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Abstract

Respiratory parameters change during post-natal development, but the nature of their changes have 

not been well-described. The advent of commercially available plethysmographic instruments 

provided improved repeatability of measurements and standardization of measured breathing in 

mice across laboratories. These technologies thus allowed for exploration of more precise 

respiratory pattern changes during the post-natal developmental epoch. Current methods to 

analyze respiratory behavior utilize plethysmography to acquire standing values of frequency, 

volume and flow at specific time points in murine maturation. These metrics have historically been 

independently analyzed as a function of time with no further analysis examining the interplay 

these variables have with each other and in the context of postnatal maturation or during blood gas 

homeostasis. We posit that machine learning workflows can provide deeper physiological 

understanding into the postnatal development of respiration. In this manuscript, we delineate a 

machine learning workflow based on the R-statistical programming language to examine how 

variation and relationships of frequency (f) and tidal volume (TV) change with respect to 

inspiratory and expiratory parameters. Our analytical workflows could successfully predict age 

and found that the variation and relationships between respiratory metrics are dynamically shifting 

with age and during hypercapnic breathing. Thus, our work demonstrates the utility of high 

dimensional analyses to provide reliable class label predictions using non-invasive respiratory 

metrics. These approaches may be useful in large-scale phenotyping across development and in 

disease.

*Corresponding author at: The Ohio State University College of Medicine, Department of Pathology, 4166 Graves Hall, 333 W 10th 
Avenue, Columbus, OH, 43210, United States. jose.otero@osumc.edu (J.J. Otero). **Corresponding author at: The Ohio State 
University College of Medicine, Department of Pathology, 4171 Graves Hall, 333 W 10th Avenue, Columbus, OH, 43210, United 
States. catherine.czeisler@osumc.edu (C.M. Czeisler). 

Appendix A. Supplementary data
Supplementary material related to this article can be found, in the online version, at doi:https://doi.org/10.1016/j.resp.2020.103558.

HHS Public Access
Author manuscript
Respir Physiol Neurobiol. Author manuscript; available in PMC 2022 January 01.

Published in final edited form as:
Respir Physiol Neurobiol. 2021 January ; 283: 103558. doi:10.1016/j.resp.2020.103558.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Keywords

Machine learning; Respiratory development; Respiratory physiology

1. Introduction

Unlike other parts of the brain where neural networks require a learned input to generate 

mature circuits, the autonomic nervous system requires connections to be generated and 

reinforced during development, so that the animal may properly interact with the ex utero 
environment following birth. Nevertheless, significant changes in brain circuitry have been 

reported during postnatal development. For instance, the post-natal developmental epoch 

shows significant “connectomic” changes in the area postrema (Gokozan et al., 2016) and 

pre-Bötzinger complex (Mei-Ling Liu et al., 2018), indicating that vital system homeostasis 

shows developmentally dynamic behavior during postnatal growth. Both prior and after 

birth, respiratory regulation evolves to refine breathing control under normoxic normocapnic 

conditions, as well as during physiological changes in blood gases such as that experienced 

when exogenous hypoxia or hypercapnia are administered (Jansen and Chernick, 1983). 

This evolution involves not only the postnatal development of discrete cellular populations 

involved with breathing, but also the integration of peripheral sensory input from the carotid 

bodies (Carroll and Kim, 2005) and the respiratory network distributed throughout the 

medulla and pons (Alheid et al., 2004). Failure to appropriately develop and integrate these 

aspects may lead to the dysregulation of breathing and underlie the pathophysiology in 

diseases such as Sudden Infant Death Syndrome (SIDS), Congenital Central 

Hypoventilation Syndrome and sleep apnea. Thus, the potential to isolate subtle but relevant 

changes in respiratory phenotype using high dimensionality datasets of autonomic functions 

with non-invasive techniques offers a potential avenue for screening human pathologies with 

autonomic dysfunction.

The regulation of breathing involves the coordination of self-oscillating brainstem networks. 

These include the pre-Bötzinger complex, the parafacial respiratory group and the post-

inspiratory complex (Smith et al., 1991; Feldman and Del Negro, 2006; Anderson et al., 

2016, and recently reviewed by (Del Negro et al., 2018)). Identification of neural circuits has 

been largely investigated through electrophysiological recordings of brain slice preparations, 

but genetic lineage tracing has increased our understanding of how these circuits develop 

(Gray, 2013; Rose et al., 2009a, b; Tupal et al., 2014; van der Heijden and Zoghbi, 2020; 

Wang et al., 2005). Although significant effort to characterize the neuron populations and 

firing behaviors of respiratory drivers exist, the post-natal developmental evolution of 

respiratory maturation continues to be a significant knowledge gap in autonomic 

developmental neuroscience.

Current methods to investigate post-natal developmental changes using in vivo experimental 

respiration paradigms typically perturb specific neuronal populations within the brainstem to 

characterize the effects produced on respiration. Optogenetic stimulation of Dbx1-

interneuron populations in the pre-Bötzinger complex significantly modulates respiratory 

frequency (Vann et al., 2018). Similarly, Dosumu-Johnson et al., 2018 showed that acute 
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disturbances in serotonergic Pet1-neuron activity directly inhibits apneic recovery positing 

that such cardiorespiratory decoupling may underlie a subset of SIDS etiologies. 

