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Abstract

Cytotoxicity is a critical property in determining the fate of a small molecule in the drug discovery 

pipeline. Cytotoxic compounds are identified and triaged in both target-based and cell-based 

phenotypic approaches due to their off-target toxicity or on-target and on-mechanism toxicity for 

oncology and neurodegenerative targets. It is critical that chemical-induced cytotoxicity be reliably 

predicted before drug candidates advance to the late stage of development, or more ideally, before 

compounds are synthesized. In this study, we assessed the cell-based cytotoxicity of nearly 10,000 

compounds in NCATS annotated libraries against four ‘normal’ cell lines (HEK 293, NIH 3T3, 

CRL-7250 and HaCat) using CellTiter-Glo (CTG) technology and constructed highly predictive 

models to estimate cytotoxicity from chemical structures. There are 5,241 non-redundant 

compounds having unambiguous activities in the four different cell lines, among which 11.8% 

compounds exhibited cytotoxicity in two or more cell lines and are thus labelled cytotoxic. The 

support vector classification (SVC) models trained with 80% randomly selected molecules 

achieved the area under the receiver operating characteristic curve (AUC-ROC) of 0.88 on average 

for the remaining 20% compounds in the test sets in 10 repeating experiments. Application of 

under-sampling rebalancing method further improved the averaged AUC-ROC to 0.90. Analysis of 

structural features shared by cytotoxic compounds may offer medicinal chemists heuristic design 

ideas to eliminate undesirable cytotoxicity. The profiling of cytotoxicity of drug-like molecules 

with annotated primary mechanism of action (MOA) will inform on the roles played by different 

targets or pathways in cellular viability. The predictive models for cytotoxicity (accessible at 

https://tripod.nih.gov/web_adme/cytotox.html) provide the scientific community a fast yet reliable 

way to prioritize molecules with little or no cytotoxicity for downstream development.
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1. Introduction:

Small molecule drug discovery strives for small molecules that achieve desirable 

physiological benefits, through modulation of the function of biological targets. In order to 

identify promising small molecules for pharmaceutical use, both target-based biochemical 

assays and cell-based phenotypic assays are widely practiced in drug discovery. Target-based 

drug discovery is hypothesis-driven, stemming from a specific biological hypothesis that 

modification of activity of a specific target or targets will provide therapeutic control of a 

disease.1 However, drug molecules and their metabolites that are designed to interact with a 

particular target or targets tend to interact with other proteins, DNA or RNA molecules and 

interfere with their functions, which may result in unwanted cell stress or death. Therefore, 

cytotoxicity is an important endpoint to evaluate undesirable off-target effects of a candidate 

chemotype in target-based drug discovery.

Due to our limited knowledge of complicated biological systems and diseases, hypothesis-

driven target-based approaches often fail to achieve the expected efficacy.2 On the other 

hand, phenotypic assays are capable of identifying small molecules possessing 

therapeutically relevant molecular mechanism of action (MMOA),3 and phenotypic-based 

drug discovery has experienced a resurgence recently.4 In a recent survey on which approach 

provides better starting point for drug discovery, phenotypic approaches contributed more 

first-in-class small molecule drugs than target-based screenings.5 Cell viability assays are 

one of the most frequently used phenotypic assays in drug discovery.6 Dysregulated cell 

death is associated with many human diseases, including cancer, neurodegeneration, and 

stroke,7 and so small molecules that can modulate cell viability are promising candidates for 

the potential therapeutics of cancer (cell killing) and neurodegenerative disorders (cell 

rescue). Similarly, cell-based viability assays have been used as suitable substitute methods 

for animal experiments in toxicological testing, in order to reduce the numbers of animal 

used.8 Therefore, cell viability screening could serve as the primary assay to identify 

compounds that kill cancer cells or exogenous pathogens including bacteria, fungi and 

parasites, or serve as counter assay to exclude compounds with undesirable cytotoxicity, 
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helping to determine the fate of the compounds in the pipeline of drug discovery and 

development.

