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Characterization of kinesthetic 
motor imagery compared 
with visual motor imageries
Yu Jin Yang1, Eun Jeong Jeon1, June Sic Kim1,2* & Chun Kee Chung1,3

Motor imagery (MI) is the only way for disabled subjects to robustly use a robot arm with a brain-
machine interface. There are two main types of MI. Kinesthetic motor imagery (KMI) is proprioceptive 
(OR somato-) sensory imagination and Visual motor imagery (VMI) represents a visualization of the 
corresponding movement incorporating the visual network. Because these imagery tactics may 
use different networks, we hypothesized that the connectivity measures could characterize the 
two imageries better than the local activity. Electroencephalography data were recorded. Subjects 
performed different conditions, including motor execution (ME), KMI, VMI, and visual observation 
(VO). We tried to classify the KMI and VMI by conventional power analysis and by the connectivity 
measures. The mean accuracies of the classification of the KMI and VMI were 98.5% and 99.29% by 
connectivity measures (alpha and beta, respectively), which were higher than those by the normalized 
power (p < 0.01, Wilcoxon paired rank test). Additionally, the connectivity patterns were correlated 
between the ME-KMI and between the VO-VMI. The degree centrality (DC) was significantly higher in 
the left-S1 at the alpha-band in the KMI than in the VMI. The MI could be well classified because the 
KMI recruits a similar network to the ME. These findings could contribute to MI training methods.

A brain machine interface (BMI) is designed to translate raw neural signals into motor commands so that it 
reproduces body movements with a neuroprosthetic device1. For people with a severe neuromuscular disability, 
a BMI might replace or even restore lost natural outputs2. In particular, one of the major goals for a BMI is to 
decode a command signal from the motor cortex, which serves as a new functional output3. Then the question 
is what is the command signal that disabled people can manipulate. The answer would be the neural activity 
while imagining a movement. Neural activity occurs even while a person imagines moving body parts. We 
call it motor imagery (MI), which is a particular type of mental imagery defined as the mental simulation of a 
specific action without any corresponding motor output4. The neural activity by MI is known to originate from 
the motor and somatosensory areas5. Thus, most of the movement BMIs use sensorimotor activities during MI. 
However, the network underlying a MI, or some kind of imagery can be different depending on the imagery 
tactics (e.g., object-related imagery activates object areas, whereas the imagery of faces activates face-related 
areas in the fusiform gyrus)6.

In the EEG-based BMI, about 15–30% of users do not gain control of the BMI system. This phenomenon in 
these subjects is called "BMI illiteracy"7, which may result from the individual variability of the EEG signals. The 
EEG environment may not be identical for each recording. Contact impedance, placement of the electrodes, and 
environmental noise slightly vary from time to time. Additionally, the EEG activity may also change according 
to the alertness, attention, and inherent fluctuation of a subject. Furthermore, this variability could be larger 
in an imagery task rather than in an actual movement task because the individual strategy of imagination may 
differ among the subjects. In addition, BMI illiteracy may not only be due to the user but also partly to the train-
ing protocol and the feedback8. Mastering a MI resembles the acquisition of a new motor skill9. As appropriate 
practice improves a motor skill, imagery practice by appropriate feedback is required for robust BMI control8,10.

Recently, several approaches have been tried such as somatosensory11, tactile12, and visual feedbacks13 to give 
a more natural feedback to the subject. These feedback approaches relied on accurate classification. However, 
there is a lack of accurate classification for the type of MI that the subject used.

There are two main types of motor imageries: kinesthetic motor imagery (KMI)14 and visual motor imagery 
(VMI)14. KMI is described as the ability to imagine performing a movement by means of having an impression 

OPEN

1Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul 08826, 
Republic of Korea. 2The Research Institute of Basic Sciences, Seoul National University, Seoul, Republic of 
Korea. 3Department of Neurosurgery, Seoul National University Hospital, Seoul, Republic of Korea. *email: 
junesic.kim@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-82241-0&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2021) 11:3751  | https://doi.org/10.1038/s41598-021-82241-0

www.nature.com/scientificreports/

of the muscle contraction and sensation during an actual movement. On the other hand, VMI is the ability to 
imagining seeing myself performing the movement. Because most of the decoders for motor prediction are 
designed based on an actual movement, KMI could be more effective than VMI. Thus, the use of a KMI would 
be better to improve the BMI performance. However, without specific instructions, subjects may be confused in 
the imagery tactics. Furthermore, people with motor disabilities had more difficulties with kinesthetic imagi-
nation compared to healthy participants15. It would be helpful if we could classify the imagery types and give 
feedback to the subject.