Furthermore, Phox2b-expressing neurons mediate many aspects of central chemosensation 

which is influenced via neuronal and astrocytic cell populations within the brain stem 

(Czeisler et al., 2019; Hawkins et al., 2017; Moreira et al., 2016; Sobrinho et al., 2017). The 

wide commercial availability of plethysmographic tools for neonatal mouse pup recordings 

permits the recording of mouse pup respiratory pattern evolution in vivo, making possible 

the ability to explore how integrated respiration occurs in live animals over the post-natal 

developmental period. Through these instruments, real time breathing can be quantified by 

placing animals into specialized chambers which evaluate air volume changes and other 

breathing parameters through standardized approaches (Chapin, 1954; Drorbaugh and Fenn, 

1955; Mortola and Frappell, 2013; Lim et al., 2014). While the tool has been largely 

evaluated for reliability and characterization of raw breathing differences between age, past 

analytic tools were unable to evaluate the differences in plethysmography tracings in an 

integrated fashion that reflects the brainstem networks that underlie these paradigms and 

separate these differences from predicted changes in breathing as a function of 

developmental growth or body mass (Flandre et al., 2003; Onodera et al., 1997). However, 

more recently in the clinical realm, machine learning has arisen as a tool to predict lung and 

cardiac function based on measurements made from plethysmographic tools (Gawlitza et al., 

2019; Pereira et al., 2019). Applying these similar methodologies, machine learning based 

pipelines can be used to not only evaluate raw read tracings to explore developmental 

changes of breathing over time, but more deeply evaluate the characteristics of breathing that 

shift.

Utilizing a R-based statistical workflow to analyze in vivo plethysmography data obtained 

from developing mice pups, we developed statistical models of breathing frequency (f) and 

tidal volume (TV). Additionally, we elucidated underlying changes in parameter variation 

within mice and discovered subtle relationships that would have been missed using status 
quo analytical workflows. We identified the principal respiratory parameters that change 

with time by training machine learning algorithms to determine the extent to which age 

could be accurately predicted based on (i) features of respiratory linear models and (ii) 

features describing breathing variation. These workflows represent objective methods to 

quantify changes in breathing and demonstrate that the features of breathing variation and 

the relationships these features have dynamically evolve during post-natal development.

2. Material and methods

2.1. Experimental animals and animal husbandry

Procedures utilizing mice were performed in accordance to The Ohio State University 

Institutional Animal Care and Use Committee guidelines (Protocol number: 

2012A00000162-R1). Animals were utilized following The Ohio State University 

Institutional Animal Care and Use Committee guidelines. These secondary analyses of 

plethysmographic data were extracted from a previously published dataset (Alzate-Correa et 

al., 2020) obtained from our lab stock of C57/blc6 mice at ages: P1 (n = 9), P21 (n = 8 for 
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baseline analysis, n = 8 for hypercapnia analysis), and P56 (n = 9 for baseline, n = 9 for 

hypercapnia).

2.2. Plethysmography analysis in mice

Respiration was analyzed in neonatal pups using a mouse pup whole-body plethysmography 

chamber (#987365, DSI) and QT preamplifier (#894002, DSI). P1 pups were placed in the 

chamber in the head-out configuration and acclimated for 1 min before respiration was 

recorded for 10 min. Breathing in adult mice was monitored using a whole-body 

plethysmographer (#992541, DSI) with the Buxco Finepointe 2-site controller (#993582, 

DSI). Finepointe software was used (v2.4.7.10175) to record the following respiratory 

parameters: respiratory frequency (f, breaths per minute), tidal volume (TV, mL), resting 

time between breaths (Tr, sec), inspiratory time (Ti, sec), expiratory time (Te, seconds), peak 

inspiratory flow (PIF, mL per sec) and peak expiratory flow (PEF, mL per sec). P21 and P56 

animals also experienced chemoreflex analysis under plethysmography. Plethysmograph 

acclimatization occurred by filling the chamber with room air for 30 min a day for 3 

consecutive days. On the day of recording each mouse underwent acclimatization to the 

chamber filled with room air for 5 min, followed by baseline recordings for 20 min. For 

chemoreflex analysis, responses to hypercapnia (7 % CO2) were recorded for 10 min. Only 

data from the baseline and CO2 phases were evaluated in this study. No hypercapnic 

breathing data is recorded for P1 mice as the hypercapnic chamber could not be used on 

mice from this age group.

2.3. Data processing and analysis

Full baseline and hypercapnic recordings were analyzed and raw respiratory data was first 

standardized by body mass and analyzed in R. These parameters were used to generate 

linear models of mice breathing frequency (f) and tidal volume (TV) as factors of both 

inspiratory and expiratory breathing. Pearson correlation coefficients were calculated and 

visualized using ggplot2 (Wickham, 2016) to identify potential relationships of f and TV to 

other breathing parameters including PIF, PEF, Ti, Te and Tr. Poincaré variation plots were 

created utilizing the above-mentioned data with custom code and the car package (Fox and 

Weisberg, 2011) and ggplot2 package in R. Utilizing the features generated from our linear 

models and Poincaré plots, data frames were built with each row representing individual 

animals and each column representing a feature. Data frames were then centered and scaled 

prior to analysis utilizing the ‘scale’ function in R’s base package. Principal component 

analysis (PCA) and linear discriminate analysis (LDA) were performed utilizing unique 

scripts and the MASS package (Venables and Ripley, 2002), and visualized using ggplot2 

packages within R to identify data clustering. This was compared against kmeans cluster 

analysis found with the ‘kmeans’ function in R’s base package and visualized using the 

factoextra package (Kassambara and Mundt, 2020). Feature detection was done utilizing the 

Boruta package (Kursa and Rudnicki, 2010). Machine learning algorithms were 

implemented utilizing the caret (Kuhn, 2008; Kuhn et al., 2020), e1071 (Meyer et al., 2019), 

and randomForest (Liaw and Wiener, 2002) packages in R. Random forest algorithms were 

built by randomly subsetting 60 % of the data set as training and 40 % as test data within the 

randomForest package. Implemented formulas were based upon the non-rejected feature 

selection in Boruta. Similarly, gradient boosted algorithms were built with matching features 
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and datasets within the caret package. Finally, support vector machines were built utilizing 

the ‘svm’ function in e1071. All code used to perform the analyses are located in the 

supplemental materials or can be found at https://github.com/WesleyWang913/Wang-et-

al-2020-Code-Supplement.

