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Abstract 

Background:  Mosaic mutations contribute to numerous human disorders. As such, the identification and precise 
quantification of mosaic mutations is essential for a wide range of research applications, clinical diagnoses, and early 
detection of cancers. Currently, the low-throughput nature of single allele assays (e.g., allele-specific ddPCR) com-
monly used for genotyping known mutations at very low alternate allelic fractions (AAFs) have limited the integration 
of low-level mosaic analyses into clinical and research applications. The growing importance of mosaic mutations 
requires a more rapid, low-cost solution for mutation detection and validation.

Methods:  To overcome these limitations, we developed Multiple Independent Primer PCR Sequencing (MIPP-Seq) 
which combines the power of ultra-deep sequencing and truly independent assays. The accuracy of MIPP-seq to 
quantifiable detect and measure extremely low allelic fractions was assessed using a combination of SNVs, insertions, 
and deletions at known allelic fractions in blood and brain derived DNA samples.

Results:  The Independent amplicon analyses of MIPP-Seq markedly reduce the impact of allelic dropout, amplifica-
tion bias, PCR-induced, and sequencing artifacts. Using low DNA inputs of either 25 ng or 50 ng of DNA, MIPP-Seq 
provides sensitive and quantitative assessments of AAFs as low as 0.025% for SNVs, insertion, and deletions.

Conclusions:  MIPP-Seq provides an ultra-sensitive, low-cost approach for detecting and validating known and novel 
mutations in a highly scalable system with broad utility spanning both research and clinical diagnostic testing appli-
cations. The scalability of MIPP-Seq allows for multiplexing mutations and samples, which dramatically reduce costs of 
variant validation when compared to methods like ddPCR. By leveraging the power of individual analyses of multi-
ple unique and independent reactions, MIPP-Seq can validate and precisely quantitate extremely low AAFs across 
multiple tissues and mutational categories including both indels and SNVs. Furthermore, using Illumina sequencing 
technology, MIPP-seq provides a robust method for accurate detection of novel mutations at an extremely low AAF.
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Background
Traditional genetic sequencing methodologies such as 
whole genome (WGS) and whole exome (WES) sequenc-
ing have focused on the important contribution of ger-
mline mutations which are present in all cells throughout 
the human body. However, recent studies have shown 
numerous examples of mutations occurring after 
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fertilization (i.e., postzygotic mutations), which are only 
present in a fraction of cells within the body. Postzygotic 
mutations, or mosaic mutations, have been heavily stud-
ied in cancers where clinical diagnostic testing of tumor 
and blood samples are becoming a standard practice due 
to improved detection sensitivities [1, 2]. However, the 
clinical importance of mosaic mutations extends beyond 
cancer with roles throughout a wide range of neurodevel-
opmental, overgrowth, and hematological disorders [3–
6]. For example, in patients with focal epilepsy, somatic 
mutations can occur predominately in the brain region 
where the seizures originate and, thus, are often unde-
tectable using standard germline genomic analyses [3, 4, 
7]. As such, improved methods for detecting and validat-
ing somatic mutations is essential for clinical testing in 
these patients.

Furthermore, genetic testing of cell-free DNA (e.g., 
fetal and tumor) allows for early detection of disease, 
tracking recurrence in cancers, and even non-invasive 
prenatal genetic testing where mutations of the fetus are 
detected in a pregnant mother’s blood [8, 9]. Recent stud-
ies have demonstrated that screening for mutations in 
circulating tumor or cell-free DNA can allow for the early 
detection of recurring cancers [10–17]. Therefore, rapid 
and precise assessment of patient or cancer- specific 
mutational AAFs could provide important clinical bene-
fits for families [10, 11, 13, 17]. Finally, mosaic mutations 
in healthy individuals are associated with normal devel-
opment and aging and are, therefore, a powerful tool for 
understanding how cells divide and form complex organs 
like the human brain [18, 19].

The rapid advancements in sequencing technolo-
gies allow for the detection of genetic mutations pre-
sent at low alternative allelic fractions (AAF, i.e., ratio of 
DNA fragments carrying the mutation to those harbor-
ing the reference allele) [7, 11, 20–22]. Yet, despite their 
important role in both clinical and research settings, 
the analyses of mosaic mutations have yet to be broadly 
implemented due to significant challenges related to the 
sensitivity, false positives, accuracy, and the precision of 
the assessed AAFs [23, 24]. These challenges are often 
confounded by the inability to directly assess tissues with 
the highest AAFs, as is the case with neural tissue, or by 
limited or degraded DNA samples (e.g., cell free DNA) 
[25–28].