Previous EEG studies that recognized different mental states such as motor execution (ME), KMI, VMI, and 
visual observation (VO) showed that mental states could be classified with accuracies in KMI (67%), VMI (56%), 
ME (80%) and VO (80%)14. The classification features were extracted based on the strength of the spatial cortical 
activity (e.g., frequency bands and electrode sites). However, several studies reported that the brain activation 
patterns of KMI and VMI showed similar activation patterns with only a temporal difference. KMI showed 
motor-related activation first, while VMI showed visual-occipital activations at the early stage16. In a practical 
condition, it is hard to detect the temporal changes. Furthermore, the local activity alone may have a high prob-
ability of a false positive because motor areas also show spontaneous activity even not in imagery or movement 
tasks (e.g., at rest)17. Therefore, a more robust approach rather than an activation-based method is needed. 
Motor-related brain regions apart from the motor cortex are involved in MI tasks18,19. The connectivity within 
motor-related brain regions would be an alternative feature to classify MI strategies. A previous study showed 
that connectivity in the dorsolateral prefrontal cortex increased during movement planning20. The connectivity 
refers to the statistical dependency of signals from spatially separated brain areas during a task performance21. 
The connectivity between brain areas can provide more direct evidence about information exchange even if the 
activity of a brain region does not increase compared to the baseline22. In addition, the connectivity could possibly 
reflect the underlying structural organization of anatomical connections23 by utilizing patterns of connectivity 
among brain regions that represent functional brain networks. Accordingly, many studies on memory22, resting-
state17,24, and cognitive impairments25 used connectivity measures to analyze cognitive activities.

Despite the importance of MI in BMI, there is a lack of accurate methods for classifying MI types and provid-
ing feedback. In order to address this gap, the present study classified two types of MI with a connectivity meas-
ure. The study hypothesized that KMI would show more similar connectivity patterns with ME than that of VMI. 
Moreover, the global and local characteristics of these network patterns will be different between KMI and VMI.

Methods
Participants.  Eleven healthy subjects (7 females; aged 25.5 years old; STD = 2.71 years) were recruited for 
this study. All subjects were novices in BMI. We used the Edinburgh Handedness Inventory to collect data on 
the handedness of the subjects. All the subjects were right-handed, and the score on the Edinburgh Handedness 
Inventory was above 80 for all subjects (87.73 ± 6.17)26. The intrinsic abilities of two motor imagery types in all 
subjects were tested using the Kinesthetic and Visual Imagery Questionnaire (KVIQ-10)27. No subjects were 
excluded from the analysis because the subjects’ KVIQ-10 scores were higher than the exclusion criteria of 2 
(KMI = 3.24 ± 0.60; VMI = 3.42 ± 0.70). Prior to the experiment, the experimenter explained KMI and VMI and 
instructed subjects to use a specific imagery strategy according to the instructions. All subjects provided written 
informed consent to participate in the experiment. This study was performed in accordance with the Declara-
tion of Helsinki and was approved by the Institutional Review Board (IRB) of Seoul National University Hospital 
(1605-136-765).

Instructions and tasks.  Before beginning the experiment, the experimenter explained the composition 
of the tasks and what the subject should do during the recording. The subjects, wearing an EEG cap and a 3D 
display device (VR BOSS XTREK, SMARTPIA, Yongin, South Korea), sat comfortably in a fixed chair without 
an armrest. The video shown on the 3D display device displayed the target or trajectory of the arm according 
to each condition. At the beginning of a task, subjects put their hands on both thighs. Subjects were asked to 
perform all the tasks using their dominant hand. The experimental paradigm consisted of the ME, KMI, VMI, 
and VO conditions. These conditions represent the typical strategies utilized for BMI. In the ME condition, 
subjects were asked to follow the movement of the robot arm as similar as possible, as shown in the virtual real-
ity device. In the KMI task, the subjects were instructed to imagine the same movements with their own arm 
that coincided with the movement sequence in the ME task. While using KMI, the subjects were instructed to 
imagine the sensation as much as possible, which was a feeling that the subjects just before felt during the ME 
tasks, without muscle movement. In the VMI task, subjects were asked to imagine the arm movement visually 
and to exclude the kinesthetic sensation. Lastly, in the VO task, subjects were instructed just to keep watching 
the same video as the ME task.