3. Results

3.1. Summary of data analytical workflow procedures

The ML/AI toolbox has a diverse set of instruments that can be used in various settings, with 

no methodology being necessarily supreme to others. Our general approach to evaluating 

neurophysiology datapoints typically begins with strong data preservation procedures such 

as maintaining raw data on backup servers. We next use interactive data visualization to 

identify trends and explore relationships between variables and identify redundancies in 

measurements. We then typically employ clustering algorithms to identify clustering trends, 

and utilize class-label prediction tools to identify principal drivers of such clusters. We hope 

that this manuscript may serve as a rubric for others to apply such techniques to their own 

research.

3.2. Respiratory breathing feature relationships shift with age and breathing gas

As evidenced in Fig. 1 Panels A–C, P1 mice frequency and tidal volume are smaller, while 

respiration time is greater when compared with aged counterparts. However, at more 

advanced ages (P21 and P56) the differences lessen during normal breathing and in 

hypercapnic breathing. Nevertheless, when looking at the relationships of these parameters it 

can be seen that at P1 the relationship of f and TV to Ti varies from that of P21 and P56. 

Moreover, under hypercapnic breathing a consolidation of these parameters becomes visible 

when compared to their age matched baseline counterparts (Fig. 1, D&E).

Exploring how the relationships among various respiratory parameters changed during post-

natal development and under challenged breathing states, we studied correlations between 

variables at baseline room air and at hypercapnic challenge (note that P1 studies lack 

hypercapnic chemoreflex data as breathing from P1 mice could not be measured in the 

hypercapnic breathing chamber available). At P1, f shows positive correlations with flow 

rates (PIF and PEF) and negative relationships with breathing times (Ti, Te and Tr). 

However, while the relationship of f to breathing times began to strengthen when 

developmental age increased, the relationship to flow rates initially strengthened at P21 and 

then weakened at P56. With respect of f to TV, P1 pup frequency showed no correlation to 

TV, a weakly positive correlation to TV at P21, and a weakly negative correlation at P56 

(Fig. 2, A–C). Similarly to f, TV correlation with PIF and PEF was weakly positive at P1 

and increased at P21, but at P56 PIF had weakened while PEF strengthened. In contrast, TV 

had a little correlation with breathing times at P1, weakly negative correlation at P21, and 

positive correlations at P56 (Fig. 2, A–C). Looking further at hypercapnia in comparison to 

age-matched baseline, while relationships of flow and breathing times to f were in the same 

positive or negative direction at baseline, animals experienced a prominent strengthening of 

these relationships under hypercapnia (Fig. 2, B–E). Flow and breathing times relationship 

to TV in contrast showed moderated strengthening in P21 mice and weakening in P56 mice 
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(Fig. 2, B–E). With these distinct relationships, we posit that linear models for f and TV can 

be utilized to reveal how relationships between parameters change with age and breathing 

gas.

3.3. Respiratory physiology parameter variability varies with postnatal mouse ages

In addition to parameter correlation, we evaluated the extent to which respiratory parameter 

variability changed as a function of age and breathing gas. Although sample entropy and 

approximate entropy have been used to identify variability in physiological time series data 

(Delgado-Bonal and Marshak, 2019), their metrics are highly sensitive to the shorter 

biological time series datasets commonly utilized in respiratory plethysmography (Yentes et 

al., 2013). We therefore utilized a more traditional metric, the Poincaré plot, to visualize 

variability. Poincaré plots were generated to visualize the correlation between two 

consecutive data points in a time-series (i.e., x-axis: An versus y-axis: An+1) to measure 

respiratory variability (Mellen et al., 2003). Thus in the context of breathing, two 

consecutive breaths were evaluated such that instantaneous breathing was determined and 

each individual breath represents a data paint. To objectively quantify variability, we utilized 

two computational approaches. First, points furthest from the center (mean) were used to 

create a polygon; this polygon’s area quantitatively defines the deviation of the data using a 

convex hull operation in R. Next, a confidence ellipse containing one standard deviation of 

units from the mean was plotted to calculate ellipse area. These plots were all generated for 

each respiratory parameter in Figs. 3–9.

Within these figures, variation in f, TV, PIF and PEF changed with age as P1 parameters 

distinctly varied in both polygon and ellipse area (Figs. 3–6, B&C). Note that mean f is 

significantly smaller in P1 mice, and therefore their variance is somewhat constrained (Fig. 

3, A). In the older animals, a broader variance was noted at baseline, and both showed 

significant reduction in variance as a response to hypercapnic challenge (Fig. 3, B&C). 

Compared to f, the decrease in variance in response to hypercapnic challenge was not as 

drastic in TV (compare Fig. 4, B&C to Fig. 3, B&C). Relative to P1, the variability 

parameters of the Poincaré plots to flow showed significantly more variation with increased 

post-natal age (Figs. 5 and 6). A different trend was noted with Ti, Te, and Tr. In baseline 

room air, P1 pups showed significantly more variability in Ti, Te, and Tr relative to older 

animals (Figs. 7–9, A–C). These finding thus suggest that respiratory parameter variation 

changes significantly with age as variability often increases with age and variability 

decreases under hypercapnic breathing states.