While germline mutations are relatively easy to detect 
from small amounts of DNA using a range of techniques 
such as WES, WGS, targeted gene panels, and traditional 
Sanger sequencing, the AAF of a mosaic mutation will 
depend on the given tissue, cell type, and the stage in 
development at which the mutation arose [22, 27]. Tra-
ditional WGS and WES in both the research and clini-
cal diagnostic settings are optimized to identify germline 

events but lack the sequencing depth to robustly detect 
and quantitate low-AAF variants [23]. However, recent 
improvements in targeted sequencing allow for the 
detection of mutations down to 0.1% AAF [6, 29]. While 
strategies such as molecular barcoding, increased read 
depth, and reduced use of PCR mitigate sequencing-
induced errors [20], the number of false positive low 
AAF mutations remains higher than germline detection. 
Therefore, validation of mosaic alleles is often essential, 
but challenging due to assay costs, throughput, and sensi-
tivity limitations.

The challenge for validating or quantitating low AAFs 
is multifaceted, spanning sequencing platforms, inher-
ent error rates of polymerases, and locus-specific hur-
dles. Each of these result in additional errors and skewing 
of AAFs, which can mask or alter the detected AAF in 
each assay [30–33]. The utilization of PCR to amplify 
the genomic loci without inducing additional mutations 
and maintain the original AAFs has been improved using 
modified polymerases with proofreading capabilities 
and, in some cases, unique molecular barcodes for each 
DNA fragment. Beyond the PCR step, errors can occur 
during sequencing on both the Illumina and Ion Tor-
rent platforms [20, 31]. For example, in one study, the Ion 
Torrent had an error rate of ~ 0.05% for SNVs but ~ 1.5% 
for insertions and deletions (indels), while the Illumina 
MiSeq had 0.1% errors for SNVs and 0.7% for indels [34]. 
Beyond technical errors, skewed AAFs, false negatives, 
and false positives from allelic imbalances due to inher-
ent differences in the genome content around a muta-
tion must all be considered when interpreting AAFs. 
Even more, additional mutations, repeat content, DNA 
methylation, and copy number changes can have dra-
matic impacts on AAFs, resulting in the commonly rec-
ognized issue of allelic dropout [33]. While primers are 
commonly designed to avoid areas with known genetic 
polymorphisms, the assays remain susceptible to allelic 
skewing from ultra-rare or private alleles and other loci 
specific causes of allelic imbalance.

In recent years several approaches have been utilized 
for validating and quantifying mosaic alleles including 
pyrosequencing [2, 35, 36] and bacterial cloning followed 
by Sanger sequencing of hundreds or thousands of indi-
vidual bacterial colonies to measure a single mutation 
[28, 37, 38]. These methods, while accurate and robust, 
were often cost-prohibitive, less scalable to large numbers 
of mutations, and less sensitive for mutations below 5% 
AAF. Allele-specific digital droplet PCR (ddPCR) assays 
improved sensitivity to measure AAFs through counting 
mutation positive and negative DNA fragments in thou-
sands of droplets using a single amplicon [21, 39] and is 
routinely considered a gold standard in both research 
and clinical settings. While the ddPCR assay accurately 
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detects AAFs below 0.5%, it requires the development 
of a custom assay, validation, and optimization to assess 
large numbers of droplets in each reaction [39]. Recently, 
blocker displacement amplification (BDA) [40] was 
shown to robustly detect low AAF variants down to 0.1%. 
This technology allows for multiplexing using different 
florescent color probes, differing amplicon band size by 
gel electrophoresis, or DNA sequencing. The authors of 
BDA note that such a strategy substantially improves on 
the costs and complexity of developing assays for detect-
ing low AAF alleles [40]. However, despite their success, 
ddPCR and BDA remain limited by scalability, availability 
of unique fluorescent color channels, allelic dropout, and 
the ability to design allele-specific primers or blockers, 
which is more challenging in repetitive regions and for 
small indels.

The growing consensus that mosaic mutations underlie 
a wide range of clinical phenotypes spanning from can-
cer risk to severe neurodevelopmental and overgrowth 
conditions suggests that a robust method for detection, 
quantification, and validation of variant alleles is essen-
tial. Multiple Independent Primer PCR Sequencing 
(MIPP-Seq) aims to mitigate the previously stated limita-
tions for assessing mosaic mutations. Our strategy relies 
on the power of analyzing multiple independent, nono-
verlapping amplicons over a targeted locus. Independent 
amplicon analyses markedly reduce the impact of allelic 
dropout, amplification bias, PCR-induced, and sequenc-
ing artifacts, while achieving the highest sensitivity to 
accurately detect ultra-low allelic fractions down to at 
least 0.05% AAF. As described below, our method allows 
for additional improvements to further improve accuracy 
using molecular barcoding and improved purification 
processes for both the detection and validation of novel 
and known alleles.

