
Abstract. Background/Aim: Chronic cerebral hypoperfusion
affects early and mature neurons in the subventricular zone
(SVZ) and cerebral cortex. Herein, we investigated the effects
of insulin-like growth factor-1 (IGF-1), a neurogenesis-
promoting agent, on neurons in these regions in
periventricular leucomalacia (PVL) model rats. Materials and
Methods: Following right carotid artery ligation, the rats were
placed in a hypoxia chamber and injected with recombinant
IGF-1 (0.1 and 1 μg/μl). Their brain sections were
immunohistochemically analysed using anti-nestin and anti-
NeuN antibodies. Results: The numbers of early-neuronal cells
in the SVZ and mature neurons in the cerebral cortex were
higher and lower, respectively, in the PVL group than in the
control group. The number of NeuN-positive cells was
significantly higher in the IGF-treated group than in the PVL
group. Conclusion: PVL increased the number of early
neuronal cells in the SVZ, reducing the survival of mature
neurons in the cerebral cortex; IGF-1 reversed these effects.

Clinical syndrome in the white matter damage is associated
with significant neurological outcomes (1). Immature brain is
caused by reasons such as ischemic injury and infections (2,
3). Periventricular leucomalacia (PVL) occurs predominantly
in premature infants. Predominant neurodevelopmental
sequelae in patients with PVL are cerebral palsy, mental
retardation, and behavioural deficits (4, 5). PVL is primarily
characterised by white matter damage, but gray matter damage

can also occur (6, 7). PVL leads to neuronal cell apoptosis and
demyelination, causing axonal loss (8). PVL occurs in
association with motor and sensory deficits (9, 10). However,
thus far, there are no available treatments for PVL (11, 12).

Insulin-like growth factor-1 (IGF-1) is a single-chain peptide;
it is abundantly expressed in the central nervous system (CNS)
(13). In animal models, members of the IGF family play an
important role in brain development and functional stability
(14). IGF-1, as a potent tropic factor, has neuroprotective effects
against cerebral ischemia (15). Intracranial injections of IGF-1
after hypoxia reduce the infarct volume, enhance cell survival,
and improve cognitive performance (16, 17). These effects are
caused by IGF-1 signalling, which could stimulate the neuronal
cell proliferation, survival, and differentiation (18). Several
studies have revealed that IGF-1 improves neurogenesis and
angiogenesis in brain tissues or cells (19, 20). 

Previous studies have shown that chronic cerebral
hypoperfusion affects the number of early and mature
neurons in the neurogenic zone, including the subventricular
zone (SVZ) and cerebral cortex (21, 22). As mentioned
above, IGF affects cell survival. In this study, we
investigated the effects of IGF-1 on neurons in the
neurogenic zones in a PVL rat model.

Materials and Methods

Animal surgery. The use of certified Sprague–Dawley (SD) rats
(Damul Laboratory Animals, Daejeon, Republic of Korea) for this
study was approved by the Chosun University Institutional Animal
Care and Use Committee (approval no. CIACUC2019-A0031). We
simulated a PVL condition based on the methods described in a
previous study (23). Seven-day-old SD rats (n=50) were anaesthetised
with the inhalation of sevoflurane (1.0%-2.0%, end-tidal
concentration). After shaving the fur, a midline incision was made
below the anterior cervical region under aseptic conditions. The right
carotid artery was exposed, and the ligature was performed using silk
sutures (4/0). After the procedure, the neck was disinfected using
povidone–iodine solution. After 10 min, the rats that underwent this
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surgical procedure were placed in a hypoxia chamber (8% O2 and 92%
N2 conditions at 37˚C) for 2 h. Rats that underwent surgery and were
placed in the hypoxic chamber were assigned to the PVL group,
whereas the unoperated rats were assigned to the control group (n=50).