3.4. Poincaré plot variation value is influenced by parameter means between ages

Mice with different biological ages show differences in raw ventilation due to body size 

variation during postnatal growth. Note that P1 mice were shown to have reduced means in 

f, TV, PIF and PEF and increased means in Ti, Te and Tr (Figs. 3–9, A). While variation was 

distinct amongst age it was important to address the limitations of the Poincaré plot. We 

achieved this by performing simple in silico simulations of Poincaré plots. Within R, 

functions were created that randomly generated 100 values that centered around a machine 

generated mean and standard deviation (SD) in order to create a data-set of variation which 

can be used to calculate polygon area and ellipse area. These methods were repeated for 
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values of SD ranging from 1 to 100 and mean ranging 1–100. In turn, each simulation 

contained an arithmetic mean, SD, polygon area, and ellipse area.

We then performed a linear regression model in R to evaluate the relationships, and then 

plotted the relative influence of arithmetic mean and SD for both the polygon and ellipse 

area. Influence of these parameters were visualized utilizing a bubble plot where polygon 

area value correlated to the aesthetic size, y-axis denoted simulated standard deviation, and 

x-axis denoted simulated arithmetic mean (Fig. 10, A&B). Although the SD showed similar 

influence on polygon and ellipse area estimations, we observed that a small, yet significant 

influence of mean is contributed to the Poincaré scatter plot pattern based on results from the 

linear regression (Fig. 10, C, also note that the aesthetic area is highly increased in Fig. 10, 

A&B as values move in the positive y-axis direction). Thus, variation as a function of 

polygon and ellipse area required normalization against respiratory parameter means. We 

therefore derived a new metric we refer to as Respiratory Variation, being defined as 

corrected polygon or ellipse area– where total values of the polygon or ellipse were 

subtracted by the parameters means for each animal multiplied by the calculated coefficient 

of 82.358 and 36.543 for polygon and ellipse formulas respectively.

VarRP = AreaP − mean ∗ 82 . 358
VarRE = AreaE − mean ∗ 36.543

These coefficients were derived from linear models of polygon and ellipse area to mean and 

standard deviation within R (Supplementary Materials). Using this formula, we obtained the 

variation score which was utilized as a feature in the subsequent machine learning 

workflows.

3.5. Variation and model fit of breathing parameters are drivers of differentiating age

Having identified changes in respiratory variation using the Poincaré plot method, we further 

explored the differences in respiratory parameters during postnatal development. To this end, 

we constructed a data table where animal age (P1, P21 and P56) represented the 

observation’s class label. Each observation’s parameters included the extracted coefficients 

linear models of frequency and tidal volume, the respective p-value and r-squared values of 

their linear regression models, and the Respiratory Variation metrics derived from the 

Poincaré analyses. These values were then center scaled to ease comparability amongst 

variables. To explore the general behavior of the data across all ages, we subsetted the data 

table to exclude the class labels resulting in a new data table holding only the numerical 

values indicated above. We then explored the data by visualizing the eigenvectors of the 

principal component analysis (PCA). Fig. 11 demonstrates our eigenvector plots: each 

eigenvector is plotted along PC1 and PC2, with its influence color coded. In all of the 

analyses plotted in Fig. 11, aspects of Respiratory Variation highly influenced the variance 

in the datasets.

After understanding and exploring the key drivers in the dataset, we next performed a 

supervised dimensionality reduction technique where the pup age were designated class 

labels for each observation and a linear discriminate analysis (LDA) was executed. In our 
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LDA model plotted in Fig. 12 Panels A&B, baseline P1 mice visually clustered differently 

from adult P21 and P56 mice across the LD1 axis. Note that LD1 contributes to 98.25 % and 

98.69 % for f and TV separation, respectively, and that LD2 represents 1.75 % and 1.31 % 

for f and TV separation, respectively. These data indicate that P1 mice are more different 

from P21 and P56 then P21 and P56 groups are to each other. Furthermore, hypercapnic P21 

and P56 could be split along the LD1 axis (note that all data falls in the LD1 axis as only 

two age categories exist in hypercapnia) (Fig. 12, C&D). Thus, P1, P21, and P56 mice show 

significant differences in the relationships between respiratory parameters at baseline room 

air, and similar relationship differences were observed for P21 and P56 animals during 

hypercapnic challenge. In turn, LDA analyses appeared to strongly discriminate age as 

intuitive visual clustering was evident.

To determine if such clustering could be identified in an unbiased fashion using a machine 

learning workflow, we utilized the kmeans cluster algorithm to identify clusters independent 

of the animal age label. Clusters were defined through the algorithm by identifying center 

points and segmenting surrounding points near the region as a cluster. Utilizing the gap 

statistic method to select the optimal number of clusters, it was found the optimal cluster 

count matched the three age categories (Fig. 13, E–H). As can be seen in Fig. 13 Panels A–

D, kmeans derived clusters match age labeled clusters from the LDA plots from Fig. 12. 

These data suggest that by utilizing respiratory parameter relationships and variation, 

datasets can be stratified into distinct groups that reflect their age without providing the 

ground truth age, supporting the notion that machine learning algorithms can predict age.

