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Abstract

Smartphone usage is increasing around the globe—in daily life and as a research device in behavioral science. Smartphones offer
the possibility to gather longitudinal data at little cost to researchers and participants. They provide the option to verify self-report
data with data from sensors built into most smartphones. How accurate this sensor data is when gathered via different smartphone
devices, e.g., in a typical experience sampling framework, has not been investigated systematically. With the present study, we
investigated the accuracy of orientation data about the spatial position of smartphones via a newly invented measurement device,
the RollPitcher. Objective status of pitch (vertical orientation) and roll (horizontal orientation) of the smartphone was compared
to data gathered from the sensors via web browsers and native apps. Bayesian ANOV As confirmed that the deviations in pitch
and roll differed between smartphone models, with mean inaccuracies per device of up to 2.1° and 6.6°, respectively. The
inaccuracies for measurements of roll were higher than for pitch, d = .28, p < .001. Our results confirm the presence of
heterogeneities when gathering orientation data from different smartphone devices. In most cases, measurement via a web
browser was identical to measurement via a native app, but this was not true for all smartphone devices. As a solution to lack
of sensor accuracy, we recommend the development and implementation of a coherent research framework and also discuss the
implications of the heterogeneities in orientation data for different research designs.
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can be investigated in real-time include many everyday activ-
ities, as most smartphone users carry it around everywhere

Smartphones present themselves as a powerful tool for re-
searchers. They offer the possibility to gather data from par-

ticipants in everyday life, largely independent of location and
time. In addition, the measurement device is already familiar
to participants and causes little to no intrusion or additional
costs (Miller, 2012). Smartphones have been widely imple-
mented as part of experience sampling designs (ESMs, e.g.,
Stieger & Reips, 2019) and in the health sciences (Bert,
Giacometti, Gualano, & Siliquini, 2014). In experience sam-
pling designs, smartphones are implemented as tools to gather
data from participants at specified times in a diary study or to
gather data when events in their lives occur. The topics that
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they go. In addition to subjective measurements, smartphones
offer the availability of physical sensors that are already inte-
grated and easily accessible (Miller, 2012). These include,
among others, GPS, Bluetooth, and data on spatial orientation.
Data from these sensors can be gathered via apps and
browsers and the advantages of using these data are more
and more evident in the behavioral, social, and health sci-
ences. In the health sector, the data are used to recognize
physical activity, mostly using data from the accelerometer.
Studies have shown that smartphones are capable of achieving
similar accuracies for physical activity recognition as dedicat-
ed devices, such as smart watches and heart rate monitors
(Brajdic & Harle, 2013; Case et al., 2015). Sensor data can
also be used to identify falling or other medical emergencies
(Yavuz et al., 2010) and to improve accessibility for wheel-
chair users (Gupta, Holloway, Heravi, & Hailes, 2015). The
Bluetooth sensor has been implemented to detect whether a
person is in a work or social situation (Lathia, Pejovic,
Rachuri, Mascolo, Musolesi, & Rentfrow, 2013). In the social
sciences, studies have further been conducted that link a
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person's well-being to their surroundings via GPS
(MacKerron & Mourato, 2013; Stieger & Reips, 2019).
Stieger and Reips (2019) investigated data from both
smartphone sensors and from open-access Internet databases
on temperature, longitude, latitude, altitude, wind speed, rain-
fall, and further environment-based variables to predict fluc-
tuations of well-being by using a smartphone-based mobile
experience sampling method. In their study, they found a high
correlation between smartphone GPS measurement of alti-
tudes and Google Maps measurement of altitudes, but a con-
sistent difference in absolute measurement.

In order for the sensor data to be useful to researchers, it has
to be accurate and a valid indicator for the behavior. If the data
from the implemented devices shows a large amount of error,
conclusions drawn from the data are necessarily unreliable.
This fact is much more important in the context of smartphone
studies as compared to previous research studies where the
measurement device was given out by researchers to the par-
ticipants (Miller, 2012). Previous studies allowed researchers
to pick an adequate device, preprogram all the necessary parts,
and check the reliability of the data. Error might still be pres-
ent, but it can be investigated and potentially mitigated.
Furthermore, it is largely homogenous across the sample. In
most smartphone studies, participants are using their own de-
vice and only download an app or open their web browser to
participate. This presents researchers with additional prob-
lems, as there may be a large heterogeneity of data across
devices. Naturally, over the Internet it is impossible to check
all devices for their idiosyncrasies (Reips, Buchanan, Krantz,
& McGraw, 2015).