Two hours after the rats were subjected to hypoxic incubation,
they underwent intracranial IGF-1 injection using stereotaxic
injector (QSI/53311). The IGF-1 injection was administered as
previously described (24). Briefly, recombinant IGF-1 (Genentech,
San Francisco, CA, USA) at a concentration of 0.1 μg/μl and 1
μg/μl was dissolved in sterile phosphate-buffered saline (PBS; 0.15
M; pH 7.4). The rats were anaesthetised with sevoflurane (1.0%-
2.0%, end-tidal concentration), and the solutions were injected using
a stereotaxic injector. Hamilton syringes (Hamilton Co., Reno, NV,
USA) for injection were located at 1.0 mm posterior and 1.0 mm
lateral to the bregma and at a 3.0 mm depth from the skull surface.
The duration of injection was 5 min.

Tissue preparation. Seven days after hypoxia treatment and IGF-
1 injection, the rat brains were harvested and fixed in 4%
paraformaldehyde solution. The cerebrum was separated from the
brain stems and fixed in 4% PFA at 4˚C. After one day, the
cerebrum samples were washed with water, dehydrated using graded
ethanol solutions, and embedded in paraffin. A series of 6-7-μm-
thick sagittal sections were cut and mounted on gelatine-coated
slides (Fisher Scientific USA). 

Immunohistochemistry. The slides were deparaffinised and
rehydrated. The slides were washed with 0.9% NaCl in 0.1 M
phosphate buffer (PBS, pH 7.4). Microwave-based antigen retrieval
process was performed with 0.01 M sodium citrate buffer (pH 6.0).
After cooling, the slides were treated with 0.3% hydrogen peroxide
for 20 min to block endogenous peroxidase. After rinsing in PBS,
the slides were blocked with normal horse serum in 0.5% bovine
serum albumin (BSA) solution for 30 min at room temperature. The
slides were incubated overnight with the primary antibodies, mouse
anti-hexaribonucleotide-binding protein-3 (NeuN; 1:100, Millipore,
Burlington, MA, USA) and anti-nestin antibodies (1:200, Millipore),
at 4˚C. On the following day, the slides were rinsed in PBS several
times and incubated with secondary antibodies matched to the
primary antibodies in 0.5% BSA solution for 90 min at room
temperature. The slides were incubated with avidin–biotin-
peroxidase (Vector Laboratories, Burlingame, CA, USA) and
immunoreactivity was visualised using the chromogenic substrate
3, 3’-diamino-benzidine (DAB). Thionin counterstaining was
performed, and the slides were dehydrated and covered with DPX.

Statistical analysis. A light microscope (PrimoVert) with attached
digital CCD camera was used to photograph the slides. NeuN- and
Nestin-positive cells were counted in the cerebral cortex and SVZ.
Each section was randomly divided into five areas, and the number
of positive cells per defined square (μm2) was calculated in each
area. All data were analysed using Statistical Package for Social
Sciences, information analysis systems (Information Analysis
Systems, SPSS, IBM, Armonk, NY, USA). All measurements of the
control, PVL, and Injection groups were compared using ANOVA
test. p-values <0.05 were considered statistically significant. 

Results
Nestin immunoreactivity. In the SVZ, the number of nestin-
positive cells in the PVL group was higher than that in the

control group (Figure 1). Interestingly, the number of nestin-
positive cells in injection group was lower than PVL group
(Figure 1). In the cerebral cortex, there was no difference in
the number of nestin-positive cells between the control and
PVL groups (Figure 2). The number of nestin-positive cells
in Injection group was higher than PVL group in the cerebral
cortex (Figure 2).

NeuN immunoreactivity. In the SVZ, there was no difference
in the number of NeuN-positive cells between the control
and PVL groups (Figure 3). The number of NeuN-positive
cells in the cerebral cortex was lower in the PVL group than
in the control group (Figure 4). The number of NeuN-
positive cells in the injection group was significantly higher
than that in the PVL group (Figure 4). 

Discussion

We measured the number of nestin- and NeuN-positive cells
in the cerebral cortex and SVZ. The number of nestin-positive
cells in the SVZ was higher in the PVL group than in the
control group. The number of NeuN-positive cells in the
cerebral cortex was lower in the PVL group than in the control
group. This reduction was achieved using IGF-1 injection. 