Methods
Primer design
For complete protocol, see Additional file 1: Methods. At 
least three unique sets of primers were designed for each 
mutation using BedTools [41] getfasta with the reference 
genome (hg19) to extract the flanking sequence around 
each mutation so that the mutation is located at different 
positions within each of the three sequences. Next, com-
mon alleles are masked, along with the targeted muta-
tion and flanking 5bps on each site using the bedtools 
maskfasta tool. The masked multi-fasta file containing all 
sequences for targeted alleles are input into BatchPrimer 
[42] webtool to design primers for each sequence. Prim-
ers are designed to an average TM of 60C, with a mini-
mum of 59 and maximum of 62C. The amplicon length 
is dependent on the specific mutation and DNA sources, 
for example difficult to map region may have longer 

products while degraded DNA samples may require 
shorter amplicons. In general, to ensure that all primers 
are likely unique and of similar amplicon length, ampli-
cons have a target length of 225–300  bp in length. The 
primer sequences are checked by BLAT and in-silico PCR 
to ensure both their unique amplificon in the genome and 
that the primer binding sites do not overlap between any 
set of primers. The final set of primers are then uniquely 
barcoded using 10nt barcodes and if desired, an addi-
tional 10nt UMI is added. Finally, Ion Torrent or Illumina 
specific adapter sequences are appended to the forward 
and reverse primers.

Library preparation
Previously isolated DNA, extracted from whole blood 
or postmortem human brain specimens [43], from dei-
dentified samples were utilized for all analyses. The 
brain tissues were obtained from Lieber Institute for 
Brain Development, the NIH NeuroBioBank, and the 
Autism BrainNet. All specimens were deidentified and all 
research was approved by the institutional review board 
of Boston Children’s Hospital.

For the standard, single step PCR method of MIPP-Seq, 
PCR was performed using 20 cycles on a 25ul reaction 
mix containing either 25 or 50 ng of input DNA sample, 
Phusion Hot-Start polymerase, dNTPs, HC-Buffer, and 
the primers. For initial testing, 30 cycles of enrichment 
were used to ensure only a single amplicon is produced. 
The high-sensitivity method modifies this process by 
reduction of the PCR cycling to 5 and the incorporation 
of 0.1 uL of 0.4 mM biotin-14-dCTP (Thermofisher) into 
the reaction mix. Biotinylated PCR amplicons are cap-
tured by adding 5ul of washed Streptavidin MyOne beads 
resuspended in 25 ul of 2X binding and washing buffer. 
The mixture is incubated at room temperature with 
gentle mixing for 30  min and placed on a 96-well mag-
netic plate. The liquid was removed, and the beads were 
washed one time with 1X binding and washing buffer. 
Then beads are then resuspended in 25 ul PCR reaction 
mixture containing custom primers which preserve the 
original UMI sequences, Phusion Hot-Start polymerase, 
dNTPs, and HC-Buffer. The biotin labeled product was 
amplified with an additional 20 cycles of enrichment 
before the beads were removed. Enriched products were 
further purified using 0.7X AMPure XP magnetic beads 
(Beckman Coulter).

QC and Variant calling
Purified library pools are analyzed for enrichment effi-
ciency and the complete removal of primers through 
by either the Agilent Bioanalyzer Hi-sensitivity chip or 
the Agilent D1000 ScreenTape System. The concentra-
tion was determined using the Quant-iT dsDNA high 
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sensitivity assay kit (Thermofisher). Pools were diluted to 
a final concentration of 100  pM prior to sequencing on 
430 chips for the Ion Torrent S5.

Raw unmapped bam files were obtained for each run 
and were processed using our custom analyses pipeline. 
First, all BAMs were converted to fastq using bedtool’s 
bamtofastq tool [41]. Next, the samples were demulti-
plexed using the unique 15nt barcodes (5nt of the primer 
and 10nt index) using FASTX toolkit’s fastx_barcode_
splitter (-bol -mismatches 3) resulting in fastq files for 
each primer set. If the allele being tested in an SNV, indel 
correction was performed using Pollux [44] (-n false -d 
false -h true -s false -f false). Then, barcode and quality 
trimming were performed using the cutadapt [45] tool 
(-u 10 -q 10). Finally, all samples are aligned to the ref-
erence genome using default settings in BWA-mem with 
local indel realignment being performed with GATK 3.7 
IndelRealigner [46] (-greedy 1200 -maxReads 2,000,000 
-maxInMemory 1,500,000) with indels present in gno-
mAD being used as a reference. Finally, primer binding 
sites were removed using the bamclipper tool [47] with 
default settings.