With regard to data from the objective sensors, this prob-
lem is rather new to behavioral and social scientists. Data on
the devices’ location and orientation telling us indirectly about
fine-grained motion behaviors of a large number of people
have only been introduced with the development of
smartphones. Their implementation has for the most part been
focused on games and interactive apps. The implementation
of sensor data in behavioral and social science research is only
beginning, meaning the requirements for accuracy of
measurement via user devices are not well investigated.
Blunck et al. (2013) developed a taxonomy of heterogeneities
and their sources in mobile phones. The focus of the present
study is heterogeneities due to the device, i.e., resulting from
the platform, hardware, and OS. Thus, here we are investigat-
ing a special case of using heterogeneous consumer-grade
equipment in Internet-based research.

Gathering a device’s orientation from sensors
Social and behavioral researchers run their experiments on

mobile devices using native and web apps. Native apps run
on top of the operating system of the device and use compiled
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code (i.e., Java/Kotlin for Android devices, Objective-C/Swift
for i0S devices). Web apps run within a web browser (Google
Chrome, Apple Safari, Mozilla Firefox) and use web APIs
(Application Programming Interfaces) through JavaScript
code. Moreover, there are some application development
frameworks (Xamarin, Appcelerator, Adobe PhoneGap) that
are able to port their code to multiple platforms such as
Android through different approaches. Embedding a web
browser within a native app to run JavaScript code is a com-
mon strategy for these cross-platform frameworks. Therefore,
we have to know how an app was developed to categorize it as
native or web app.

The distinction between native and web apps is important
when we are gathering information from mobile device’s sen-
sors. Native applications are able to collect data from hard-
ware sensors directly while web applications are unable to do
so, for security reasons. However, most native mobile appli-
cations do not take values directly from sensors but use what
mobile operating systems call "software sensors". Software
sensors provide estimates of actual position, orientation, and
motion values by combining the readings of various hardware
sensors such as accelerometers, gyroscopes, magnetometers,
or barometers. Hardware sensors in today’s smartphones are
similar to circuit chips in appearance and work electronically.

Using software sensors is a good development strategy
because it allows developers to forget about the peculiarities
of each hardware sensor and delegate the integration of their
values to the mobile operating system. Considering this is the
approach followed by mobile web browsers, the differences
between native and web apps should be minimal.

The focus of the current study is sensing the smartphone’s
spatial orientation. Data from the orientation software sensor
is used to take photo sphere images or when playing games
that use the tilt of the phone as input. In the behavioral sci-
ences, this data has been implemented as a proxy measure-
ment for body posture (Kuhlmann & Reips, 2020) and posi-
tion of wheelchairs (Milenkovi¢ et al., 2013). In future studies,
possible implementations include the measurement of motor
tasks in experience sampling designs or the measurement of
the environment by placing the phone in the surrounding en-
vironment. Questionnaire items or tasks could also be an-
swered by tilting the phone instead of responding on a typical
scale.

On-board technology provides information about the tilt
of the smartphone across three different axes, x, y, and z.
The rotation around one of these axes, z, indicates the car-
dinal direction of the phone. The other two rotations de-
scribe the rotation of the device itself around the other two
axes (see Fig. 1). As mentioned before, data about the
location of the smartphone is gathered by using a software
sensor that integrates information from the accelerometer,
gyroscope, and magnetometer of the device to provide ac-
celeration data from gravity. If the device is lying on a flat
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Fig. 1 Illustration of orientation measures pitch and roll in relation to
smartphone axes

surface, this force is aiming to the ground, at a 90° angle to
the screen and the two axes around which pitch and roll are
measured. No force is present along the axes that are par-
allel to the long and short side of the phone. When the
device is tilted around its axes, the force is no longer ver-
tical to the screen. This deviation is used to calculate the
values for pitch and roll, indicating the tilt of the
smartphone in relation to its flat position.