Cell viability assays broadly fall into two categories: assays that directly detect bona fide 
cell death with vital dyes and assays that measure surrogate viability biomarkers, including 

mitochondrial activity, cellular metabolism, or the activity of enzymes associated with 

viability of cells.7 The major challenges in cell viability assays are two-fold: 1) different cell 

lines may respond to the same chemicals with different sensitivity, and there is no single cell 

line that is representative or conclusive in cell viability assays; and 2) cell death is a dynamic 

process, while the cell viability assay is more or less a static snapshot.9 In chemical-induced 

cytotoxicity assays, some chemicals elicit rapid cytotoxicity by modulating fast-responding 

targets, such as ion channels, while some are slow-responding by interfering with cell cycle 

pathways.10 Currently available prediction models for cytotoxicity are mostly based on 

small training datasets,11, 12 or public HTS datasets compiled from multiple laboratories 

under different assay conditions.13, 14 In this study, we analyzed the chemical-induced 

cytotoxicity of a large collection of pharmaceutical compounds using the same assay 

conditions, and the availability of this dataset will enrich the community with robust, high-

quality data. Additionally, we attempted to alleviate the above-mentioned challenges by 

incorporating multiple cell lines and extending the incubation time to 48 hours.

Support vector machine (SVM) is a supervised machine learning algorithm capable of 

deciphering subtle patterns in noisy and complex datasets.15 Being one of the most popular 

nonlinear modeling methods, SVM has been successfully applied in construction of 

quantitative structure-activity relationships (QSAR) models to predict physicochemical and 

ADMET (absorption, distribution, metabolism, excretion, and toxicity) properties in drug 

discovery research.16–18 In this study, SVM classification models were built on the basis of 

the customized atom typing descriptors to identify cytotoxic compounds from their chemical 

structures.

2. Material and Methods:

2.1. Cytotoxicity assays:

Chemical-induced cytotoxicity was experimentally determined by using the CellTiter-Glo 

(CTG) technology on four different cell lines HEK 293, NIH 3T3, CRL-7250 and HaCat, 

among which HEK 293, NIH 3T3, and HaCat cell lines are immortalized, as reported 

previously.19 Nearly 10,000 compounds in the NCATS annotated libraries were incubated 

for 48 hours with the cells at 37°, before the CTG was dispensed. Each compound was 

tested at 7 concentrations, ranging from 0.78 nM to 46 μM, in a quantitative high throughput 

screening (qHTS) format. High quality active and inactive compounds were identified 

according to their curve classes and measured AC50 values.19 There are 5,241 non-redundant 

compounds exhibiting unambiguous activities, either inactive or active with AC50 < 10 μM, 

in all four assays of different cell lines (Table S1). Three cell lines displayed similar hit rates 

of around 11%, whereas cell line HEK 298 demonstrated a higher sensitivity, with a hit rate 

of 14% (Table 1). Figure 1 depicts the overlapping of the cytotoxic compounds among three 

cell lines, CRL-7250, NIH 3T3, and HEK 298. A large fraction of the tested compounds 

exhibited cytotoxicity in all three cell lines, representing nearly 84% of toxic compounds in 
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CRL-7250 and NIH 3T3 cell lines, or over 63% of the hits against HEK 298 cell line. There 

were only 12 compounds showing cytotoxicity on the CRL-7250 cell line alone, and 23 

compounds were found to be NIH 3T3 specific. On the contrary, as many as 148 compounds 

exhibited cytotoxicity on the most sensitive HEK 298 cell line (Figure 1).

2.2. Dataset:

The 5,241 pharmaceutical compounds with annotated MOA are composed of three libraries; 

NPC (the NCATS Pharmaceutical Collection), NPACT (the NCATS Pharmacologically 

Active Chemical Toolbox), and MIPE (Mechanism Interrogation Plate), which include a 

collection of marketed drugs in the US, Europe and Japan, pharmaceutically active agents, 

and molecular probes.19 The distributions of molecular weight (MW) and calculated logP 

reflect a typical collection of drug-like molecules, with MW peaking at 400 ~ 500, and logP 

at 2 ~ 3 (Figure 2a and 2b). The majority (84%) of the dataset violates less than one of 

Lipinski’s Rule of Five (RO5), thus is considered drug-like (Figure 2c). The high MW 

compounds are mostly natural products and their derivatives, which compose the bulk of 

RO5 violators.