Utilizing these analyzed parameters, we then defined these measures as features that can be 

utilized by machine learning algorithms to arrive at classification. Our next goal was to 

identify which features were most critical to classification. We therefore passed the features 

through the Boruta algorithm package within R which scrambles feature data sets at random 

to create a shadow feature against their non-randomized features. Features were then tested 

of their contribution in differentiating age against their shadow feature with features in red 

failing to outperform their randomized shadow features, features in yellow representing 

indeterminate scores, and features in green outperforming their randomized shadow feature. 

Features that failed to outperform their shadow feature were removed in the final features 

utilized in our machine learning algorithms. In baseline Boruta tests of frequency and tidal 

volume models, parameter variation of f, TV, PIF, PEF and Ti were valuable for age 

differentiation. Additionally, Te and Ti coefficients were valuable in frequency and tidal 

volume models respectively (Fig. 14, A&B). In contrast in hypercapnic models, parameter 

variation of f, TV and PEF were valuable in both frequency and tidal volume models while 

r-squared of the model and coefficients of PIF and Tr were valuable to frequency and tidal 

volume models respectively (Fig. 14, C&D).

3.6. Machine models with increased importance to parameter variation had highest 
performance

Utilizing the non-rejected features from the Boruta analysis, machine learning algorithms 

were trained with 60 % of the dataset in order to predict age on the remaining 40 % non-

exposed test set. The selected machine learning algorithms were random forest, gradient 
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boosted method and support vector machine. To measure performance of machine learning 

algorithms, developed machines were tested with confusion matrices to measure overall 

accuracy of predicted age labels against ground truth age labels (defined as accuracy). All 

models were trained independent of each other and were only challenged to predict age 

labels. Amongst the algorithms, support vector machines performed with accuracy scores of 

91.67 %, 81.82 %, 87.5 % and 88.89 % within confusion matrices generated from baseline 

frequency models, baseline tidal volume models, hypercapnic frequency models and 

hypercapnic tidal volume models respectively. Random forest performed well with accuracy 

scores of 75 %, 90.91 %, 87.5 % and 100 %. Finally, gradient boosted method algorithms 

had confusion matrix accuracy scores of 66.67 %, 72.73 %, 87.5 % and 77.78 % (Fig. 15, 

A&B). To further analyze model performance, area under the curve (AUC) of receiver 

operating characteristics curves were calculated for each model to define the diagnostic 

ability of our classifiers. This was achieved by plotting the true positive rate against the false 

positive rate of each model’s predictions and calculating the area below the plotted line in R 

(with stronger diagnostic capability approaching 1). Support vector machines achieved 

AUCs of 0.833, 0.889, 0.9 and 0.9 for baseline frequency models, baseline tidal volume 

models, hypercapnic frequency models and hypercapnic tidal volume models respectively. 

Random forest models achieved AUCs of 0.875, 0.944, 0.9 and 1. Finally, gradient boosted 

machines had AUCs of 0.771, 0.833, 0.9 and 0.772 (Fig. 15, C&D). Algorithms were further 

evaluated based upon confusion matrix accuracy and AUC to identify key drivers that may 

have led to higher scores. Both support vector and random forest utilized a balanced mix of 

different parameter variations as strong drivers in predicting age. In contrast, gradient 

boosted heavily decided predictions by selecting a single specific feature to drive decision 

making (Fig. 15, E–H). This demonstrated that significant differences between the 

relationships of respiratory parameters could provide accurate prediction of mouse pup age. 

By interrogating the key drivers used by each learning algorithm, it was seen that respiratory 

variation of parameters was a strong driver of age differentiation.

4. Discussion

Our understanding of the mechanisms by which neural circuits regulate breathing has been 

significantly aided by utilization of brainstem-spinal cord en bloc preparations, where the 

respiratory rhythm generator has been shown to maintain its bursting electrical activity for 

several hours ex vivo in fetal and newborn rodents (Di Pasquale et al., 1992; Greer et al., 

1992; Hilaire et al., 1997; Viemari et al., 2003). The advent of commercially available 

plethysmograph systems has permitted the standardized evaluation of respiratory physiology 

in small rodents. Although a functional respiratory circuit is required for ex utero survival, 

several lines of evidence suggest that the respiratory system undergoes significant 

maturation. For instance, plethysmographic recordings of newborn pups (P3-P9, as well as 

E18 pup delivered by cesarean section) demonstrated significant changes in plethysmograph 

wave forms (Viemari et al., 2003). In these studies, single respiratory parameters (frequency, 

tidal volume, minute ventilation) were evaluated as a function of age and gas challenge, yet 

the relationships between respiratory parameters were not measured. Nevertheless, the 

findings of Viemari, et al. showed changes in variability of phrenic nerve bursts when 

comparing E16, P2, and P6 animals in accordance to the observations reported in our study.
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It has been postulated that the serotonergic and catecholaminergic neurotransmitter systems 

are key contributors to this developmental maturation. For instance, pontine-derived 

projections, presumably through A5-dependent projections to the ventral lateral medulla, 

show different extents of inhibition in early preparations (~P0/1) relative to late preparations 

(~P3-P5) rats (Hilaire et al., 2004), and the number of A5 neurons in the rat pup reportedly 

decreases with advanced post-natal age (Ito et al., 2002). Biochemical evidence indicates 

that several neurotransmitters, including noradrenaline and serotonin, increase with 

advanced post-natal age at rates independent of total brain weight (Ide et al., 2005). 

