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Abstract

Background: A Susceptible–Exposed–Infected–Removed (SEIR) model was developed to forecast the spread of the novel
coronavirus (SARS-CoV-2) in the United States and the implications of re-opening and hospital resource utilization. The
model relies on the specification of various parameters that characterize the virus and the population being modeled. However,
several of these parameters can be expected to vary significantly between states. Therefore, a genetic algorithm was developed
that adjusts these population-dependent parameters to fit the SEIR model to data for any given state.
Methods: Publicly available data was collected from each state in terms of the number of positive COVID-19 cases and the
number of COVID-19-caused deaths and used as inputs into a SEIR model to predict the spread of COVID infections in a
given population. A genetic algorithm was designed where the genes are the state-dependent parameters from the model. The
algorithm operates by determining the fitness of a given set of genes, applying selection, using selected agents to reproduce
with cross-over, applying random mutation, and simulating several generations.
Findings and Conclusions: Use of the genetic algorithm produces exceptionally good agreement between the model and
available data. Deviations in the parameters were examined to see if the trends were reasonable.
c⃝ 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

The COVID-19 pandemic in the US has been modeled for several states using a SEIR model adapted from Tang
t al. [10,11] with modifications. The SEIR model is described in greater detail by Yarsky in another paper [13]
nd in the interest of brevity the model is only summarized herein. In developing this model, there are several
arameters that are state-dependent and will vary between states in the US. Reliable prediction of the course of the
andemic in any given state is predicated on determining reasonable values for the state-dependent parameters.

In the current work a genetic algorithm (see Mitchell et al. [7] and Qadrouh et al. [9]) is used to tune the
tate-dependent parameters such that the model produces good agreement with data for each state. The data in
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this case are the day-by-day tally of positive cases and the number of COVID-19 deaths, which are available from
www.covidtracking.com [12]. An area of future work will be to study these parameter values in the light of other
available data to determine if the suggested parameter values are reasonable and might be useful in forecasting.

2. Methods

The pandemic is modeled with a Susceptible–Exposed–Infected–Removed (SEIR) model. The basic elements
re shown in Eqs. (1)–(5). The model tracks the evolution of different subpopulations, here S, E, I and R refer to
he standard subpopulations and another population (A) is added to track asymptomatic individuals. In addition, a
esting rate (shown in Eq. (6)) is modeled and the total number of positive cases is tracked according to Eq. (7).

novel element of the current work is to use the SEIR results to predict the rate at which diagnostic tests are
erformed and yield positive results (T’) and this testing rate is then used to compute a number of cases (C) for
omparison to tabulated data on the number of cases in each state.

S′
= −βcS (ζ E + I + A) (1)

E ′
= βcS (ζ E + I + A)− σ E (2)

I ′
= σρE − α I − γ I (3)

A′
= σ (1 − ρ) E − γ A (4)

R′
= (α + γ ) I + γ A (5)

T ′
= χσρE (t − ψ) (6)

C = (1 − ε) T (7)

he model includes many parameters, some of which are virus-dependent (i.e., ζ : pre-symptomatic transmission
ffectiveness 5%, σ : infection rate 0.2 days−1, ρ: probability of developing symptoms 75%, α: death rate 6.9 × 10−4

days−1, γ : recovery rate 0.14 days−1, ψ : time between diagnostic test and result 3 days, and ε: diagnostic test false
negative rate 5%). These parameter values were selected based on the available literature [13] and for additional
detailed discussion the reader is referred to Yarsky [13]. However, some parameters will vary from state-to-state,
most importantly the contact rate (c) but also, to a lesser extent, the transmission probability (β), death rate (α),
the diagnostic test eligibility (χ ) and the test result period (ψ).

Mitigation measures can be simulated in the SEIR model. Social distancing orders have the effect of reducing
he contact rate (c). Mask wearing guidelines have the effect of reducing the transmission probability (β). However,
n addition to these effects from mitigation measures, there are differences in these parameters from state to state
ue to factors such as population density.