3. Theory and Calculations:

3.1. Molecular descriptors:

The molecular descriptors employed in this study to construct the QSAR models are 

customized atom types derived from an atom type casting tree.17 Each atom in a molecule 

was assigned an atom type according to its individual chemical property and the neighboring 

chemical environment, such as its aromaticity, the counts of attached protons and chemical 

bonds, etc. (Figure 3). In the case of conjugated system, the chemical environment is 

determined by the atoms up to four chemical bonds away. The structure of the tree was 

optimized recursively, in terms of where to further split a branch and where to merge 

existing branches, in order to achieve the best predictive performance in log P regression.17 

The optimized molecular descriptors consist of 221 atom types and 41 correction factors, 

introduced to depict the whole-molecule properties, such as flexibility of the molecule, 

fraction of sp2 hybrid atoms in a molecule, etc.17

3.2. Support vector machine (SVM):

SVM is an elegant supervised machine learning algorithm, which is one of the few 

algorithms that explicitly address how to minimize the generalization errors.15 The 

classification application υ-SVC, proposed by Schölkopf et al.20 and implemented by Chang 

and Lin in LIB-SVM,21 was adopted in this study. The parameterization of υ, and the non-

linearity parameter in the kernel function of a Gaussian Radial Basis Function (RBF), γ, was 

accomplished on a grid-based search to minimize the mean standard error (MSE) of 5-fold 

cross-validation (CV) on the training data.
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4. Results and discussion:

4.1. Performance of the SVC models:

As mentioned above, different cell lines displayed different sensitivities in response to the 

same compounds in the cytotoxicity assays. In this study, a compound exhibiting 

cytotoxicity in more than two cell lines was assigned as “positive”, and as a result, 620 of 

5,241 compounds were labelled as cytotoxic or positive, representing a hit rate of 11.8%. 

When the model was trained with 80% randomly selected compounds, the SVC model 

produced a high area under the ROC curve of 0.88 in predicting the remaining 20% 

compounds in the test set, under the optimized parameter set of υ = 0.25, and γ = 0.25.

Although the whole dataset contains more than 5,000 unique compounds, the minority class 

has only 620 molecules in this skewed dataset, which may be inadequate to train a robust 

model, due to the heavily underrepresented chemical space of minority class compared to 

that of majority class. In addition, existence of any structurally-similar analogues makes the 

scenario even worse. For example, there are multiple analogues of epinephrine in the dataset 

(Figure 4a), which are all reported as non-cytotoxic, while the two close analogues of 

adenosine are cytotoxic, but adenosine itself is not (Figure 4b). In the case of random 

splitting of training and test sets, there is a chance that these structurally similar compounds 

all appear in the training set, or even worse, in the test set. In order to investigate the impact 

of data splitting on the performance of classifiers, random splitting of training and test sets 

were repeated ten times, and the models were rebuilt, and predictions made. In comparison, 

a second data splitting strategy was adopted where the compounds were first clustered 

according to their structure similarity using a feature-class fingerprints FCFP4, as molecular 

descriptors, and data splitting were carried out at the cluster level. The singletons were 

combined into one cluster. Both data splitting methods produced similar AUC-ROC, 

sensitivity, specificity, and accuracy on average, with splitting on clusters winning 

marginally (Table 2). However, random splitting generated significantly higher variations 

among the 10 different experiments, with standard deviation (STD) of AUC-ROC doubled 

that of cluster splitting. Therefore, extra caution should be taken on reporting predictive 

performance of a classifier when the dataset is severely imbalanced, since the results might 

heavily rely on the way of data splitting. It is a good practice to record the averaged 

performance over multiple experiments or clustering the dataset before splitting.

4.2. Rebalancing the skewed datasets:

An imbalanced dataset, which is common for biological experiments, is a long-existing 

challenge in machine learning. A minority class might be overwhelmed by noise from the 

large quantity of majority class samples. To mitigate imbalanced training sets, a one-sided 

selection algorithm was proposed to remove less reliable samples from the majority class.22 

In this study, the dataset was heavily skewed toward negative samples, yet these negative 

samples are as informative as those positives; therefore, an under-sampling rebalancing 

method, instead of one-sided selection, was utilized in order to enhance the predictive 

performance. The majority class (non-cytotoxic or negative samples) in the training set was 

randomly split to 7 subsets, and each subset was combined with the whole minority class to 

compose 7 nearly balanced training sets. The 7 SVC models were built based on the six 
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training sets with the optimized parameters, and the consensus of the 7 predictions was 

reported as the probabilities of being positive for the compounds in the test set.