Experimental paradigm.  For the sequence of tasks, movement imagery is difficult without any preceding 
practical task28. We designed the KMI tasks after the ME14. The KMI following the ME shows similar cortical 
activities4,29, which could be explained as a model of short-term memory that copies representational steps4. 
Likewise, the subjects performed the VMI tasks after VO. An experiment consisted of two tasks, which were 
pairs of ME-KMI and VO-VMI tasks. We showed a pre-recorded video manipulating a robot arm in every task. 
In the video for the ME and VO tasks, the robot arm sequentially performed reaching–hold–grasping–hold–
return–hold–release for about 8.2 s and rest for about 5 s. In the imagery tasks for the KMI and VMI, the video 
displayed only a static target picture without a robot arm. Examples of the task design are briefly illustrated in 
Fig. 1. The reason why we removed the robot arm in the video for the imagery tasks was that the robot arm 
movement could disturb the MI with their own arm30. The targets in the video were placed in three directions, 
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and the order of the targets was randomly assigned to avoid repeating the same direction as the previous block. A 
block consisted of an execution trial and an imagery trial, each of which took 13.2 s, taking a total of about 26.4 s. 
One session was composed of identical 24 blocks. The session consisting of 48 trials took about 11 min. We ran 
a total of four sessions that were two ME-KMI block sessions and two VO-VMI block sessions.

Electrophysiological recordings and preprocessing.  We acquired neural activities using a 64-chan-
nel EEG cap (Quich-CapEEG, Compumedics, Abbotsford, Victoria, Australia) and an amplifier (Neuroscan 
synamps2, Compumedics, Abbotsford, Victoria, Australia) with an additional electrode for a reference. The 
reference electrode was attached to the mastoid opposite the dominant hand of the subject. Movement of the 
arm was tracked by a motion capture system with an active optical marker (3D investigator, Northern Digital 
Inc., Waterloo, Ontario, Canada) during the neural signal recording. The sampling frequency of the signals was 
2000 Hz for the EEG signal and 1000 Hz for the motion tracker. Both were resampled to the same frequency of 
500 Hz. In order to synchronize the EEG amplifier and motion tracker, we delivered a 5 V input simultaneously 
to all devices before starting the sessions (e.g., through a transistor-transistor logic (TTL) port and the external 
trigger port of the 3D investigator amplifier).

Source analysis and regions of interest (ROIs).  We selected 14 areas related to cognitive mechanisms 
of arm movement processes, which were expected to be involved in the ME, KMI, VMI, and VO networks31–34 
in the bilateral hemispheres as follows: the dorsolateral prefrontal cortex (DLPFC), premotor cortex (PM), sup-
plementary motor area (SMA), primary motor cortex (M1), primary somatosensory cortex (S1), posterior pari-
etal cortex (PPC), and primary visual cortex (V1). The locations are illustrated in Fig. 2c. We performed source 
analysis according to the determined region of interest (ROI) using the built-in function of the discrete model 
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Figure 1.   The graphic illustration of task paradigms. (a) The overall task paradigms of single trials as execution 
(ME, VO) and imagery (KMI, VMI) conditions. (b) The session design, which showed a moving robot arm 
when execution conditions and only target without a robot arm when imagery conditions.
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Figure 2.   A schematic diagram of a brain network classification using mutual information. (a) A schematic 
procedure illustrating the overall workflows. (b) Raw EEG signal. (c) ROI location and source analysis. 
(d) Signal preprocessing (e.g., band-pass filtering and epoching). (e) Calculate mutual information at each 
frequency band. (f) Feature selection with a threshold of 0.2. (g) Classification of the KMI and VMI using SVM.
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probing in BESA research 6.0 (GmbH, GrmbH, Gru, Bavaria, Germany). The EEG signals, which are illustrated 
in Fig. 2b, were band-pass filtered at a range of 0.1–100 Hz with a 60 Hz notch filter (Fig. 2d). Table 1 lists the 
coordinates used35. Each source was identically analyzed for all subjects by using equal masks.

Before the source analysis, the common average reference (CAR) was used to remove the global background 
activity36. We separated the ROI signal into theta (3–7 Hz), alpha (8–12 Hz), beta (13–30 Hz), and gamma 
(32–100 Hz) frequency bands.