As mentioned before, orientation data is gathered via dif-
ferent APIs and sensor frameworks. Native mobile apps can
gather orientation data via sensor-specific frameworks for dif-
ferent operating systems (Blunck et al., 2013). Web apps use
the DeviceOrientation Event specification (Tibbet &
Volodine, 2017) to access to this data. The different APIs
and frameworks present a potential source of heterogeneity
between different software implementations and devices.
How the actual values of orientation are computed already
differs depending on the implemented browser and operating
system (Deveria, 2018).

Accuracy of smartphone sensor data

The accuracy of other sensor data has been investigated in
previous studies. Stisen and colleagues (2015) investigated
the heterogeneities of data gathered from accelerometers of
different smartphone and smartwatch models. The accelera-
tion sensor measures the acceleration of the devices along
different axes and provides useful data to distinguish different
activities. The authors were interested in the effect of possible
heterogeneities on activity recognition due to different sen-
sors, devices, and workload. In their study, they found that
heterogeneities impaired the performance of human activity
recognition. The impairments differed significantly between

different devices, as sensor data accuracy varied between dif-
ferent models and manufacturers. For some investigated de-
vices, deviations from the actual acceleration were as large as
the difference between standing still and accelerating on a fast
train (Stisen et al., 2015). They also found some indications of
heterogeneities for data from the orientation sensor on activity
recognition, but this was not the main part of their investiga-
tion, as orientation data is not the best choice for this task.

Data on the accuracy of the spatial orientation is mostly
based on the investigation of external influences on the accu-
racy and natural drifts in values, mostly implemented during
production (Grewal & Andrews, 2010). One of these external
influences is the temperature at which the orientation sensor
operates. Changing temperature results in inaccuracies of the
readings (Weinberg, 2011). As this inaccuracy is predictable
and quite consistent, most orientation sensors are coupled with
a temperature sensor. Another source of inaccuracies is accel-
eration and vibration. This is especially a problem for compact
orientation sensors without much buffer that are implemented
in mobile devices (Weinberg, 2011). The orientation sensor
itself cannot be calibrated via a simple user prompt as is the
case for the cardinal direction. Some studies did implement
calibration techniques involving external sensors and expen-
sive setups (e.g., Umek & Kos, 2016).

It has not been investigated so far how the implementation
via different applications and frameworks influences the ori-
entation data, e.g., whether the data is gathered via a browser
or a native app. As mentioned in the previous section, frame-
works and browsers read and transform data on tilt differently
(Deveria, 2018; Tibbet & Volodine, 2017). In addition, app
development frameworks might perform transformations of
the data that suit the intended implementation of the target
audience. For example, applications developed via the MIT
App Inventor transform the values of pitch and roll when they
cross 90° of tilt (MIT App Inventor Public Open Source,
2018).

The current study investigates the accuracy of orien-
tation data in implementations that closely resemble
those of actual study designs. We gather data from
smartphones that are participants’ actual phones without
modifying their settings, installed apps, preferred brows-
er, etc. To ascertain the real values of pitch and roll that
the smartphone is rotated to, we designed and built a
mounting device for smartphones, RollPitcher, which
allows for the independent manipulation of pitch and
roll in a controlled lab setting. Our study therefore fills
an important gap in knowledge between accuracy mea-
surements of sensors close to production and their ac-
curacy in actual implementations in smartphone studies.
Our hypotheses are:

H1: The accuracy of the orientation data differs between
smartphone devices
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H2: The accuracy of the orientation data differs, to a small
degree, between modes of measurement on the same
smartphone

H3: The inaccuracies of the orientation data are consistent
across measurements of different angles of the same
smartphone with the same software, i.e., deviations from
real values correlate across measurements

Method
RollPitcher, the smartphone mounting device

Two RollPitcher devices were custom built by the scientific
workshop of the University of Konstanz, one made of metal
and one entirely out of plastic, except for small parts. They
consist of a solid base, on top of which the mount was attached.
A technical drawing of the mounts is shown in Fig. 2. They
have two different hinges, which allows for the separate adjust-
ment of pitch and roll values. The mount for the smartphone
itself is made out of solid plastic in both RollPitchers and has a
cut-out in the base to allow all smartphone models to lie flat on
the surface despite possible bumps from cameras on the
backside.

