Skip to main content
. 2021 Feb 12;13:9. doi: 10.1186/s13321-021-00484-5

Table 2.

The details of the present KwLPR based QSAR/QSAAR models

Case study Bandwidth method selection Bandwidth Local polynomial's degree Kernel function
Case study 1 Least Squares Cross-Validation Method LogP 0.410 0(Constant) Gaussian
pEC50 (mM) (D. magna) 0.213
nT = 254; R2 = 0.85; RMSEC = 0.60; Q2LOO = 0.79; RMSECV = 0.70
nV = 64; Q2F1 = 0.88; Q2F2 = 0.88; Q2F3 = 0.88; CCC = 0.93; RMSEP = 0.54
Case study 2 Expected Kullback–Leibler cross-validation Method LogP 0.416 0 (Constant) Gaussian
pEC50 (D. magna) 0.292
nT = 235; R2 = 0.83; RMSEC = 0.66; Q2LOO = 0.79; RMSECV = 0.74
nV = 59; Q2F1 = 0.91; Q2F2 = 0.91; Q2F3 = 0.91; CCC = 0.95; RMSEP = 0.48
Case study 3 Least Squares Cross-Validation Method pEC50 (D. magna) 0.357 0 (Constant) Gaussian
GATS1e 0.585

nT = 35; R2 = 0.95; RMSEC = 0.34; Q2LOO = 0.88; RMSECV = 0.51

nV = 15; Q2F1 = 0.83; Q2F2 = 0.83; Q2F3 = 0.83; CCC = 0.90; RMSEP = 0.61

Case study 4 Direct Plug-in Method pT (T. pyriformis) 0.399 1 (Local linear) Gaussian

nT = 31; R2 = 0.81; RMSEC = 0.28; Q2LOO = 0.72; RMSECV = 0.34

nV = 10; Q2F1 = 0.83; Q2F2 = 0.82; Q2F3 = 0.83; CCC = 0.91; RMSEP = 0.27

Case study 5 Least Squares Cross-Validation Method MLOGP 0.417 0 (Constant) Gaussian
CIC0 0.584
SM1_Dz(Z) 0.512
GATS1i 0.535
NdsCH 0.781
NdssC 0.521

nT = 726; R2 = 0.85; RMSEC = 0.57; Q2CV = 0.57; RMSECV = 0.93

nV = 182; Q2EXT = 0.68; RMSEEXT = 0.87; CCC = 0.79