 
action as possible. Thus, we choose a reference action L0 that keeps 
the first three terms in L but replaces the last nonlinear term by a 
quadratic functional in the fluctuating field ​iG​ that corresponds to 
a Gaussian with average ​F​ and variance ​A(r)​

​​ 

​​L​ 0​​​[​​P, G​]​​  = ​ 1 _ 2​∫ dr∫ dr′P​(​​r​)​​T ​(​​r − r′​)​​P​(​​r′​)​​​

​    ​    + i∫ P​(​​r​)​​ · G​(​​r​)​​ − ∫ P​(​​r​)​​ · ​E​ 0​​​(​​r​)​​​​    

​    − ​1 _ 2​∫ dr∫ dr′​[​​iG​(​​r​)​​ − F​(​​r​)​​​]​​ ​A​​ −1​​(​​r − r′​)​​​[​​iG​(​​r′​)​​ − F​(​​r′​)​​​]​​​

​​	(20)

​A(r)​ and ​F​ are the variational parameters to be determined. 
The operator ​A​ describes an effective interaction between the fluc-
tuating fields. Its inverse ​​A​​ −1​​ satisfies the relation ​∫ d​r ′ ​A(r − ​r ′ ​ ) ​
A​​ −1​(​r ′ ​ − ​r​​ ′′​ ) = 𝟙(r − ​r​​ ′′​)​. Although it is possible to account for the 
anisotropy in ​A​, we take it to be isotropic since we are concerned 
with the linear response (i.e., weak external field) limit (12), i.e., we 
write ​A(r ) = a(r ) 𝟙​, where a(r) is a scalar variational parameter.

Using the reference action ansatz Eq. 20, the right-hand side of 
Eq. 17 can be evaluated using a series of Gaussian functional inte-
grals. The variational parameters ​​ ~ a ​(k)​ and ​​ ~ F​(k)​ are then deter-
mined by setting ​W / ​ ~ a ​(k ) = 0​ and ​W / ​ ~ F​(k ) = 0​. To simplify the 
results further, we take the limit ​​​ ~ h ​​ S​​(k ) = 1​ (i.e., the point dipole 
limit) whenever this procedure does not produce divergences (30). 
Since we are only interested in the linear response regime, we com-
pute the free energy to the second order in the applied field. At this 
order, we obtain for ​​ ~ a ​(k)​

	​​    ─ ​​ 0​​​   a ​(k) ​  = ​ ​ 
S

​ ​ ​ 
 ​​   ​​S​ 2 ​ ​​ S​​

 ─ 3 ​​ 0​​ ​​	  (21)

where S is the number density of the species S in the mixture. The 
dimensionless combination ​ / (​​ 0​​​ ~ a ​(k ) )​ characterizes the strength 
of the dipolar interaction in the mixture and has no k dependence. 
For simplicity, we define ​y  =   / (​​ 0​​​ ~ a ​)​.

The other variational parameter, ​​ ~ F​(k)​, is given by the following 
expression in the linear response regime

	​​  ~ F​(k ) = ​  K​(k ) ​​ ~ E​​ 0​​(k)​	 (22)

where
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	​​​ K ~ ​(k) = ​
{

​​​
​− y​(​​𝟙 − ​​​ 0​​ _  ​​T ~  ​(k)​)​​​

​ 
​ − ​(​​ ​  2y _ y + 3​​)​​𝟙 ​

 ​​
for k  ≠  0

​ 
for k  =  0

 ​​​	 (23)

The detailed steps in the derivation are presented in the Supple-
mentary Materials.

The dielectric constant of a mixture
To compute the dielectric constant of a mixture, we consider the 
variation in the polarization with the applied field. The polarization 
can be obtained by taking the derivative of the grand potential with 
respect to the applied field, i.e., P(r) = − W/E0(r). This allows us to 
extract the electric susceptibility 0, which relates the polarization of the 
mixture to the applied electric field through ​​ ~ P​(k ) = ​​ 0​​ ​​ ~ ​​ 0​​(k ) ​​ ~ E​​ 0​​(k)​. 
Then, we obtain Eq. 8 using the relation ​( − 1 ) (2 + 1 ) /   =  tr ​​ ~ ​​ 0​​(k  =  0)​ 
(35). We present the details of the derivation in the Supplemen-
tary Materials.

The free energy of mixing
To derive the free energy of mixing, we assume no change in 
volume upon mixing and predict the miscibility on the basis of 
pure-liquid parameters yS and vS. The Gibbs free energy of mixing 
then equals the Helmholtz free energy of mixing. We first perform 
a Legendre transform on the grand potential to obtain the Helmholtz 
free energy, F, of the mixture. Then, the free energy of mixing, 
Fmix, is the difference between the free energy of the mixture and 
the sum of the free energies of the individual unmixed components. 
The resulting expression for Fmix is given in Eq. 9. We present the 
details of the derivation in the Supplementary Materials.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/7/eabe7275/DC1
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