The actual metal and plastic devices weigh about 8
and 3 kg, respectively. The metal and plastic devices
are shown in Fig. 3. The base can be adjusted via four
different screws and thus allows leveling of the base
precisely to 0°. Levelling out the base was achieved
by adjusting the position with a high-precision digital
mechanic’s level, the Stabila STBI196E-2-60P, with a
maximum error of .05° at 0°. To ascertain the precision
of the objective angle positions, the mechanic’s level
was used on some occasions to measure the pitch and
roll of the smartphone by placing it on top of the screen

Fig. 2 Technical drawing of RollPitcher, the smartphone mounting
device
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along both axes. These values were within 0.15° of the
proposed pitch and roll values, confirming the precision
of the mount and procedure.

Sample of smartphones

A total of 56 different smartphones were measured, 31
Android devices, 24 10S devices, and one Windows 10 de-
vice. All devices were measured via the browser implementa-
tion. In addition, a subsample of 39 devices was also measured
via the native apps. A complete list of the smartphone models
with their OS is shown in Table 1. The smartphones were
selected to represent a typical sample of smartphones imple-
mented in the research setting during a smartphone study. We
used smartphones from participants who took part for course
credit or remuneration. The phones cover different manufac-
turers, models, and operating systems. We did not alter any of
the settings, OS updates or installed browsers to follow the
logic of simulating a real study situation as close as possible,
apart from the objective position of the device.

Measures

The values of pitch and roll were gathered via two different
software implementations, a website and native applications
in Android and i0S. The measurement on a website was im-
plemented via the DeviceOrientation Event Specification
(Tibbet & Volodine, 2018). This specification provides sever-
al DOM events related to the orientation and motion of a
device. The deviceorientation event supplies the physical ori-
entation of the device, the devicemotion event supplies the
acceleration of the device, and the compassneedscalibration
event is used to warn web apps about the need of recalibration
of the compass being used to provide data for one of the other
two events. Considering this, we created a simple web app,
available in the OSF archive, and registered it to receive
deviceorientation events. The events provide four attributes,
of which two are of interest to the present study (see Fig. 1).
The pitch of the device is represented by beta. It describes the
top-down orientation around the x-axis, represented in degrees
with values ranging from — 180 to 180. The roll is represented
by gamma, which describes the left-right orientation around
the y-axis, represented in degrees with values ranging from —
90 to 90. The code to register deviceorientation events via the
web app is the following:

window.addEventListener("deviceorientation",
function(event) {

// process event.beta and event.gamma

}, true);
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Fig. 3 RollPitcher metal mounting device with smartphone and mechanic’s level (left) and plastic mounting device (right)

The beta angle is 0° when the device's top and bottom are
the same distance from the earth's surface. If the device is in a
vertical plane and the top of the screen pointing upwards, the
value of beta is 90°. The gamma angle is 0° when the device's
left and right sides are the same distance from the surface of
the earth.

Table 1 Measured smartphone models

We developed the native application for Android ourselves
following the guidelines provided by the Android official doc-
umentation. Although the orientation sensor was deprecated
in Android 2.2 (API level 8), the Android sensor framework
provides alternate methods for acquiring device orientation.
The orientation angles are computed by using a device's

Manufacturer Model Number of devices tested Operating system
Samsung A5 1 Android
Samsung Duos 1 Android
Samsung J5 1 Android
Samsung S4 1 Android
Samsung S5 1 Android
Samsung S6 1 Android
Samsung S7 2 Android
Samsung S8 12 Android
Samsung SO+ 1 Android
Huawei P8 1 Android
Huawei P8 Lite 3 Android
Huawei P9 Lite 3 Android
Huawei P20 Lite 1 Android
Xiaomi Pocophone F1 1 Android
Apple iPhone 5 1 iOS
Apple iPhone 6 9 iOS
Apple iPhone 6s 2 iOS
Apple iPhone SE 2 i0S
Apple iPhone 7 6 i0S
Apple iPhone 8 1 iO0S
Apple iPhone XR 1 iO0S
CAT S61 1 Android
Nokia Lumia 950 1 Windows 10 Mobile
Honor 9 Lite 1 Android
Motorola G4+ 1 Android
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geomagnetic field sensor in combination with the device's
accelerometer. The use of these two hardware sensors pro-
vides three orientation angles, two of which are relevant for
the present study: pitch describes the degrees of rotation about
the x-axis, i.e., top-bottom tilt from — 180 to 180 degrees; roll
describes the degrees of rotation about the y-axis, i.e., left-
right tilt from — 90 to 90 degrees. The angles correspond to
the aforementioned beta and gamma values from the Device
Orientation API. The native application implemented on i0OS
devices was the sensor reading app “Sensors Multitool”, avail-
able free of charge from the Apple AppStore. It provides sep-
arate sensor readings for pitch and roll, named x and y, and
displays them on-screen.