As seen in Table 3, rebalancing using under-sampling consensus method improved the 

predictive performance in each of the 10 experiments when the training and test sets were 

randomly split, and the averaged AUC-ROC increased from 0.88 to 0.90, while the standard 

deviation decreased from 0.024 to 0.018. The largest improvement was observed in the two 

worst cases without rebalancing, experiment 4 and 6. For the experiments split on clusters, 

the results were mixed; 7 of 10 experiments achieved different extent of improvement on the 

AUC-ROC values, while 3 experiments were marginally deteriorated. The averaged AUC-

ROC was slightly better, but the variation increased significantly. The results suggest that 

random splitting of an imbalanced dataset into training and test sets benefits more from 

under-sampling consensus rebalancing technology than splitting on clusters, and poorly 

performed models benefit more from rebalancing (Figure 5).

4.3. Interpretation of the models:

One of the advantages of using atom types as molecular descriptors is that the models are 

not only predictive, but also make chemical sense. Feature analysis of SVC models could 

then decipher which atom types contribute the most toward discrimination between 

cytotoxic and non-toxic compounds. The atom types and correction factors of top 

discriminating power are the count of aromatic nitrogen (N) atoms, the count of aromatic 

rings, and ln(MW). A molecule without any aromatic N atom has only a 6.2% probability of 

being cytotoxic, while the possibility increases dramatically to 60%, which is more than 5-

fold higher than the hit rate of 11.8%, when a molecule contains more than 5 aromatic N 

atoms (Figure 6a). Aromatic N is the major component in hetero-aromatic rings, such as 

adenine, which carries four aromatic N atoms (Figure 4b), pyridine, pyrimidine, and 

quinoline. Introduction of these N-containing hetero-aromatic rings might bring about 

beneficial effects on molecular and physicochemical properties,23 yet it might also 

accompany with an increased risk of cytotoxicity, according to the dataset in this study. 

Another clear trend observed in the dataset was that the more aromatic rings a molecule had, 

the more likely the molecule became cytotoxic (Figure 6b). At >6 aromatic rings, the 

decreased cytotoxicity is probably due to the poor cellular permeability of those molecules. 

The same trend can be seen in molecular weight, which showed increased cytotoxicity with 

increased molecular weight, followed by a sharp decrease above 600 Dalton, most likely due 

to the similar reasons (Figure 6c). It is worth emphasizing that machine learning is data 

driven. The observed trends and correlations are limited to the datasets on which the models 

are based, and should not be extrapolated to causality, since all data are biased to certain 

extent. This is especially true for imbalanced data.

4.4. Primary MOA of cytotoxic drugs:

In order to take advantage of mechanism annotation of the libraries, we analyzed the 

distribution of primary targets associated with the cytotoxic compounds. Oncology is one of 

the largest therapeutic areas in pharmaceutical industry, in terms of research and 

development (R&D) investments as well as new chemical entity (NCE) output,24 with 

kinases as the primary anti-tumor target. The dataset in this study well reflects this trend. 

Sun et al. Page 6

Bioorg Med Chem. Author manuscript; available in PMC 2021 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Initial anticancer approaches aim to modulate essential functions to kill cancer cells, 

resulting in on-target or on-mechanism toxicity in normal cells.25 Many protein kinases bear 

essential functions, including PI3K and AKT involved in AKT-PI3K signal transduction 

pathway, mammalian target of rapamycin (mTOR), and Janus kinase (JAS) which 

phosphorylates the key transcription factor STAT3. These essential proteins, which are most 

frequently targeted (Figure 7), play a critical role in cellular processes such as cell growth 

and apoptosis,25 and could be considered anti-targets in drug discovery, especially for the 

projects targeting protein kinases.

5. Conclusion.

Early awareness of cytotoxic compounds in the drug discovery pipeline will potentially 

improve the efficiency and productivity of drug discovery process. We have profiled cell 

viability of a large collection of mechanistically annotated pharmaceutical compounds 

against four normal cell lines (HEK 293, NIH 3T3, CRL-7250 and HaCat). Highly 

predictive models have been constructed in 10 repeating experiments, with the averaged 