Similarly, serotonergic neurons have been shown to play an essential role in the development 

and control of breathing (Hilaire et al., 2010). Serotonin has been shown to be critical for the 

formation of the premotor phrenic network (Bras et al., 2008), and perturbation of the 

serotonin system modulates the developing respiratory network (Zanella et al., 2008a, b). In 

summary, several evidences provided by previous pharmacologic, neurochemical, and 

physiological studies support the idea that the brainstem’s respiratory networks change as a 

function of post-natal age. However, appreciation of differences in ventilation at later post-

natal ages has not been well appreciated due to the inherent noise of respiratory 

plethysmography systems. In our approaches, ML-based interpretation of these respiratory 

data was able to perceive differences between P21 and P56 animals, a feat not possible with 

conventional data analysis approaches.

To acknowledge however, in comparing respiratory parameters between a head-out 

plethysmography and whole body plethysmography approach, as respiratory activity has 

been shown to shift as a function of temperature, changes in pup body temperature during 

the duration of recording may underlie certain aspects of variability (Rubini and Bosco, 

2013). In addition, while chambers were heated to lower the likelihood of this event, 

humidification, rarefaction and compression of the breathing environment is known to affect 

breathing parameters in similar experiments (Ray et al., 2011). Additionally, as P1 mice 

were restrained in the head out plethysmography configuration, potential stress may add to 

breathing variability in the group. However, the methodology was still successful in 

identifying difference in more mature P21 and P56 aged mice that underwent the same 

unrestrained whole-body plethysmography recording. Moreover, integration of chamber 

parameters to machine learning pipelines in future experiments may present methods by 

which to normalize for the differences in chamber environment as similar to the methods 

used to normalize for weight influence on breathing parameters in our manuscript.

In turn, while plethysmographic analyses show more noise in their data relative to en bloc or 

slice electrophysiological preparations, plethysmographic studies have the advantage that 

they represent a recording from an integrated system. Thus, the use of plethysmographic 

analyses permits the inclusion of multiple systemic parameters in study design but has the 

drawback that plethysmographic recordings represent large datasets with multiple variables 

extracted. Our data demonstrated that the key discriminating features of respiration that 

separate animals based on post-natal age are measures of respiratory variability, a finding in 

accordance with several other published reports (Patrone et al., 2018). The present data 

confirm the utility of machine-learning based workflows for the analysis of post-natal 

developmental maturation of the respiratory pattern. We posit that such approaches are time-

efficient, less prone to bias compared to manual selection of plethysmograph tracings, and 
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that interrogation of these models can generate novel hypotheses for investigators and should 

be adopted in developmental biology research.

5. Approaches to implement machine learning based workflows in 

developmental biology research

Developmental biology is now a so-called “big data” field. Although developmental 

biologists have embraced machine learning for large datasets such as microarray and 

RNAseq analyses, utilization of these similar approaches to other aspects of developmental 

biology has proceeded at a much slower pace. In the present workflow, we utilized a 

combination of supervised and unsupervised techniques to identify which respiratory 

parameters changed most significantly during postnatal development. Main component 

analysis, although often used as a dimensionality reduction tool in transcriptional assays, can 

be utilized to study the variance associated in any numerical dataset (Jolliffe and Cadima, 

2016; Lu et al., 2011), and has been deployed in such diverse fields ranging from human 

clinical studies (Zhang and Castelló, 2017) to protein biophysics (David and Jacobs, 2014). 

In our workflow, we used PCA as a first step in analyzing the dataset to identify which 

features contributed most to the variance in the dataset. Using PCA for feature selection has 

been widely used in other bioinformatics pipelines (Hira and Gillies, 2015). We then utilized 

a linear discriminate analysis, a supervised dimensionality reduction technique that in some 

circumstances outperforms PCA in cluster separation (Lee et al., 2005). Using the LDA 

model, we found significant group separation could be observed. After that, we determined 

across all of the features the optimal cluster number by performing the gap statistic test for 

the kmeans cluster algorithm. Such analyses are used to study optimal cluster count by 

comparing change in within-cluster dispersion against a reference null distribution in an 

unsupervised manner (Tibshirani et al., 2001). By adding this step, we could objectively 

demonstrate that our data derives from three groups, thereby proving through distinct and 

independent tests that the three age groups can be distinguished based on these features.

A final step in our workflow included the construction of a class label prediction algorithm. 

Our work demonstrates that algorithmic reliable class label predictions can be made using 

respiratory metrics. These approaches also identify the most influential features to our 

analyses. The approaches used were modified for our purposes from other studies in the 

scientific literature (Degenhardt et al., 2019; Fortino et al., 2014; Kursa, 2014), which 

underscore the ease at which the machine learning “toolbox” can be implemented across 

disciplines and experimental paradigms. We show that mouse age could be identified using a 

spectrum of techniques (including support vector machines, random forest, and gradient 

boosted machines) that examining breathing metrics. These techniques allowed us to 

identify which features were most important in the classification. From these analyses, we 

can conclude that the polygon and ellipse areas of the tidal volume and the peak inspiratory 

flow derived from the Poincaré plots showed the highest importance in classification. As 

these features indicate changes in respiratory variability, we can conclude that this variability 

represents the most important feature that changes with age that was detected in our 

plethysmographic analyses.
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Rapid phenotyping of transgenic mouse with developmental pathologies represents an area 

of high urgency by government funding agencies. For instance, in the United States, the 