Power spectral density analysis.  The source-localized and filtered data were epoched with a time win-
dow from 4 s before the onset to 13.2 s after the onset. To calculate the power for each condition, we used the 
Morlet wavelet transform with a frequency range of 0.1–100 Hz. The power spectra from the task time (0–8.2 s) 
were normalized by the power of each frequency from the baseline periods (− 1.5 to − 1 s). Then, the data were 
averaged for all ROIs making one power spectra for each trial. To compare the difference between conditions, 
we made one grand averaged power spectra plot for each condition by averaging the normalized power spectra 
of all the trials and subjects at each condition.

Connectivity analysis.  To compare the patterns of two MIs, we analyzed brain connectivity using a mutual 
information algorithm (Fig.  2e). Mutual information measures both linear and nonlinear interdependencies 
between EEG signals. We used cross mutual information, which can be applied to two different signals37. In this 
study, we utilized mutual information between the signals at the paired cortical ROIs. The connectivity values 
from the task time (0–8.2 s) were normalized by the connectivity values of each session from the baseline periods 
(− 1.5 to − 1.4 s). We had a total of 91 edges (14 ROIs), and each condition (i.e., ME, KMI, VMI, and VO) had 48 
trials per individual. Connectivity patterns were grand averaged across subjects for the four conditions with the 
alpha and beta frequency bands separately.

Network analysis with graph theory.  Graph theory was used to reconstruct the brain network. We 
used undirected weighted values from the connectivity with mutual information as the network edges. We tried 
to identify the critical nodes that have strong relationships with other nodes in the network. We estimated the 
degree centrality (DC) in the weighted graph with the GRETNA toolbox38. The calculated DC was represented 
for each frequency band.

Degree centrality.  The DC of a node is can be easily computed by summing the weight of edges incident 
on the node. To analyze DC, we used gretna_node_degree_weight (GRETNA). If A is the N × N weighted matrix 
for a graph, the DC of the i-th node is quantitatively defined as follows:

where N is the number of nodes.

Feature extraction and classification.  Support vector machine (SVM) analysis was used to classify the 
KMI and VMI in a single trial. We used network measures and normalized power as features to classify the KMI 
and VMI to compare the classification accuracy of each measurement. The features were used by the edges, 
which consisted of the highest 20%39 (Fig. 2f), and normalized power, respectively. To classify with the SVM 

DC(i) =

i−1∑

j=1

A[i, j] +

n∑

j=i+1

A[i, j]

Table 1.   The regions of interest (ROIs).

# ROIs

Talairach coordinate

x y z

1 Left dorsolateral prefrontal cortex (DLPFC) − 17.82 46.13 29.01

2 Left supplementary motor area (SMA) − 9.9 8.62 55.76

3 Left premotor cortex (PM) − 37.3 − 14.4 60.3

4 Left primary motor cortex (M1) − 34.65 − 20.4 58.13

5 Left primary sensory cortex (S1) − 35.64 − 32.07 57.8

6 Left posterior parietal cortex (PPC) − 25.74 − 54.35 58.91

7 Left primary visual cortex (V1) − 9.9 − 71.32 10.94

8 Right dorsolateral prefrontal cortex (DLPFC) 17.82 46.13 29.01

9 Right supplementary motor area (SMA) 9.9 8.62 55.76

10 Right premotor cortex (PM) 37.3 − 14.4 60.3

11 Right primary motor cortex (M1) 34.65 − 20.4 58.13

12 Right primary sensory cortex (S1) 35.64 − 32.07 57.8

13 Right posterior parietal cortex (PPC) 25.74 − 54.35 58.91

14 Right primary visual cortex (V1) 9.9 − 71.32 10.94
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algorithm, we used the MATLAB function of fitcsvm (Fig. 2g). The classification performance was evaluated by 
a fivefold cross-validation with 100 iterations. The overall procedure is illustrated in Fig. 2a.

Statistical analysis.  The significant difference between the degree centralities at the nodes for KMI and 
VMI was calculated for each frequency band using a non-parametric permutation test. The significance was 
evaluated by the permutation distribution with 10,000 iterations40. Pearson’s correlation coefficient (R) was cal-
culated to measure the similarity between the connectivity matrixes of the different conditions. All analyses were 
conducted with MATLAB (R2018a, Math-Works, Natick, MA, USA) and the EEGLAB toolbox41.