The contact rate will depend on the relative proportion of urban areas (where the routine contact rate is high) to
ural areas in addition to impact of the social distancing measures in that state. The transmission probability may be
ensitive to the weather [2,6]. Furthermore, the death rate will be sensitivity to the number of people in the population
ith preexisting conditions that can increase the likelihood of a COVID-19 fatal outcome (e.g., diabetes) [8]. Finally,
state may have more easily assessable diagnostic testing and available lab capacity to process more tests compared

o others. Therefore, the test eligibility and test result period may vary from state-to-state.
For a genetic algorithm to operate, several elements must be in place. For this discussion, the SEIR models a

iven state and predicts the cases (C) and deaths (D). It should be noted that the value of C gives the cumulative
umber of positive diagnostic test results for comparison to the tabulated data. The objective of the algorithm is
o tune certain state-dependent parameters to achieve better agreement between the model and data. Each set of
arameters for the SEIR model and the results of the run for that set will be referred to as an agent. Each agent has
ts input set of state-dependent parameters, which is the genome for that agent. For the genetic algorithm to tune
hese parameters, the agents must be judged based on their “fitness”, which measures how well the agent matches
he available data.

Based on the fitness, some agents will be selected to reproduce and spawn new agents for the next generation.
he new agents will have genomes that are subject to cross-over and random mutation based on the parent agent’s
enome.

Successive generations are simulated until an agent produces results within an acceptable fitness threshold, or

he total number of maximum generations are simulated.
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Genetic algorithms have been used in various ways to improve modeling related to the novel coronavirus [1,4].
he work of Ghosh et al. [4] is similar but that work appears to focus on case data as opposed to casualty data
hereas the current work utilizes both case and casualty data in a novel fitness function. Carcione et al. [3] explain
hy SEIR model tuning should be performed using the casualty data because there are issues with using case and
ospitalization data, and while Carcione was focused on modeling the pandemic in Italy, the observations are also
pplicable to the current work. The current work attempts to address some of the issues with using case data by
ncluding a case number equation and to improve the accuracy by utilizing the casualty data.

.1. Genome

The genome is comprised by a list of the state-dependent parameters: normal contact rate, socially distant contact
ate, transmission probability, death rate, test eligibility, mask wearing transmission reduction factor, and test period.

ost of these are discussed in the introduction. The socially distant contact rate is the contact rate once a state has
ully implemented all the available social distancing measures (e.g., school closures, business closures, stay-at-
ome order, etc.). The mask wearing transmission reduction factor characterizes the reduction in the transmission
robability due to a significant portion of the population wearing face coverings in response to mask-wearing
uidelines. It will vary from state-to-state depending on the proportion of people within that state that comply
ith the guidelines. Each parameter in the genome has an associated value which will be referred to as the gene.
he value stored in the genome is the same value as used in the model. When a new genome is created from

eproduction (i.e., a child’s genome), the child agent will run a SEIR model with parameters given by the genes in
he child agent’s genome.

The genome includes the following genes in the following order: (1) normal contact rate, (2) socially distant
ontact rate (i.e., the contact rate when all social distancing measures are implemented), (3) the transmission
robability, (4) the death rate, (5) test eligibility fraction, (6) the mask wearing transmission probability reduction
actor, and (7) the test period.

.2. Fitness

The fitness in the current work is calculated by taking the SEIR results and comparing to the available data in
erms of cases and deaths. The fitness is a figure of merit that judges how well the SEIR model fits the available
ata. Since there are two data sets (cases and deaths) it is not appropriate to just use the root-mean-square difference
s this would not necessarily properly take into account the vast difference in the number of cases compared to
he number of deaths. Additionally, there might be large discrepancies in the data early in the outbreak due to two
otential sources of bias: (1) cases predicted by the model are expected to be low because the SEIR model predicts
ases based on diagnostic testing; however early in the outbreak cases were identified based on hospital diagnosis
ue to the presence of COVID-19 symptoms, so called presumptive cases, and (2) before testing confirmed the
revalence of COVID-19 many deaths may have been mischaracterized as non-COVID-19 deaths, meaning that the
odel will likely over-predict deaths early in the outbreak. Given these sources of bias, the fitness figure of merit
as designed to more heavily weight the more recent data compared to the data from early in the outbreak.
The fitness is calculated according to Eq. (8). In this equation C(t) and D(t) are the cases and deaths at a given

ime (t). The subscripts d and m denote the data and the model result, respectively. The term T refers to the final
ay for which data is available.

f =
2

Cd (T )

√∑T
t=1 ln(t)(Cm (t)− Cd (t))2

T
+

1
Dd (T )

√∑T
t=1 ln(t)(Dm (t)− Dd (t))2

T
(8)

he fitness function is similar to the root-mean-square (RMS) difference between the model and data in terms of
ases and deaths. The differences are still squared, but are weighted with the ln(t), which slowly increases the
mportance of later data. The figures for cases and deaths are then divided by the total number of cases and deaths
t the latest time (to normalize them). A factor of two is applied to the cases figure to increase the relative weight
f the cases compared to the deaths. The normalization accounts for their being many more cases than deaths, but
he factor of two restores some heavier weight to the cases-based figure.