National Institutes of Health has issued multiple rounds of mouse phenotyping pipeline 

program announcements (eg., PA-13–231, PA-7–005). Plethysmographic analysis was 

amongst the techniques advised by Solberg and colleagues advocating high throughput 

phenotyping of mouse phenotypes (Solberg et al., 2006). In summary, our study 

demonstrates the feasibility of incorporating machine learning tools into developmental 

biology phenotyping pipelines, which increase rigor and objectivity while decreasing the 

time needed for analysis and permitting evaluation of high dimensionality data across 

experimental measurements. Thus, integrating modern high throughput tools to assess 

physiological metrics such as breathing creates an avenue to effectively analyze data, 

generate novel hypotheses, and improve experimental rigor.
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Fig. 1. Standing breathing parameters cannot elucidate ages further in development.
Violin plots of (A) breathing frequency (breaths/min), (B) tidal volume (mL/kg) (C) 

inspiratory time (sec) were generated in ggplot2 for P1 baseline breathing, P21 baseline 

breathing, P21 hypercapnic breathing, P56 baseline breathing and P56 hypercapnic 

breathing. Inspiratory time was then plotted as a relationship on the x-axis to either (D) 

breathing frequency on the y-axis or (E) tidal volume on the y-axis. All variables were 

plotted in the same x and y scale to appreciate data dispersion and shape. P1 hypercapnia 

was not included as mice could not be measured in the hypercapnic chamber.
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Fig. 2. Relationships of frequency (f) and Tidal Volume (TV) to parameters strengthens with age 
and stress.
Correlation plots were generated utilizing the correlation plot function in ggplot in R. 

Groups are divided between ages P1, P21 and P56 and between baseline breathing (A–C) 

and hypercapnic breathing conditions (D–E). Red relationships represent directly 

proportional relationships, while blue relationships represent inversely proportional 

relationships. Parameters are presented as f (frequency), TV (tidal volume), PIF (peak 

inspiratory flow), PEF (peak expiratory flow), Ti (inspiration time), Te (expiration time) and 

Tr (relaxation time).
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Fig. 3. Respiratory frequency (breaths/min) variation shows changes with age and breathing 
state.
Parameter boxplots were generated to compare parameter mean (A), ellipse area (B) and 

polygon area (C) in P1, P21 and P56 in both baseline and hypercapnic states. P1 

hypercapnia was omitted as previously mentioned in Fig. 1. Ellipse area was plotted as a 

confidence ellipse where center represents the mean and the outer diameter contains 1 

standard deviation of the dataset. Polygon areas were generated utilizing the extreme points 

which form the outer margin of each plot. Poincaré plots were generated from baseline 

breathing states (D–F) and hypercapnic states (G–H) to visualize variation in frequency (f). 

T-tests were performed between age groups and breathing states for mean, polygon area and 

ellipse area. Bars and asterisks were utilized to represent significant variation between 

groups with p-values < 0.05.
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Fig. 4. Respiratory tidal volume (mL/kg) variation shows changes with age and breathing state.
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Fig. 5. Respiratory peak inspiratoiy flow (mL/sec) variation shows changes with age and 
breathing state.
Parameter boxplots were generated to compare parameter mean (A), ellipse area (B) and 

polygon area (C) in P1, P21 and P56 in both baseline and hypercapnic states. P1 

hypercapnia was omitted as previously mentioned in Fig. 1. Ellipse area was plotted as a 

confidence ellipse where center was the mean and the outer diameter contains 1 standard 

deviation of the dataset. Polygon areas were generated utilizing the extreme points which 

form the outer margin of each plot. Poincaré plots were generated from baseline breathing 

states (D–F) and hypercapnic states (G–H) to visualize variation in peak inspiratory flow 

(PIF). T-tests were performed between age groups and breathing states for mean, polygon 

area and ellipse area. Bars and asterisks were utilized to represent significant variation 

between groups with p-values < 0.05.
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Fig. 6. Respiratory peak expiratoiy flow (mL/sec) variation shows changes with age and 
breathing state.
Parameter boxplots were generated to compare parameter mean (A), ellipse area (B) and 

polygon area (C) in P1, P21 and P56 in both baseline and hypercapnic states. P1 

hypercapnia was omitted as previously mentioned in Fig. 1. Ellipse area was plotted as a 

confidence ellipse where center was the mean and the outer diameter contains 1 standard 

deviation of the dataset. Polygon areas were generated utilizing the extreme points which 

form the outer margin of each plot. Poincaré plots were generated from baseline breathing 

states (D–F) and hypercapnic states (G–H) to visualize variation in peak expiratory flow 

(PEF). T-tests were performed between age groups and breathing states for mean, polygon 

area and ellipse area. Bars and asterisks were utilized to represent significant variation 

between groups with p-values < 0.05.

Wang et al. Page 22

Respir Physiol Neurobiol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 7. Respiratory inspiratory time (sec) variation shows changes with age and breathing state.
Parameter boxplots were generated to compare parameter mean (A), ellipse area (B) and 

polygon area (C) in P1, P21 and P56 in both baseline and hypercapnic states. P1 

hypercapnia was omitted as previously mentioned in Fig. 1. Ellipse area was plotted as a 

confidence ellipse where center was the mean and the outer diameter contains 1 standard 

deviation of the dataset. Polygon areas were generated utilizing the extreme points which 

form the outer margin of each plot. Poincaré plots were generated from baseline breathing 

states (D–F) and hypercapnic states (G–H) to visualize variation in inspiratory time (Ti). T-

tests were performed between age groups and breathing states for mean, polygon area and 

ellipse area. Bars and asterisks were utilized to represent significant variation between 

groups with p-values < 0.05.
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Fig. 8. Respiratory expiratory time (sec) variation shows changes with age and breathing state.
Parameter boxplots were generated to compare parameter mean (A), ellipse area (B) and 

polygon area (C) in P1, P21 and P56 in both baseline and hypercapnic states. P1 

hypercapnia was omitted as previously mentioned in Fig. 1. Ellipse area was plotted as a 

confidence ellipse where center was the mean and the outer diameter contains 1 standard 