Results
Connectivity analysis using mutual information.  We analyzed the connectivity patterns for each con-
dition in the four frequency bands, but the theta and gamma frequency band signals did not produce statistical 
differences between the ROI signals. Therefore, the results focused on the alpha and beta frequency signals, and 
the remaining two frequency results are not given. There was a total of 14 ROIs, and the time series of one trial 
was 8.2 s for each subject. The window size was 100 ms, which was the same as in our previous study42, with no 
overlap. Eighty-two windows were created per trial. Each ROI signal was analyzed with the mutual information 
algorithm, which yielded one 14-by-14 matrix for each time point of the windows. These 82 connectivity matri-
ces generated at each time point were averaged to create one 14-by-14 matrix per trial. The connectivity matrix 
of all the trials was finally averaged for each condition, resulting in one 14-by-14 connectivity matrix.

Connectivity classification using SVM.  We used the SVM algorithm to classify the KMI and VMI based 
on the two different feature groups. One is the power spectrum, which is normalized by the baseline power, and 
the other is the connectivity. We compared the classification performances. Figure 3a is an example of the fea-
tures for classifying the KMI and VMI. Each line represents the normalized power spectra grand averaged across 
all subjects for each condition. We used the normalized power of the alpha and beta frequency as the features 
for the SVM. The normalized power of the KMI and VMI conditions was similar between the alpha and beta 
frequency bands (R = 0.99), which could explain the low classification performance when using the normalized 
power shown in Fig. 4. Figure 3b depicts the highest 20% of the grand averaged connectivity at the alpha and 
beta frequency bands under each condition. The edge was calculated by mutual information algorithms, and all 
trials were averaged for all subjects. The size of a node represents the node degree centrality. The edges shown in 
Fig. 3b were selected for the features to classify the KMI and VMI conditions. Note that the networks of the KMI 
and ME had more connections to the ROI of the sensorimotor cortex and showed similar network patterns. On 
the other hand, the network patterns of the VMI and VO were similar, showing many networks at the DLPFC 
and PM (Table 3; Fig. 5). The classification was performed based on individual trials using the extracted features. 
The classification accuracies between the KMI and VMI are shown in Fig. 4a. In Fig. 4a, the accuracy was higher 
in the connectivity feature than in the power feature. In addition, the individual’s accuracy was higher than the 
chance level (50%). The averaged accuracy was 98.5% in the alpha and 99.29% in the beta band with the connec-
tivity features (Fig. 4b). On the other hand, the classification accuracies with the features of the power spectrum 

Figure 3.   An example of the features for classifying the KMI and VMI. (a) The Grand averaged power spectra 
of the four conditions. Each line indicates the normalized power for each condition grand averaged across all 
subjects and ROIs. For the further classification of KMI and VMI, we used the single trial-normalized power 
for the features (a.u arbitrary unit). (b) Grand averaged Highest 20% connections (as SVM features) at each 
frequency bands for each condition. The edges represent the functional connectivity calculated by the mutual 
information, and the thickness of the edge indicates the strength of the connectivity. The nodes represent the 
locations of the ROIs, and the different sizes of the node express the DC, that is, how many links are connected 
to that node.
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were significantly lower (p < 0.01, Wilcoxon paired rank test) than the accuracy with the connectivity features 
(alpha: 54.95%; beta: 55.1%).

To strengthen the results of the present study, we classified the ME and KMI and VO and VMI by using 
connectivity measures as a classifying feature (Table 2). The classification accuracy for each participant was 
slightly higher than the chance level (50%). The accuracy of mean and standard deviation of the ME and KMI 
was (62.9 ± 19.7) and (62 ± 15) for the alpha and beta frequency bands, respectively. The mean accuracy of the 
VO and VMI was (57 ± 14) and (54 ± 16.8) for the alpha and beta frequency bands, respectively. This is an impor-
tant result of supporting our hypothesis because we hypothesized that motor imageries share a similar sensory 
modality to the equivalent actual movements.