All BAMs were for the sensitivity analyses were ran-
domly downsampled using Samtools [48] and were 
indexed for variant calling. Variants were called across 
the length of each amplicon using Samtools mPileup 
with the settings: q = 20, Q = 20. The resulting VCFs 
were parsed into files containing the flanking 50nt posi-
tions on each side of the variant and a separate file for the 
allele of interest. Allelic positions within these flanking 
regions with additional known germline mutations were 
excluded to avoid artificially inflating the error rates.

Assessment of AAF
The measured AAF of mutations were calculated using 
the following steps (Additional file  2: Figure S1). The 
AAF at the variant position was extracted from the VCF 
for each of the amplicons, for example, 3 unique prim-
ers resulted in 3 unique measurements of the AAF. The 
average and 95% confidence intervals were calculated 
to determine the precision of the variant calls. The sig-
nificance of measured AAFs were determined using the 
primer-specific error rates. These background error 
rates and standard deviations of mutations, represent-
ing the chances of generating a mutational artifact, were 
calculated using the average allele frequencies across 
the 100 bases flanking the assessed mutations in each of 
the amplicons. Finally, the significance of assessed AAFs 
against the background error rates were assessed using 
both the 95% confidence intervals and a t-test. As a com-
parison, above steps are also performed on the raw data 
which was not error-corrected using Pollux.

Modification for Illumina platform
The PRNP gene was tiled with PCR primers so that all 
coding regions were covered by at least three unique 
primer sets each having unique primer binding sites. 
All primers were designed so that the maximum ampli-
con length was less than 285 bp, including the primers. 
Standard Illumina adapter sequences and 5 nucleotide 
UMIs were added to the forward and reverse primers. All 
primers were ordered in individual tubes to avoid the risk 
of cross contamination during the printing process.

Results
Here we describe Multiple Independent Primer PCR 
Sequencing (MIPP-Seq) which substantially increases the 
throughput and sensitivity for the detection and valida-
tion of mosaic mutations (Fig.  1). Our method utilizes 
multiple sets of primers designed to avoid overlapping 
primer binding sites and common causes of allelic drop-
out such as additional genetic variants. MIPP-Seq offers 
a flexible and robust solution for both the identification 
of novel mutations and assessments of AAFs of known 
mutations in one or more samples. Unlike existing meth-
ods such as ddPCR, MIPP-Seq often requires little to 
no optimization after primer design and has broad sen-
sitivity regardless of DNA source (e.g., blood and brain 
derived), concentration, and nucleotide context. Here we 
demonstrate the robust sensitivity of MIPP-Seq to detect 
and validate mosaic mutations using the Ion Torrent 
S5 platform and a modified version for the detection of 
novel alleles using Illumina sequencing.

Sensitivity and detection limits of MIPP‑Seq
MIPP-Seq’s sensitivity limits were assessed through anal-
yses of serial dilutions of genomic samples with three 
known germline mutations using three unique ampli-
cons per allele (Additional file  1: Table  S1). The dilu-
tions generated known AAFs ranging from 50% down 
to 0.01%. Furthermore, MIPP-Seq was assessed on ger-
mline heterozygous mutations, yielding expected meas-
urements of 50% AAF with great precision (Additional 
file 3: Figure S2). The measured AAFs were linearly corre-
lated with the expected AAFs down to 0.01% (R2 > 0.99), 
though as expected, individual AAFs do vary amongst 
individual primers (R2 > 0.98). Even more, MIPP-Seq 
accurately detects AAFs as low as 0.01% with all three 
assessed mutational dilution curves when using 50 ng of 
genomic DNA, although for significant detection above 
the amplicon-specific error rates, AAFs were typically 
required to be at least 0.025% (Fig. 2a–c, Additional file 4: 
Fig. S3, Additional file 5: Fig. S4). Surprisingly, MIPP-Seq 
achieved a 100% sensitivity for detection of alleles down 
to 0.01% AAF with all alleles being detected by at least 1 
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of the amplicons (Fig. 2c, Additional file 4: Fig. S3, Addi-
tional file 5: Fig. S4). The measured AAF of the 2048-fold 
dilution was ascertained to be 0.0136% ± 0.006% while 
the background error rate remained substantially lower 
at 0.007% ± 0.004%. As DNA quantity is often limited 
in clinical settings, we compared the impact on sensi-
tivity of reduced DNA input from 50 to 25  ng [~ 3800 
cells [49]]. Surprisingly, AAFs down to 0.025% remained 
detectable with 25 ng DNA (Fig. 2d–f, Additional file 4: 
Fig. S3, Additional file 5: Fig. S4), though with less preci-
sion (0.028% ± 0.0025% AAF), suggesting that increased 
DNA input is important to maintain the quantitative 
assessment of alleles below 0.1% AAF.