Procedure

At the start of the measurements, the native apps were
installed on participants’ smartphones and their screen was
set to portrait mode. Before the smartphone was mounted,
any protective case was removed and RollPitcher was levelled
out to a precision of £+ .05°. The smartphone was then located
in position. The measurements took place according to a
scheduled sequence of angle combinations. The pitch angles
had the values 0°, 30°, 60°, and 85° in both directions. Roll
angles were 0°, 15°, and 30° in both directions. These values
were chosen to represent #ypical locations of smartphones
during everyday use. The pitch values typically deviate more
from the null point than roll values (Kuhlmann & Reips,
2020). The vertical angle of 90° was not measured, as for this
angle there is no meaningful value of roll because the
smartphone is standing on the side. Every combination of
pitch and roll angles was implemented via the mounting de-
vice and the data sent three times, with a pause of 1-2 s
between sending, to a Firebase database. This data had a pre-
cision of nine decimal points. Data from the iOS native app
was recorded by hand to a spreadsheet with a precision of one
decimal point. This procedure led to 35 different combinations
of angles measured per device, once via native app, and once
via web browser. The browser was chosen based on partici-
pants’ standard settings for web browsing, representing the
most likely option that a participant would partake in an
Internet-based questionnaire.

Statistical analyses

The data was imported from Firebase and spreadsheets into R.
Analyses were carried out in R and JASP (JASP Team, 2018).
Data files, R scripts and the browser app are available at
https://osf.io/hfcx8/. The three repeated measures of pitch
and roll for each angle combination were close to identical,
differing by less than .01° on average. The arithmetic mean of
the three measurements was used in statistical analyses.
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Results

First, we describe the exclusion of suspect roll values. Then
the descriptive statistics for deviations of pitch and roll are
presented and thereafter the statistical analyses comparing dif-
ferent smartphone devices.

Exclusion of roll values at pitch of 85°

Roll values that were gathered at pitch angles of 85° were
excluded from all combined analyses as these showed unusu-
ally large deviations from the objective values. The deviations
from objective roll values ranged from — 28.5° to 55.7° (SD =
9.9°) at pitch angles of 85°. The deviations from objective roll
values for all other pitch angles was — 11.6° to 10.0° (SD =
1.8°). Possible explanations and interpretations for this quali-
tative difference are reviewed in the Discussion section. The
main hypothesis is that the angle of 85° is too close to 90°, at
which there are no meaningful values for roll.

The influence of RollPitcher building material

We conducted measurements via two RollPitchers that dif-
fered in the material they were made of, from metal and the
other from plastic. To assess whether the material of the
RollPitcher has an influence on the measurement, we per-
formed the same measurement routine on identical
smartphones in RollPitchers in short succession. This was
carried out with four different smartphones. A Bayesian re-
peated measures ANOVA with RollPitcher device as the re-
peated measures variable and pitch deviation as the dependent
variable was calculated. The Bayes factor was BF o = .156,
providing no evidence for an effect of the device, but moder-
ate evidence in favor of no difference. The effect size of the
repeated measures factor was n2 =.0004, indicating that less
than 0.1% of the variance in pitch deviations could be attrib-
uted to the RollPitcher device. The results for roll deviation
were similar with BF; = .136 and n)* < .001.

Deviations of pitch and roll from objective values

The distributions of the deviation of sensor measured pitch
and roll values from the objective angles are shown in Fig.
4. The distributions are based on data gathered via the browser
of the smartphones. The mean deviation was 0.05° for pitch,
ranging from — 17.8° to 8.1° (SD = 1.2°). For the roll values,
the mean deviation was 0.20°, ranging from — 11.6° to 10.0°
(SD = 1.8°).