Neuronal and glial progenitor cells, which are the sources
of neurogenesis, were abundant in the SVZ (25). Especially,
in the ischemic brain, these cells have been reported as
important self-renewing sources for neurons and glial cells
(23). The self-renewing processes, including neuron survival,
axon sprouting, and neuronal enlargement and proliferation,
aimed at recovering from brain injury, also known as the
plasticity of the CNS, are observed in the ischemic region
(26). Nestin is an intermediate neurofilament expressed by
multipotential neural stem cells and precursors of neuronal and
glial cells (27). In our study, the number of nestin-positive
cells in the SVZ was higher in the ischemic group than in the
non-ischemic group. These positive cells are considered to be
sources for self-renewing processes in rats with PVL. Okoshi
et al. showed strong nestin immunoreactivity of SVZ neurons
in the white matter surrounding a lesion of PVL (28). It is
suggested that the early stage of neurogenesis is triggered in
the SVZ of the rats from the PVL group.

In our study, the numbers of early neuronal cells and
nestin-positive cells were increased in the SVZ in the rats
from the PVL group. The numbers of mature neuronal cells
and NeuN-positive cells were reduced in the cerebral cortex
in the rats from this group. The early neuronal cells in the
SVZ migrated to the cerebral cortex; neurogenesis was
triggered, but cell survival was not affected (29). This
phenomenon was reversed by IGF-1 administration. As
mentioned in the introduction, IGF-1 plays a major role in
neuronal cell survival and maturation (14, 30). IGF-I
activates the MAPK pathway, especially, the extracellular
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signal-regulated kinase (ERK) pathway, to regulate cell
survival and neuronal plasticity (31). In some cells, the
PI3K/Akt pathway is activated by IGF-1 to enhance cell
survival (32). 

We studied the effects of high and low doses of IGF-1 on
PVL in rats. Interestingly, in our study, the effects of both
high and low doses of IGF-1 on PVL were similar. The
numbers of mature neuronal cells were induced in the
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Figure 1. Representative photographs and density of nestin-immunoreactivity cells in the subventricular zone. (A): Control group, (B): PVL group,
(C): injection group (0.1 μg/μl), (D): injection group (1 μg/μl). The data are expressed as mean and SEM values. *p<0.05 (compared control),
#p<0.05(compared PVL). Scale bars=100 μm.

Figure 2. Representative photographs and density of nestin-immunoreactivity cells in the cerebral parietal cortex. (A): Control group, (B): PVL
group, (C): injection group (0.1 μg/μl), (D): injection group (1 μg/μl). The data are expressed as mean and SEM values. *p<0.05 (compared
control), #p<0.05 (compared to PVL). Scale bars=100 μm.



cerebral cortex in the rats from high and low doses of IGF-
1 injection group. Several studies have revealed discrepant
effects of IGF depending on its dose. Some studies have
reported that IGF-1 protects against ischemic damage only

at a high dose (33). Controversially, Cao et al. showed that
IGF-1 prevented the loss of myelin and glial cells after
hypoxia in foetal sheep only at low doses (34). However, A
previous study that was similar to our study showed that
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Figure 3. Representative photographs and density of NeuN-immunoreactivity cells in the subventricular zone. (A): Control group, (B): PVL group,
(C): injection group (0.1 μg/μl), (D): injection group (1 μg/μl). The data are expressed as mean and SEM values. *p<0.05 (compared to control),
#p<0.05 (compared to PVL). Scale bars=100 μm.

Figure 4. Representative photographs and density of NeuN-immunoreactivity cells in the cerebral parietal cortex. (A): Control group, (B): PVL
group, (C): injection group (0.1 μg/μl), (D): injection group (1 μg/μl). The data are expressed as mean and SEM values. *p<0.05 (compared to
control), #p<0.05 (compared to PVL). Scale bars=100 μm.



hypoxia and infection co-existed and interacted with each
other (35). Inflammatory responses caused by the
intracerebral injection of lipopolysaccharide (LPS) is similar
to the pathology observed in case of PVL (35). Several
studies have reported that IGF-1 exhibits neuroprotective
effects against ischemic damage and neuroinflammation (15,
36). We suggest that IGF-1 has protective effects against
either hypoxia or inflammation in the developing rat brain. 

PVL led to increase in the number of early neuronal cells
in the SVZ and reduction of survival of mature neurons in
the cerebral cortex. These effects were reversed by IGF-1
injection. 
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