Furthermore, another key factor of a quantitative meas-
urement is its precision, which is also partially built into 
MIPP-seq through assessment of the confidence inter-
vals across the multiple primer sets for a given mutation. 
In most instances, primers for a given mutation yield 
extremely similar AAFs, resulting in very small standard 
deviations compared to the measure AAFs (Fig.  2a–c, 
Additional file  4: Fig. S3, Additional file  5: Fig. S4). A 

large standard deviation can occur due to allelic drop-
out in one of the three primers in a set but can often be 
identified by the presence of an additional nearby genetic 
variant.

Read depth directly impacted the precision of the AAF 
measurements. Mapped BAM files for each amplicon 
were randomly sampled to generate datasets contain-
ing read depths from 5,000 to 150,000X coverage (Fig. 3, 
Additional file 6: Fig. S5, Additional file 7: Fig. S6). While 
increased depths had little impact on amplicon error 
rates, depths of at least 10,000X were able to accurately 
measure AAFs down to 0.1%, while deeper coverage 
beyond that gave only minimal further accuracy. How-
ever, accurate measurement of AAFs below 0.1% were 
improved with depths of 50,000X to distinguish real 
alleles from background errors. Overall, we find a strong 
correlation of AAFs measured across a wide range of 
read depths, suggesting that the largest factor in assess-
ing AAFs below 0.1% was providing sufficient input DNA 
and achieving enough sequencing depth to distinguish 
artifacts from true calls.

Fig. 1  Overview of MIPP-Seq method. a Design and modification of multiple unique primers to generate amplicons spanning targeted mutation of 
interest using either b the standard single-step or C) 2-step UMI-containing MIPP-Seq workflows for detection and validation of mutations
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We further extended our assessment of error rates and 
the potential for false positive allele calls by performing 
similar sequencing on DNA samples lacking mutations. 
As expected, none of the variant alleles were detect-
able, with only the typical background error rate being 
detected, which is often not the same allele as the muta-
tion, supporting the specificity of this method.

Low nucleotide error rates
As the utility of MIPP-Seq relies on overcoming the pre-
viously described sources of quantification error, we 
evaluated error rates across the assessed mutations. Our 
reduced PCR cycling conditions with a high-fidelity poly-
merase (Phusion HS, ThermoFisher) are estimated to 
result in an error rate of 8.8 × 10–6 at any given nucleotide 
position (ThermoFisher PCR Fidelity Calculator). Indel-
associated errors were reduced using Pollux [44], a recent 
error modeling algorithm that screens for and corrects 
many indel-associated errors. Pollux reduced the already 
low nucleotide error frequency (0.01% AAF ± 0.0012%) 
by nearly 30% (0.007% ± 0.0012%, Additional file  8: Fig. 
S7), allowing for mutations at extremely low AAFs to be 
distinguished from background sequencing and PCR-
induced artifacts (Figs.  2, 3, Additional file  4: Fig. S3, 
Additional file 5: Fig. S4, Additional file 6: Fig. S5, Addi-
tional file  7: Fig. S6). While Pollux reduced the error 

rates, raw and final AAFs of targeted mutations remained 
highly correlated (R2 = 1, Additional file 9: Fig. S8).

Precise assessment of AAFs in tissue‑derived DNA
We further validated the ability of MIPP-Seq to assess 
alleles in other tissues using 482 previously identified 
somatic SNVs from brain-derived DNA in healthy indi-
viduals (432 SNVs, Fig. 4a, b, Kim et. al. and Ganz et. al. 
unpublished data) and those with Autism Spectrum Dis-
order (50 SNVs, ASD, Fig.  4c, d) [25, 50]. As expected, 
somatic mutations were readily detectable in brain-
derived samples with AAFs down to 0.05%. Even more, 
mosaic mutations can be properly phased with nearby 
germline polymorphisms (Additional file  10: Fig. S9). 
While most AAFs were similar to the originally detected 
rates, the dissimilar AAFs were typically associated with 
low coverage in the original sequencing platform or a 
single outlier amplicon with allelic dropout caused by a 
germline polymorphism (Additional file 11: Fig. S10). The 
occurrence of allelic dropout highlights the importance 
of using multiple primers when studying mosaic and ger-
mline alleles.