The distributions based on data from the native apps are
shown in Fig. 5. The distributions are similar to the ones
gathered via the browser. The mean deviation was 0.05° for
pitch, ranging from — 5.71° to 3.48° (SD = 1.1°). For the roll
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Fig. 4 Browser-measured deviations of the sensor gathered pitch values
(top) and roll values (bottom) from the objective position of the
smartphones across all devices

values, the mean deviation was 0.21°, ranging from — 14.7° to
10.3° (SD = 2.0°).

The correlation between the values from the browser and
the native app was r = .91 for pitch and r = .90 for roll. Overall,
the results show a high, albeit not perfect, overlap between the
two modes of measurement.

Comparison of devices and mode of measurement

Bayesian repeated measures ANOVAs for the absolute devi-
ations of pitch and roll values from the objective angles were
calculated. This allows for a comparison of the deviation in
both directions and removes the possibility of inaccuracies in
both directions to cancel each other out. It therefore allows for
a better comparison of the heterogeneity between devices and
software. The repeated measures factor was mode of measure-
ment, i.e., native app or web browser. The 56 smartphone
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Fig. 5 Native app-measured deviations of the sensor gathered pitch
values (top) and roll values (bottom) from the objective position of the
smartphones across all devices

devices were included as a between factor. Results for the
deviation values of pitch are shown in Table 2.

The heterogeneities in pitch deviations due to smartphone
device did show very strong support for an influence of the
smartphone device, with a Bayes factor of BF;, = 1.32 *
10'%%. The explained variance in pitch deviations by
smartphone device amounted to n* = .38. Also, the Bayes
factor for the repeated measures supports a difference of pitch

Table 2 Bayesian repeated measures ANOVA of absolute pitch
deviations

Models BF o Error %
Null model 1.000

Mode of measurement (repeated) 75.81 3.248
Smartphone device 1.32#10' 0.195
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deviations due to mode of measurement, BF;( = 75.81, but the
explained variance was very small with n’= .001. When in-
cluding the smartphone device in the null model and comput-
ing the Bayes factors for adding the interaction it showed very
strong support for improving the model, BFo = 9.64 * 10°.
This result signifies that the mode of measurement, browser
vs. native app, did not affect all devices equally, with some
devices showing larger differences than others. The mean ab-
solute deviations and their standard deviations for the browser
values of pitch are shown in Fig. 6.

Results for the Bayesian repeated measures ANOVA of
deviation values of roll are shown in Table 3. The results for
roll are consistent to the ones for pitch. The Bayes factor for
the repeated measures did provide evidence against a differ-
ence of roll deviations due to mode of measurement, BF;( =
0.08. The explained variance was very low with n* < .001.
The heterogeneities in roll deviations due to smartphone de-
vice did show very strong support for an influence of the
smartphone device with a Bayes factor of BF;, = 1.73 *
10'%°. The explained variance in roll deviations by
smartphone device was higher as compared to pitch devia-
tions, n°= .57.

When including the smartphone device in the null model
and computing the Bayes factors for adding the mode of mea-
surement and the interaction, the main effect for mode of
measurement did not improve the model, BF;, = 0.08, but
the interaction again did, BF o = 4.23 * 10'°. This signifies

SN

Pitch deviation (absolute)

o

Table 3 Bayesian repeated measures ANOVA of absolute roll
deviations

Models BF o Error %
Null model 1.000

Mode of measurement (repeated) 0.08 1.042
Smartphone device 1.73 * 10"3¢ 0.212

that for some smartphone devices, the mode of measurement
does change the values, but not as a main effect. The mean
absolute deviations and their standard deviations for the
browser values of roll are shown in Fig. 7.

The following analyses are only reported for the browser-
based measurements because the differences between browser
and native measurements were very small and the browser
data was available for all devices.

A linear mixed model with smartphone device as a random
effect was calculated to compare the deviations in pitch values to
the deviations in roll values. The analysis confirmed the impres-
sion from the descriptive plots. Deviations from objective roll
values were higher than the deviations from pitch values by an
average of 0.36°, t (3260) = 10.91, p < .001, d = .28.