Correlation of connectivity patterns between KMI and VMI.  The Pearson’s correlation of connec-
tivity patterns between conditions was analyzed to identify global similarity. Table 3 shows the results of the 
correlation coefficient between the conditions. Correlation coefficients were calculated from the grand average 
of the connectivity matrix. The correlation coefficients between the KMI and ME and between the VMI and VO 
were significantly higher (p < 0.01) in the alpha and beta frequency bands, respectively. The similarity between 
the KMI and ME verifies our hypothesis that the brain network of the KMI is close to that of the ME. This is 
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also the reason why the ME and KMI or VO and VMI cannot be separated by using connectivity measures as a 
classifying feature, respectively, as shown in Table 2. On the other hand, the other pairs were not significant. In 
particular, the insignificant correlation between the KMI and VMI was quite reasonable because the two con-
nectivity patterns were able to be discriminated with high accuracy.

Degree centrality of the KMI and VMI.  We further measured the DC with the connectivity values in the 
brain network shown in Fig. 5. The top 20% of the connectivity values were selected for the network measure. 
In graph theory, the DC on a node is measured by adding the connectivity values from the node to the other 
nodes in the network. Here, we used DC to find out the local difference between the KMI and VMI in the alpha 
and beta frequency bands. Figure 6 depicts the overall DC in the alpha and beta frequency bands, which shows 
significant differences (p < 0.05) between the KMI and VMI. The result shows that the alpha frequency band 
showed significant differences (p < 0.05) in the left S1, and the beta frequency band showed significant differ-
ences (p < 0.05) in the right PM.

Discussion
This study investigated the characteristics of two major MI types, KMI and VMI, by using connectivity patterns 
and a network measure. The results show that the KMI and VMI could be classified in the SVM method on single 
trials with high accuracy. To the best of our knowledge, the classification with the connectivity patterns is the 
first applied in discriminating the type of MI. The reason for the excellent classification performance is that the 
cognitive brain networks of the KMI and VMI would be different.

The results of this study showed similar network patterns between the ME and KMI and between the VMI and 
VO, respectively. These large network similarities show the underlying neural networks and neural mechanisms 
of different cognitive conditions because mental imagery uses almost identical neural substrates as perception 
in the same sensory modality43. In this case, we used an experimental design from the perspective that motor 
imageries maintain the same temporal characteristics as the equivalent actual movement44 and facilitate the 

Table 2.   The classification accuracy between the ME and KMI or VO and VMI by using connectivity 
measures as a classifying feature.

Subject

ME-KMI VO-VMI

Alpha Beta Alpha Beta

1 84 76 46 47

2 86 46 49 41

3 58 63 55 42

4 45 49 62 43

5 49 60 58 55

6 42 41 47 44

7 42 61 55 68

8 64 58 50 40

9 79 68 63 50

10 98 99 98 98

11 44 63 47 67

Mean ± SD 62.9 ± 19.7 62 ± 15 57 ± 14 54 ± 16.8

Table 3.   The network correlation coefficients between each condition at the alpha and beta frequency bands, 
respectively. *p < 0.01. r denotes the Pearson’s correlation coefficient.

Alpha Beta

r P r P

KMI-ME 0.689 0.001* 0.849 0.001*

KMI-VMI 0.020 0.850 -
0.046 0.669

KMI-VO -0.071 0.501 -
0.194 0.066

ME-VMI -0.141 0.182 0.005 0.965

ME-VO -0.048 0.653 -
0.061 0.564

VMI-VO 0.778 0.001* 0.898 0.001*
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receptive imagery task14,29. Therefore, these facilitations of the cognitive system at the cortical level would be the 
reason for the global network similarities between the KMI and ME and between the VMI and VO, respectively. 
In particular, the similarity between the KMI and ME implies the effectiveness of utilizing a decoder trained by 
an actual movement.

The local DC at a ROI level reflects the relationship of the ROI with other ROIs. Thus, key ROIs in each 
condition would have high values in the local DC. In the comparison of DC between the KMI and VMI, the left 
(contralateral side) S1 was significantly higher in the KMI than in VMI at the alpha band. The S1 is known as 
the primary region for somatosensory perception including proprioception. According to some reports, subjects 
improved their ability for MI by giving sensory stimulation during the task. This MI improvement suggests 
that through the processing of information by the neural circuitry associated with MI, sensory signals trigger 
a motoric memory of a given movement and support body limb representation45,46. Thus, S1 in KMI should be 
more activated and centralized for kinesthetic sensation than in VMI. In addition, in the beta frequency band, 
the DC of the right (ipsilateral) PM in VMI was significantly higher than in KMI. It is known that the premotor 
cortex could be activated in movement imagery, which involves planning and preparation for actual movements47. 
Another fMRI study showed that just observing a movement could facilitate motor learning by mirror neurons in 
the premotor cortex48. Thus, the PM might be associated with an action observation and would have an important 
impact on the VMI similar to the VO.