AUC-ROC reaching 0.88 for compounds in the test set. The enhancement of model 

performance was observed consistently in every experiment when under-sampling consensus 

technology was applied to rebalance the heavily skewed training sets, and the averaged AUC 

was improved to 0.90. The results generated in this study constitute a valuable easy-to-use 

resource for the scientific community to estimate cytotoxicity of drug candidates at different 

stages of drug discovery and development, and resources can then be reallocated to more 

promising candidates with no or little cytotoxicity. The predictive models may be used as 

suitable alternative for animal toxicological tests in pre-clinical research and development.
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Figure 1. 
Venn diagram depicting the overlapping of three datasets – Compounds detected cytotoxic 

on HEK 293 (totaled 733 and colored in orange), CRL-7250 (totaled 558 and colored in 

gray), and NIH 3T3 (totaled 559 and colored in green) cell lines. There are 467 compounds 

were detected cytotoxic in all three cell lines.
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Figure 2. 
Distributions of (a) molecular weight (MW), (b) calculated logP, and (c) Lipinski’s rule-of-

five (RO5) violations for the 5,241 mechanically annotated drug molecules tested.
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Figure 3. 
Key factors determine the assignment of an atom type.

Sun et al. Page 12

Bioorg Med Chem. Author manuscript; available in PMC 2021 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Structures of (a) epinephrine drugs (norepinephrine, epinephrine, isoprenaline, 

phenylephrine) and (b) adenosine derivatives (adenosine, 2-fluoro-adenosin, 8-amino-

adenosine).
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Figure 5. 
The receiver operating characteristic (ROC) curves of random splitting Experiment 4 in 

Table 3, showing the improved predictive performance, as measured by the area under the 

curve (AUC), through rebalancing technology.
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Figure 6. 
The upward trend of the cytotoxic probability with the increment of (a) the count of 

aromatic N, (b) the count of aromatic rings in a molecule, and (c) the molecular weight 

(MW).
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Figure 7. 
The pie chart displaying the frequencies of protein targets which were associated with the 

cytotoxic compounds in the test set and annotated as primary mechanism of action (MOA), 

where the frequencies are labeled with the corresponding primary MOAs.

Sun et al. Page 17

Bioorg Med Chem. Author manuscript; available in PMC 2021 May 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Sun et al. Page 18

Table 1.

Summary of the count of the high quality hits and the hit rates of cell-based viability assays against four 

normal cell lines.

Cell line

CRL-7250 NIH 3T3 HEK 298 HaCat

Cytotoxic compounds 558 559 733 570

Hit rate 10.6 10.7 14.0 10.9
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Table 2.

Comparison of 10 independent experiments between randomly splitting training / test sets and splitting under 

the guidance of structure similarities on AUC-ROC, sensitivity, specificity, and accuracy, together with the 

average scores and standard deviation (STD).

Random Splitting Splitting On Clusters

AUC-ROC Sensitivity Specificity Accuracy AUC-ROC Sensitivity Specificity Accuracy

0.907 0.847 0.831 0.833 0.895 0.755 0.879 0.867

0.888 0.765 0.889 0.875 0.909 0.832 0.868 0.863

0.873 0.831 0.813 0.815 0.877 0.743 0.917 0.894

0.836 0.686 0.900 0.875 0.885 0.759 0.872 0.860

0.916 0.821 0.890 0.882 0.881 0.775 0.879 0.868

0.853 0.764 0.864 0.852 0.873 0.742 0.896 0.877

0.884 0.790 0.857 0.849 0.890 0.813 0.825 0.823

0.875 0.745 0.890 0.871 0.891 0.795 0.851 0.845

0.899 0.800 0.874 0.865 0.881 0.771 0.883 0.870

0.878 0.804 0.843 0.839 0.897 0.823 0.856 0.852

Average 0.881 0.785 0.865 0.856 0.888 0.781 0.872 0.862

STD 0.024 0.047 0.029 0.022 0.010 0.031 0.024 0.018
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Table 3.

Comparison of the predictive performance of the models before and after rebalancing using under-sampling 

consensus method, as measured by AUC-ROC values, for the 10 random splitting experiments and splitting on 

clusters.

Random Splitting Splitting On Clusters

Original Rebalanced Improved Original Rebalanced Improved

0.907 0.916 Y 0.895 0.906 Y

0.888 0.909 Y 0.909 0.922 Y

0.873 0.912 Y 0.877 0.891 Y

0.836 0.882 Y 0.885 0.894 Y

0.916 0.937 Y 0.881 0.894 Y

0.853 0.892 Y 0.873 0.871 N

0.884 0.893 Y 0.890 0.884 N

0.875 0.884 Y 0.891 0.902 Y

0.899 0.910 Y 0.881 0.885 Y

0.878 0.886 Y 0.897 0.892 N

Average 0.881 0.902 Y 0.888 0.894 Y

STD 0.024 0.018 Y 0.010 0.014 N
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