Hypothesis 3, the consistency of the deviations within the
same smartphone device, was tested via ICCs. We were inter-
ested in the consistency of the deviations across the different
objective angles that were measured. For the pitch values, the
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Fig. 6 Mean browser-based absolute deviations from the objective pitch values and their SDs by smartphone device
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Fig. 7 Mean browser-based absolute deviations from the objective roll values and their SDs by smartphone device

inaccuracies did show a moderate amount of consistency
within devices, ICC = .26, p < .001. This signifies that pitch
measurement deviations within a device were somewhat con-
sistent across measurement occasions. For the roll values, the
consistency of inaccuracies within devices was smaller, I[CC =
.07, p < .001. Roll measurement deviations were not as stable
within the measured devices.

Comparison of operating systems and manufacturer
To compare the impact of the operating system and the

manufacturers of the device on the accuracy of measure-
ment, linear mixed models with random intercepts for

Pitch deviation (absolute)

Android i0S

each device were calculated. The dependent variable
was always the absolute tilt deviation and the angle,
pitch, or roll, was included as a covariate. As there was
only one device with a different OS than Android or
iOS, the Nokia Lumia 950, the analysis compared only
these two operating systems. The OS of the device did
show an association with the accuracy of measurement,
t(52.94) = — 2.39, p = .021. i0S devices showed slightly
smaller inaccuracies, but the effect size was very small
with = .03. The mean inaccuracy for pitch and roll of
both operating systems is shown in Fig. 8.

The manufacturer of the device, e.g., Samsung, Apple,
Huawei, did not predict inaccuracies in pitch or roll deviation,
t(53.95)=-0.174, p = .86.

Roll deviation (absolute)

Android i0S

Fig. 8 Absolute browser-based deviations of pitch and roll aggregated for operating systems

@ Springer



Behav Res

Discussion

Our results show that heterogeneities in pitch and roll data are
present for the orientation sensor. Devices differ in accuracy
with some showing mean deviations close to 0° and little
variance while other devices show mean inaccuracies of up
to 2°, on some occasions reaching over 6° compared to the
objective tilt. The deviations are higher for measurements of
roll than they are for measurements of pitch. Hypothesis 1,
referring to the heterogeneities between devices, was therefore
supported. The results are in line with findings on the accel-
erometer (Stisen et al., 2015).

Whether a browser or a native application was used to
gather data did not have an influence on the
measurement accuracy of the sensor data, overall.
However, there was a significant interaction between
smartphone device and mode of measurement, pointing
towards some differences between devices. For some de-
vices, the values of pitch and roll were basically identi-
cal, regardless of whether they were measured via a web
browser or native application. For other devices, the dif-
ferences were more pronounced. In addition to these het-
erogeneities, the directions, e.g., signs of angles, did dif-
fer depending on the software. Depending on the planned
study, a reversal of angles in some devices does have the
potential to seriously alter the results of analyses. The
results with regard to mode of measurement partially
support our second hypothesis. The software implemen-
tation does have an influence, but to a smaller degree
than the differences across devices. This is in line with
previous suggestions (Blunck et al., 2013) and technical
considerations when implementing software sensors
(Deveria, 2018).

The magnitude of the deviations is not negligible, but their
importance depends on the research question that is investi-
gated. If the orientation sensor is merely supposed to indicate
switches between portrait and landscape mode or capture fall-
ing behavior, small heterogeneities might not be as impactful.
In one of our studies, however, deviations of 4-5° from the
actual values are close in magnitude to the effect size when
trying to measure body posture (Kuhlmann & Reips, 2020).

The analyses on differences in inaccuracies between differ-
ent operating systems and manufacturers only revealed small
or non-significant effects. The inaccuracies of specific devices
contribute more variance than distinguishing by operating sys-
tem or manufacturer.