A previous study classified four MI conditions by the power amplitude14. That study found that event-related 
spectral perturbation (ERSP) patterns between the ME and KMI and between the VMI and VO were also 
similar. In particular, KMI is similar to ME because KMI increases the corticospinal excitability and is related 
to sensorimotor systems49. Additionally, the ERD pattern of the KMI was similar to that of actual executions50, 
while the KMI and VMI were mediated through separate neural systems16. However, a meta-analysis found no 
significant contrast from the triggered anatomical regions of the KMI and VMI in sports experts33. Moreover, 
some studies reported that the activity of VO was similar to ME because the activated patterns and sequences of 
the brain were similar to the real executions30,51. Due to this discrepancy, the classification of cognitive conditions 
by brain activation like ERSP has limitations. In our study, classification with band powers resulted in a worse 
performance than that with the connectivity features.

Instead of the activation feature, the neural pathway would be an alternative feature. Our previous studies 
demonstrated that the connectivity increased during movement execution independent of the strength of the 
brain activity20,42. The present results also show that connectivity measure is more powerful in classifying the 
type of MI than by the power measure. The complex cognitive process involves multiple brain regions. Thus, 
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Figure 6.   The significant difference in the NDC of the KMI and VMI at each frequency band. At the alpha 
frequency, the KMI was significantly higher than the VMI at the left S1. On the other hand, the right PM was 
higher than the KMI. p-value was calculated with the non-parametric permutation test. ***p < 0.05.
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we used the brain source localization to extract representative source activity for the determined ROIs. Because 
neighbor channels in the EEG show a similar activity, features of the connectivity based on the activity of the 
channel level might not be effective. Relatively sparse source ROIs could result in a high classification accuracy. 
The neuronal activity does not occur alone. It has a relationship with other neurons. The connectivity evaluates 
the relation between the ROIs. This relationship is reflected in the connectivity-based feature. Therefore, these 
edges provide valuable features to classify KMI and VMI.

It is still difficult to train KMI and VMI performance. In particular, the people who cannot move their hands 
because of paralysis would have difficulty to incorporate an accurate MI. However, the training of a MI similar to 
an actual execution is essential. A MI is a covert action, which is in the category of exercise, and giving feedback 
is essential to improving the imagery ability. Our study shows that the strategy of MI, such as KMI and VMI, 
can be classified with very high performance. The network pattern of KMI is similar to that of real execution. 
The BMI should give sensory feedback to improve the performance of future BMIs. Combining kinesthetic 
motor imagery with somatosensory feedback would make a more vivid motor imagery, which is similar to the 
networks of movement execution.

Although MI training is important, there is no promising training protocol yet. Considering our results, it 
is possible to provide KMI feedback similar to actual movement through brain connectivity analysis. In addi-
tion, each individual can be given feedback to see if the imagination is similar to the natural signal of the actual 
movement. Future research will have to be done on how the network patterns of ME and KMI are so similar. In 
addition, future motor imagery training should not only provide movement information but also provide sensory 
feedback and proprioception information when moving so that it feels like a real move.

There are some limitations to the study. One of the current limitations is the small number of subjects in 
our study. However, the accuracy of classifying the KMI and VMI in a single trial showed that the possibility 
of giving accurate feedback is high. And the trial number of each individual was enough to permit statistical 
analysis showing differences between the KMI and VMI. Another limitation is that it is difficult to verify whether 
the subjects were performing KMI and VMI in the correct manner. In order to address this problem, KVIQ-10 
was used to access the individual imagery ability to perform MI prior to the experiment, and it was confirmed 
that no subjects excluded from the criteria. Additionally, we used a block design to facilitate each imagery. This 
facilitation involves reproducing previously experienced movements from memory52, which helps guide subjects 
to use each imagery correctly.

Conclusion
Classification of two motor imageries was significantly better with the features of connectivity than with normal-
ized powers. Consequently, the high classification could be used as feedback for MI training. Because the KMI 
network characteristics were similar to ME, KMI would be more suitable for BMI. S1 in the alpha frequency 
band and right PM in the beta frequency band are the key nodes in KMI and VMI, respectively. These results 
open up new perspectives for the underlying neural networks of the cognitive conditions and toward designing 
MI training methods.
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