Robust validation for low AAF insertions/deletions
The elevated sequencing-induced errors around 
homopolymers in Ion Torrent sequencing data com-
bined with limited PCR duplicate information may 

Fig. 2  Minimal impact on sensitivity for reduced PCR DNA input for Mutation 1. Sensitivity to measure the AAF and background error through a 
dilution curve of a polymorphism (Mutation 1) using a 50 ng 0.01% to 50% AAF and data subsets with AAFs b less than 9% and c less than 0.08%. 
Reduction of DNA input to 25 ng with d 0.01% to 50% AAF and data subsets with AAFs e less than 9% and f less than 0.08%
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reduce the sensitivity to precisely quantitate some 
ultra-low AAF indels (< 0.05% AAF) [34, 44]. Even 
more, the Pollux software is known to overcorrect for 
indels [44, 51] and has difficulty distinguishing rare 
indels from artifacts. Despite these limitations, we 
assessed MIPP-Seq performance on indels occurring at 
a wide range of AAFs from 1 to 30% and 1 to 21 base 

pairs in length, including 40 insertions and 60 dele-
tions previously identified using 200X whole genome 
sequencing [43]. Even more importantly, we do not 
identify these mutations in control DNA (Additional 
file 12: Fig. S11), where at these sites we find very low 
error rates for indels (0.010% ± 0.05%) supporting that 
even the single base indels are not being introduced by 

Fig. 3  Impact of read depth on sensitivity of AAF assessments for Mutation 1. Reduction of initial maximum read depth from 50,000X for detection 
of alleles from a 50% to b 0.025% to c, d 10,000X and e, f 5000X
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PCR or the Ion Torrent platform. These data suggest a 
sensitivity to accurately quantitate AAFs of indels down 
to 0.05%. Despite being detected using only a few reads 
in the WGS data, we find a strong correlation between 
the predicted AAFs in the WGS and the measured val-
ues by MIPP-Seq (Fig.  4e, f; R2 = 0.75 deletions and 
R2 = 0.94 for insertions).

To further improve our sensitivity for low AAFs, we 
developed a modified protocol (Fig.  1b) with an initial 
low-cycle PCR containing biotinylated dCTP (~ 25% of a 
cytosines), or biotinylated primers, with unique molecu-
lar indexes (UMIs), to uniquely tag all PCR products in 
the first 10 cycles. After purification using either strepta-
vidin capture or enzymatic digestion (see methods), all 

Fig. 4  Validation of mosaic alleles detected from neural tissues. MIPP-seq validated AAFs from a 432 alleles up to 30%AAF with a subset of alleles b 
with AAFs below 1%. Correlation of AAFs previously detected by 200X WGS sequencing in brain tissue and MIPP-seq for AAFs less than c 30% and d 
10%. Strong correlation of AAFs of WGS and MIPP-seq for both e insertions and f deletions detected and validated in brain derived DNA samples
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reactions are further amplified by a common primer that 
maintains the UMI signature, effectively tagging all PCR 
duplicates from the 2nd round of PCR. The incorpora-
tion of biotin into the PCR product did not impact the 
overall measured AAFs, but slightly reduced the error 
rate (0.0023% ± 0.0011% AAF), possibly due to the abil-
ity to perform better purification and the use of a com-
mon primer for the majority of the amplifications. These 
suggest that a 2-step UMI approach for MIPP-Seq might 
be valuable in situations requiring reduced error rates for 
ultra-low AAFs, removal of PCR duplicates, or consen-
sus-based allele calling.

MIPP‑Seq accurately detects mutations when modified 
for Illumina‑based sequencing platforms
The increased sensitivity of the MIPP-Seq approach can 
be further applied for the detection of novel ultra-low 
AAFs variants with Illumina-based sequencing. In order 
to determine the sensitivity of an Illumina-compatible 
MIPP-Seq approach to quantify and detect new alleles, 
we developed a 2-step PCR approach where overlap-
ping unique primer were designed to target each locus. 
All targeted bases were covered by four independent 
amplicons, each containing Illumina sequencing adapt-
ers and UMIs. Using a 2-step PCR approach, we prepared 
sequencing libraries for a dilution series with a known 
mutation at eight AAFs from 0.01 to 10% AAF. Despite 
performing 2 sequential rounds of PCR amplification, 
we accurately quantified the AAFs of targeted mutation 
down to at least 0.025% with an average read depth of 
just 13,766X, with background error rates comparable to 
those of our Ion Torrent based approach (Fig. 5a, b). Even 
more, we find that while sequencing artifacts may occur 
in each amplicon due to polymerase errors, sequencing 

platforms, etc.; the errors detected were random and 
unlikely to occur across all primers targeting the loci. 
Therefore, by requiring that a novel mutation be detect-
able above background in most amplicons (3 of 4 ampli-
cons), potential false positive mutations at very low AAFs 
can be substantially reduced. In the targeted loci here, 
we observed no false positive calls across the regions tar-
geted by the set of 4 amplicons. These data suggest that 
Illumina-modified MIPP-Seq can accurately detect muta-
tions down to at least 0.025% AAF, suggesting a possible 
option for improved accurate measurement of AAFs of 
novel alleles in targeted sequencing platforms.