One will notice that a model that produces very good agreement with the data will produce a low value for the
tness. This is an important note in the specific application of the genetic algorithm in this case. The selection
lement will select agents that have a low fitness score.
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2.3. Selection

At the end of each generation, the agents in that generation are ranked according to their fitness. In the current
ork, a smaller fitness value means better agreement between the model and the data. A fixed percentage of the

gents are selected for reproduction. In the current work, 20 percent are selected based on the suggestion of Mitchell
t al. [7]. A genetic algorithm might weight the selection process using fitness, but instead just a list of the most
t agents were selected at a ratio of 20 percent which appears to yield enough diversity to allow exploration of

he parameter space while still culling bad parameter sets. The current work uses 30 agents in each generation,
o 6 agents are selected for reproduction after each generation. A number closer to 100 might give more robust
erformance of the algorithm, but a smaller number of agents reduces the computational expense, so there is a
rade-off. Testing the algorithm indicated that 30 agents were sufficient to produce reliably good results.

.4. Reproduction

The reproduction process selects two agents at random from the selected agents. These are selected randomly so
here is the possibility for asexual reproduction (both parents happen to be the same agent). No special weight is
iven to higher fitness individuals once selection takes place; this preserves genetic diversity early in the process.
nce two parent agents are selected, two children agents are produced. To create the child agents, child genomes

re computed. For each pairing a cross-over factor is randomly selected, and the child genomes are calculated as
ollows in Eq. (9) where x is the cross-over factor and each gene in the genome is calculated in the same manner.
ote, the cross-over is the same for every gene in genome for the pairing between two parents.

child1 [genei ] = parent1 [genei ] (x)+ parent2 [genei ] (1 − x) (9.1)

child2 [genei ] = parent1 [genei ] (1 − x)+ parent2 [genei ] (x) (9.2)

The next generation includes the selected agents from the previous generation, this ensures that the most fit agents
continue to vie for selection in future generations, and then children are added through random pairings until the
number of agents for the next generation is the same. In the current work, 30 agents are simulated in each generation,
so the 6 selected agents from the previous generation are randomly paired to create 24 children for the subsequent
generation.

2.5. Mutation

In addition to cross-over, after the children agents are spawned, there is a chance for random mutation. For all
agents in the next generation — before any simulations are run, there is a fixed chance that a mutation will occur (in
the current work 10 percent). A mutation rate that is too high hinders selection from increasing the allele frequency
for favorable (i.e., more fit) genes; but a mutation rate that is too low stifles the genetic algorithm in that it will
become more prone to finding localized optima rather than exploring a sufficient swath of parameter phase-space
to garner a high likelihood for finding a truly optimum solution. Ten percent was selected in the current work as a
decent balance between these competing effects. If a mutation occurs, a random agent is selected and a random gene
within that agent’s genome is selected. That gene is then mutated by multiplying by a factor. The factor is randomly
selected over a range from 0.75 to 1.25 in the current work. The mutation variability, much like the mutation rate
should be selected to be large to ensure that the algorithm explores a wide variety of the parameter phase-space, but
small enough that it does not preclude selection from favoring certain allele frequencies. The value of 25 percent
was selected rather arbitrarily, but as shown in the results, the performance of the generic algorithm is acceptable
with a manageable, tractable number of agents and generations.

2.6. Coarse-search acceleration

To accelerate the solution using the genetic algorithm, a “coarse-search” is done for the normal and socially
distant contact rates upfront. These two values control the value of c during the simulation and are the most important

because of their first order effect on the infection rate. It must be noted that the contact rate only appears in Eqs. (1)
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Table 1
Genetic algorithm results.