deviation of the dataset. Polygon areas were generated utilizing the extreme points which 

form the outer margin of each plot. Poincaré plots were generated from baseline breathing 

states (D–F) and hypercapnic states (G–H) to visualize variation in expiratoiy time (Te). T-

tests were performed between age groups and breathing states for mean, polygon area and 

ellipse area. Bars and asterisks were utilized to represent significant variation between 

groups with p-values < 0.05.
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Fig. 9. Respiratory relaxation time (sec) variation shows changes with age and breathing state.
Parameter boxplots were generated to compare parameter mean (A), ellipse area (B) and 

polygon area (C) in P1, P21 and P56 in both baseline and hypercapnic states. P1 

hypercapnia was omitted as previously mentioned in Fig. 1. Ellipse area was plotted as a 

confidence ellipse where center was the mean and the outer diameter contains 1 standard 

deviation of the dataset. Polygon areas were generated utilizing the extreme points which 

form the outer margin of each plot. Poincaré plots were generated from baseline breathing 

states (D–F) and hypercapnic states (G–H) to visualize variation in relaxation time (Tr). T-

tests were performed between age groups and breathing states for mean, polygon area and 

ellipse area. Bars and asterisks were utilized to represent significant variation between 

groups with p-values < 0.05.
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Fig. 10. Poincare plots are influenced by mean.
Bubble plots were created to visualize changes in mean and SD’s effects on area—

represented as bubble size in the ellipse area plot (A) and polygon area plot (B). Custom R 

scripts were generated to calculate the relative influence both mean and SD play in affecting 

either the ellipse area or polygon area derived from the Poincaré plots (C).
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Fig. 11. Variation, model coefficients and fit are drivers of age discrimination.
Linear model coefficients for frequency (f), tidal volume (TV), peak inspiratory flow (PIF), 

peak expiratory flow (PEF), inspiratory time (Ti), expiratory time (Te) and relaxation time 

(Tr), linear model p-value (P) and R-squared (R) values were extracted from individually 

modeled animals. Polygon area-derived respiratoiy variation for frequency (f-PA), tidal 

volume (TV-PA), peak inspiratory flow (PIF-PA), peak expiratory flow (PEF-PA), 

inspiratory time (Ti-PA), expiratory time (Te-PA) and relaxation time (Tr-PA) and ellipse 

area-derived respiratory variation for frequency (f-EA), tidal volume (TV-EA), peak 

inspiratory flow (PIF-EA), peak expiratory flow (PEF-EA), inspiratory time (Ti-EA), 

expiratory time (Te-EA) and relaxation time (Tr-EA) were additionally extracted and 

corrected utilizing a mean based correction factor in R. Principal component analysis (PCA) 

plots were utilized to highlight if specific factors may drive variation between P1, P21 and 

P56 mice in baseline breathing (A–B) and P21 and P56 mice in hypercapnia (C–D). P1 

hypercapnia mice were omitted as mice could not be placed in the hypercapnic chamber.
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Fig. 12. Extracted parameters strongly drive the ability to discriminate age.
Linear discriminate analysis (LDA) plots were generated to visualize the ability to 

discriminate individual mice by age utilizing the extracted parameters previously described. 

Baseline breathing among P1, P21 and P56 (A–B) and hypercapnic breathing between P21 

and P56 (C–D) are shown. All mice were clustered based upon features derived from model 

coefficients in relationship to frequency (A/C) or tidal volume (B/D), model fit (p-value) and 

variation of parameters.
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Fig. 13. Animals cluster based on parameter relationships and respiratory variations.
Kmeans cluster analysis was performed in R to create distinct clusters of animals 

independent of age labels to confirm if animals would cluster based on respiratory 

relationships and variation independent of age. Similar to LDA plots, baseline breathing 

among P1, P21 and P56 (A–B) and hypercapnic breathing between P21 and P56 (C–D) are 

shown with machine calculated clusters highlighted into 3/2 groups. Gap statistic analysis 

(E–H) was used to find the optimal number of clusters for each respective kmeans cluster 

analysis (A/E; B/F; C/G; D/H). Arrows indicate the optimal cluster number that was used for 

each plot.
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Fig. 14. Boruta plots indicate variation and model fit are strong drivers in baseline breathing and 
variation is a primary driver in hypercapnia.
Boruta in R was utilized to identify which features were drivers for machine learning 

algorithms for models derived from f (A/C) and TV (B/D) and between baseline (A/B) and 

hypercapnic data (C/D). Features were compared against a shadow feature in blue that 

represents random reassortment of features. Red represents features which could not 

outperform their randomized counterpart. Green represents features which significantly 

outperformed their randomized features and yellow represents features which were 

indeterminate. Red features were removed in our decision models for machine learning 

algorithms.
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Fig. 15. Machine learning accuracy is driven by equal distribution of features.
Machine learning algorithms were trained with 60 % of the data set and tested with the 

remaining 40 %. Accuracy was measured from confusion matrices for the following models 

gradient boosted method (red), random forest (green) and support vector (blue). Accuracies 

were compared among models and between frequency and tidal volume derived analysis 

from baseline (A) and hypercapnic breathing (B). Algorithms were further evaluated for 

classification ability utilizing area under the curve (AUC) values calculated within R for 

baseline (C) and hypercapnia models (D). Relative influence for model decisions were 

Wang et al. Page 31

Respir Physiol Neurobiol. Author manuscript; available in PMC 2022 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



plotted for baseline frequency (E), baseline tidal volume (F), hypercapnic frequency (G) and 

hypercapnic tidal volume (H).
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