Skip to main content
. 2020 Sep 9;31(3):1471–1481. doi: 10.1007/s00330-020-07175-z

Table 2.

Logistic regression analysis with random effects

Random effects
  Groups name Variance Standard deviation
  Clinical site (intercept) 0.1371 0.3703
  Number of observations, 2880; groups: site, 25
Fixed effects
Estimate Standard error Z value Pr (>|z|)
  (Intercept) − 2.734 0.16884 − 16.192 < 2e–16***
  Pre-test probability 3.04813 0.19998 15.243 < 2e–16***
  Method (original D+F or updated D+F 2011) 0.43833* 0.09312 4.707 2.51e–06***
Correlation of fixed effects
(Intercept) Pre-test probability
  Pre-test probability − 0.818
  Method (original D+F or updated D+F 2011) − 0.566 0.392

We performed a logistic regression analysis with the outcome (prevalence; CAD or no CAD) as dependent and the respective pre-test probability and the method of computation as predictors using the stacked data set (method original D+F versus updated D+F 2011). In order to take care of the variability between sites, we applied a random intercept for site. There is a significant effect of the method with a coefficient equal to 0.44, corresponding to an odds ratio of 1.55 (95% CI 1.29, 1.86). Significance codes: 0 = ‘***’, 0.001 = ‘**’, 0.01 = ‘*’, 0.05 = ‘.’ 0.1 = ‘ ’ 1; *Statistical significance