DC GA MI NY PA VA

cβ initial [day−1] 1.1E−06 8.6E−08 2.3E−07 9.1E−08 1.2E−07 1.1E−07
cβ social distancing [day−1] 5.3E−07 1.5E−08 1.8E−08 1.5E−08 2.3E−08 5.4E−08
cβ social distancing + mask wearing [day−1] 1.6E−07 4.8E−09 5.9E−09 5.2E−09 7.1E−09 1.6E−08
α [day−1] 1.3E−03 7.7E−04 1.2E−03 8.6E−04 8.4E−04 9.9E−04
χ 18% 13% 10% 10% 11% 20%
ψ [days] 3 3 3 3 3 3
Cases relative RMS difference 2.5% 4.0% 5.1% 3.0% 2.6% 1.7%
Deaths relative RMS difference 4.0% 2.5% 9.9% 2.9% 9.8% 1.8%

and (2) as a product with the transmission probability. Therefore, as the contact rate is tuned, this compensates any
error in the transmission probability because it is the product that affects the progression of the outbreak.

The coarse-search sweeps through a variety of discrete contact rate pairs. The discrete values are selected based
n relatively large steps between a minimum and a maximum value; hence being called “coarse”. Several contact
ate pairs are established and these are fed into SEIR models with all other genes set to default values. Runs are
ade for each pair and the fitness of each pair is used to sort the pairs into a “best-guess” pair. This is meant to

stablish a good initial guess for the contact rates before initializing the genetic algorithm search. Since the steps
etween the discrete pairs are relatively coarse this can be done at a small computational expense. Values between
and roughly 30–100 have been used here with a step size of 5 in the normal contact rate and a step size of 1 in

he socially-distant contact rate.

.7. Slicing and punctuated equilibria

The basic genetic algorithm operates over 50 generations, but is implemented to operate iteratively over sub-slices
f the genome. In the first set of 50 generations, the algorithm operates only on three of the genes (normal contact
ate, socially distant contact rate, and transmission probability). Fifty generations are run for this first slice. After
ompleting those 50 generations, the slice is increased so the number of genes in the genome increases to include
ne more gene (the virus death rate). The process repeats and each slice includes one additional gene until every
ingle gene is in the genome for the final run of the genetic algorithm. Each slice is subject to the genetic algorithm
or 50 generations. This iterative approach with genome slicing simulates a kind of punctuated equilibrium [5] in
he optimization process.

After each slice goes through the genetic algorithm, the most fit agent starts the next slice with one additional
ene. But, to populate the first generation, agents are created by taking the initial agent and spawning 29 additional
gents where every single gene is forced to randomly mutate. This has the effect of creating a new species after
ach slice is analyzed (by adding another gene to the genome) and then the genetic diversity is forced to increase
t the start of the process for each slice. This can lead to a burst in the change in fitness for each slice — which
s very much like punctuated equilibrium.

. Results and discussion

The genetic algorithm was used to fit the SEIR model to five American states (Georgia, Michigan, New York,
ennsylvania, and Virginia). The genetic algorithm results are provided in Table 1. In the predecessor work (see
arsky [13]), the SEIR model tends to under-predict the number of cases and over-predict the number of casualties
arly in the outbreak, this tendency was attributed to potential biases in the data themselves and the model can be
xpected to be biased in this manner. Briefly, the model only considers cases that are identified from a diagnostic
est, but state-by-state case data include cases that were identified without such testing, especially early in the
utbreak. However, when compared to the results produced with the genetic algorithm, the agreement between the
odel and data is greatly improved at later times even though similar biases are observed in the earliest phase of

he outbreak.
New York (NY) has the largest outbreak in the US at the drafting of this paper and Fig. 1 illustrates the model

omparison to the data for this state. To compare the data and the SEIR results on a consistent basis the x-axis
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Fig. 1. NY results.

Fig. 2. GA results.

reflects the number of days since the infection is detected, day 1 is thus labeled as the day when the number of
cases (C) increases from 0 to 1. This state illustrates the general trend of under-predicting cases and over-predicting
casualties during the first month. The model and data come into excellent agreement over the most recent 30 days.
This is expected, however, since the fitness function more heavily weights the more recent data by design.

Georgia (GA) is notable in that the model tends to under-predict the casualties early, as shown in Fig. 2. Much
like NY, however, the model and data come into very good agreement for the most recent 30 days. Virginia (VA)
also deviates from the trend in the casualties, but instead of a clear bias the casualties are well predicted over the
whole simulation period (see Fig. 3).