Discussion
Mosaic mutations contribute to a wide range of genetic 
disorders beyond cancers including those impacting 
hematological [52], muscular [53], cardiovascular [54, 
55], and neurological [4, 25, 26, 50, 56, 57] systems, but 
their identification and validation often remain chal-
lenging. Here we describe MIPP-Seq as a compre-
hensive method for the detection, quantification, and 
validation of known and novel genetic mutations across 
a wide range of AAFs and tissue types. MIPP-Seq mark-
edly reduces the impact of allelic dropout, amplification 
bias, and induced artifacts (e.g., PCR and sequencing 
induced), while achieving a high sensitivity to accurately 
detect ultra-low allelic fractions below 0.05% regard-
less of tissue origin. Furthermore, MIPP-Seq allows 
for additional improvements to further improve accu-
racy through incorporations of molecular barcoding, 
improved purification processes, and compatibility for 
additional sequencing platforms.

Prior studies have demonstrated the validation of low 
AAF alleles using ultra-deep amplicon sequencing using 

Fig. 5  Validation of Illumina modified MIPP-seq to allow for sensitive detection of mosaic alleles. Sensitivity curve for detection of serially diluted 
mutation (black filled circles) versus low error rate (grey triangles) for AAFs a up to 10% and b below 0.125%
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single sets of PCR primers [7, 25, 50, 57]. However, 
allelic dropout and artifacts (e.g., PCR- and sequenc-
ing platform-induced) can reduce the sensitivity of sin-
gle amplicon strategies, detected AAFs and possibly 
result in both false negative calls as well as skewed AAFs. 
MIPP-Seq overcomes the limitations of powerful assays 
such as ddPCR and BDA [40], which often utilize a sin-
gle set of primers and probes, by using multiple unique 
barcoded primers for independent assessments of AAF, 
amplicon-specific error rates, and allelic imbalances. Fur-
thermore, the costs associated with the highly scalable 
MIPP-Seq approach can be tenfold lower than ddPCR 
due to the combination of minimal optimization, abil-
ity to assess hundreds of mutations per sequencing run, 
use of standard primer synthesis, and a streamlined ana-
lytical pipeline. Thus, MIPP-Seq provides a scalable and 
rapid strategy for consistently precise estimation of AAFs 
which is broadly applicable to clinical and research stud-
ies of mosaic and germline mutations in human disease 
[4, 26, 29, 50, 53, 54, 56, 57] and normal development 
[18, 20, 25, 37]. In particular, the ability to utilize MIPP-
Seq on multiple sequencing platforms and to simultane-
ously assess hundreds of variants with little optimization 
allows for a substantial reduction in the cost to validate 
any given allele. Therefore, MIPP-Seq provides an ideal 
solution that will enable clinical diagnostics to expand 
the breadth of available mosaic testing more broadly in 
families.

Another challenge of genomic studies involves testing 
of low quality or degraded DNA samples such as those 
from cell-free [8, 58, 59] and circulating tumor [1, 10, 
15, 17, 30, 58] specimens. We demonstrate the feasibil-
ity of utilizing MIPP-Seq in different DNA sources with 
little to no additional modifications beyond adjusting 
the amplicon size. The flexibility of MIPP-Seq to utilize 
a wide range of amplicon sizes and multiplexing reac-
tions enables both personalized and disease specific 
screening of cell-free and/or circulating tumor specimens 
from patients to monitor the improvements gained due 
to therapies or to detect the early recurrence of cancers 
[10–14, 58, 60]. Such multiplex batches would also ena-
ble rapid and highly sensitive validation of variants from 
deep sequencing gene panels and WGS [18, 25, 61]. Fur-
thermore, a similar approach could be applied to prenatal 
testing for both the detection of known mutations and 
for screening of novel mutations [8, 9, 59].