For the present study, we excluded roll values that were
acquired at 85° of pitch because of their inaccuracy. If this
correction is not performed, the heterogeneities and inaccura-
cies are magnitudes higher to the point of approaching random
values of roll. In the Procedure section, we mentioned that at
pitch values of 90°, there does not exist a meaningful value for
roll because the device is standing on the side. Tilt around the
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y-axis, 1.e., roll, is always at a right angle to the gravitational
force and different roll values can therefore not be distin-
guished. Our results suggest that this problem is present at
pitch angles lower than 90°. This explains the wide range of
deviations measured at pitch angles of 85°. Future research
should determine the exact angle from which the qualitative
difference occurs. Our advice to researchers is to handle roll
data at pitch angles approaching 90° with care and, whenever
possible, check for unusually large variance or deviations.
Another, more complex, solution is to use the raw data from
the sensors and calculate quaternions instead of Euler angles
(Favre, Jolles, Siegrist, & Aminian, 20006).

Our results indicate that inaccuracies are moderately con-
sistent within devices, meaning that a deviation in pitch in one
direction at a certain angle does show a positive correlation
with the deviation in pitch at other angles. This supports our
third hypothesis, at least for deviations in pitch. When
conducting longitudinal studies, this is possibly an important
factor as variables are often ipsatized, i.e. centered around the
person mean, in these designs to separate between- and
within-person effects (Curran & Bauer, 2011). Ipsatizing cre-
ates variables for the within-person effect that are centered
around a person mean. Stable deviations within one device
mean that these ipsatized values are influenced to a lesser
degree by heterogeneities and deviations of orientation data.
The effect is not completely removed because the correlations
within a device are not perfect and vary across devices and tilt.
It is still an important fact to consider when evaluating wheth-
er and how big of a problem heterogeneities are in the context
in a given research design.

Comparisons between persons, i.e., devices, are influ-
enced to a higher degree. Not only are the inaccuracies
a bigger problem because they are not consistent across
devices, but the possibility of different software
implementations also opens the possibility of more pro-
found problems for the comparability (Blunck et al.,
2013). There is no binding standard on the signage of
pitch and roll, meaning that a negative pitch for one
software solution might be the same value with opposite
sign in others. There is no way to ascertain comparabil-
ity of signs apart from testing them beforehand.
Assuming that the number of software implementations
is not too large, this should not be too problematic. A
bit more problematic is the possibility that certain
values are transformed or cut off by the software. For
example, the MIT App inventor transforms values with
an absolute value of over 90° to either roll back to 0
with increasing tilt or it freezes them at the angle until
the value gets lower again (MIT App Inventor Public
Open Source, 2018). Transformations of data are usually
automated with certain applications in mind, e.g.,
games, which may not be in line with researchers’ in-
terests. Furthermore, these transformations are not easy
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to find in manuals, as they pertain to a very specific
topic not usually of interest to everyday app developers.
A recommendation for developers of research-oriented
frameworks is to provide a coherent API where re-
searchers can forget about device particularities and
get similar values in cross-platform setups. Such an
API would make comparisons easier for researchers
and solve many of the problems of comparability before
they arise in data analysis.

Limitations

The present study is limited by the number of devices that
were investigated. Though they were selected to be compara-
ble to the situation in a typical smartphone study, they do not
cover the complete range of possible devices in a research
design. This is not the aim of the present study, though. We
want to investigate whether there exists a problem when
implementing the orientation sensor and provide researchers
with an estimate of possible effects. Our study finds there is a
problem and the effects are substantial.

Another limitation is the value of the angles of pitch and
roll that we investigated. They do not cover the entire range of
possible angles, but merely represent a typical combination
that reflects common pitch and roll values. Our study is not
guaranteed to also reflect extreme cases, e.g., turning the
phone upside down, or reflect every other possible combina-
tion of angles. We do provide a meaningful number of com-
binations of pitch and roll, however, that covers the spectrum
of a typical smartphone study (Kuhlmann & Reips, 2020).

Conclusions

The present study does show that heterogeneities are present
in data on the spatial orientation of smartphones. The inaccu-
racies are usually between 0.5 and 3° (except for 85° pitch
angle), large enough to potentially influence results. They dif-
fer depending on the smartphone device. Future studies could
aim to expand the number of devices tested and possibly a
database could be created as a reference for researchers. A
database would not allow researchers to perfectly adjust their
design and analyses, but might provide helpful data and guide-
lines when implementing orientation data in a study. It might
also help other researchers to estimate the stability of their
findings. The results of the present study do provide an esti-
mate of the magnitude of heterogeneity across different
smartphones and research designs in which they matter.
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