Results are also provided for Michigan (MI) and Pennsylvania (PA) in Fig. 4 and Fig. 5, respectively. The MI
results are interesting in that this represents the current case with the poorest agreement between model and data. As
can be seen in Table 1, the relative root-mean-square (RMS) differences between cases and casualties are highest for
MI and then somewhat smaller for PA. These two states show larger deviations than the balance of states analyzed
as part of the current work.

The MI data are an outlier compared to the data for the other states because of the unusual shift in the case trend
around 15 days. There is a sharp change in the slope of the case trend and the SEIR model does not capture this
rapid change in the trend well. As a result, it appears that the model will begin to start significantly under-predicting
cases and casualties in the future. An area of future work would be to change the fitness function to even more

heavily weight the more recent data, by perhaps using a (ln(t)) [11] weighting or something similar. This would
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Fig. 3. VA results.

Fig. 4. MI results.

Fig. 5. PA results.
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likely improve the long-term predictive efficacy of the MI SEIR model at the expense of creating greater divergence
in the earlier results.

The PA results in Fig. 5 show better agreement between model and data than MI, but the results for the casualties
re interesting. It appears that the model can capture the trend of the casualties with the longer-term slope of the
urve being in excellent agreement, but the SEIR model under-predicts the data by an approximately constant factor
n the most recent two weeks. The PA data do include some quirks that may introduce deviations from expected
alues. Most significantly, there is a decrease in the deaths between 40 and 50 days. It is not clear why the data
how this decrease, perhaps it was a recategorization of COVID-19 deaths as non-COVID-19 deaths, but it is not
lear. Some irregularities like this in the data may explain the larger variation in the PA casualty data around the
verage trend (which is in good agreement with the model result).

While this initial study using the genetic algorithm indicates promise that the SEIR model predictions can be
mproved, there remains more work that must be done to verify the performance of the algorithm. A multitude of
arameter combinations may provide results that seem reasonable when comparing to the data in an integral sense,
ut the individual parameters may be unreasonable. Therefore there is the potential for the proposed technique to
roduce results that may yield unrealistic predictions. As an area of future work, one might simulate multiple agents
o determine a range of different parameter values that produce acceptable results when compared to the data. These
arameter ranges must be compared from state-to-state to ensure that deviations are reasonable when considered
ith other data. As an example, cell phone mobility data may be useful in establishing if differences in contact

ate are reasonable. Similar surrogate data could be used for the other parameters as well. Another avenue for
ndependent model validation would be to examine the subpopulation results (i.e., the E and I results) and compare
he model predictions with serological survey data to see if the model results are reasonable if such data exists for
given state.
The current work has focused on comparison of the SEIR model to data from early in the pandemic and an area

f future work would be to expand the comparisons using data from later in 2020. However, the calculation of the
umber of cases currently includes an inherent assumption that diagnostic testing is rationed based on symptom
everity. Many states have taken steps during 2020 to greatly expand their citizens’ access to diagnostic testing,
hich would limit the applicability of the current model to accurately calculate the number of cases later in the
andemic. Therefore, future work must also address the testing accessibility before the genetic algorithm can be
sed to adjust model parameters for data from much later in the pandemic.

. Conclusions

The current work has demonstrated the use of a genetic algorithm to fit SEIR models of US states to available
ata. The current results are promising even though there are some cases (e.g., MI) where the comparison is not
avorable, but some more investigation of the underlying data or refinements to the fitness function may improve the
esults. One potential avenue for improvement is to include hospitalization data in the fitness function to supplement
he case and casualty data. In general, the SEIR model tends to under-predict cases and over-predict deaths early
n the outbreak, but these biases can be expected based on assumptions in the model and biases in the underlying
ata sets. The fitness function proposed and utilized in the current work includes a weighting to focus the selection
n more recent data. The results over many states indicate consistent good agreement between the model and data
sing the current implementation. However, the results require further scrutiny before they can be used for reliable
redictions. An area of future work is to study state-by-state variations in the parameters and determine if these
ariations are reasonable based on surrogate data, such as mobility data in the case of the contact rate.

The current genetic algorithm utilizes two enhancements to improve the calculation performance: (1) an
cceleration technique that uses a coarse-search of the contact rate to start the genetic algorithm with a better
nitial guess of the contact rates, and (2) a slicing method of the genome to evolve the model parameters in stages

the slicing method allows the genetic algorithm to spawn new species and thereby mimic punctuated equilibria
uring the process, which can lead to bursts of improvement in the fitness.
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