Even more, as MIPP-Seq relies on PCR, it can be fea-
sibly utilized to fill other needs in the research and clini-
cal communities where quantitative measurements are 
essential for extremely low AAFs. For example, recent 
studies have highlighted the importance of understand-
ing bacterial and viral loads in the microbiome [62, 63] 
and wastewater [64–68]. However, the low bacterial or 

viral DNA content and the presence of large amount of 
external DNA contamination (i.e., human, animal, insect 
DNA) complicate such analyses [69]. MIPP-seq allows 
individual viral or bacterial genotypes to be quantified 
without the need to sequence DNA from other contami-
nants. Even more, MIPP-seq could allow for the detec-
tion of mutational profiles within essential viral domains 
which are targeted by vaccines, thereby allowing for ear-
lier detection of new viral mutations. Finally, it is feasi-
ble to apply MIPP-Seq to sample types such as RNA and 
cDNA, including viral, with minimal modifications.

Finally, the application of MIPP-Seq for novel muta-
tion detection could provide a much higher resolution 
and quantitative strategy to detect novel mosaic alleles 
across entire genes or regions such as the mitochondrial 
genome, which accounts for numerous severe disorders 
[70–72]. Genetic diagnoses of disorders of disorders 
involving the mitochondrial genome are particularly 
challenging due to heteroplasmy [73, 74], which results 
in variable allelic fractions across tissues. To overcome 
this challenge, numerous sequencing methodologies have 
been developed with detection limitations ranging from 
0.1 to 10% AAF [73, 74]. However, due to elevated false 
positive and negative rates for AAFs < 1.5% of many of 
these sequencing approaches require AAFs to be above 
3% for accurate detection [73, 74]. The highest sensitiv-
ity approach, ddPCR, allows for precise assessment of a 
single known mutation, but lacks the ability to screen the 
entire mitochondrial genome for novel mutations. The 
application of MIP-Seq toward mitochondrial genetic 
testing could future improve upon these approaches, and 
potentially provide additional genetic diagnosis.

Conclusions
The importance of mosaic mutations in both genetic 
research and clinical diagnostic testing are reliant on 
high quality detection and validation of alleles. How-
ever, to date, the costs and complexity of such valida-
tion have limited the expansion of clinical diagnostic 
testing and large validation of research studies. Here 
we describe Multiple Independent PCR Sequenc-
ing (MIPP-Seq) as a flexible method for both low and 
high throughput detection and validation of mosaic 
mutations. This scalable platform can be applied to 
both small and large projects at a fraction of the cost 
and time as leading methods like ddPCR. MIPP-Seq 
leverages the power of individual analyses of multiple 
unique PCR amplicons from independent reactions to 
identify novel mutations or quantification of AAFs of 
known mutations. We demonstrate that the highly sen-
sitive MIPP-Seq can validate and precisely quantitate 
extremely low AAFs across a wide range of tissues and 
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mutational categories including both indels and SNVs. 
Together, this approach can be applied to a wide range 
of processes including research and clinical allele vali-
dation, cell-free DNA, and clinical testing and screen-
ing in oncology patients.
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multiple primers. A) The AAF of the targeted mutation is compared to the 
background error rate of 50nts flanking each side of the mutation and B) 
the assessed rates are averaged across all unique primers for the mutation.

Additional file 3: Fig S2. Example of validated heterozygous germline 
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input for Mutation 2. Sensitivity to measure the AAF and background error 
through a dilution curve of a polymorphism (Mutation 2) using A) 50ng 
0.01% to 50% AAF and data subsets with AAFs B) less than 9% and C) less 
than 0.08%. Reduction of DNA input to 25ng with D) 0.01% to 50% AAF 
and data subsets with AAFs E) less than 9% and F) less than 0.08%.
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input for Mutation 3. Sensitivity to measure the AAF and background error 
through a dilution curve of a polymorphism (Mutation 3) using A) 50ng 
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Additional file 7: Fig S6. Impact of read depth on sensitivity of AAF 
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from 50,000X for detection of alleles from A) 50% to B) 0.025% to C) & D) 
10,000X and E) & F) 5,000X.
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Additional file 9: Fig S8. Strong correlation of AAFs before and after error 
correction by Pollux algorithm. A) Correlation of raw AAFs, those detected 
from data prior to error correction, with the final AAFs (i.e., post-error 
correction), with B) a subset of data below 7% AAF also showing a strong 
correlation.

Additional file 10: Fig S9. Mosaic mutation in cis with germline poly-
morphism.  A) Analysis of a mosaic point mutation revealed a germline 
polymorphism in 2 of the 3 amplicons. Amplicons 1 and 2 (B &C) covered 
both the germline and mosaic event and confirmed the cis arrangement, 
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Additional file 11: Fig S10. Detection of allele dropout masking germline 
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Additional file 12: Fig S11. Comparison of AAFs detected for indels in 
cases vs controls. Indels were validated using MIPP-seq on the case DNA 
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