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Abstract

Purpose: Calorie restriction (CR) is an effective treatment for obesity-related liver and metabolic 

disease. However, CR studies in individuals without obesity are needed to see if CR could delay 

disease onset. Liver biomarkers indicate hepatic health and are linked to cardiometabolic disease. 

Our aim was to examine the effects of a two-year CR intervention on liver biomarkers in healthy 

individuals without obesity.

Methods: The Comprehensive Assessment of Long-term Effects of Reducing Intake of Energy 

(CALERIE) study was a two-year randomized controlled trial. Overall, 218 participants (body 

mass index: 25.1±1.7 kg/m2) were enrolled into control group (n=75) that ate ad libitum (AL) or a 

CR group (n=143) that aimed to decrease energy intake by 25%. Alanine aminotransferase (ALT), 
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aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase 

(GGT), and bilirubin were measured during the trial.

Results: At month 24, relative to the AL group, ALP (−7±1 IU/L; P<0.01) and GGT (− 0.11 ± 

0.04 log IU/L; P = 0.02) decreased and bilirubin increased (0.21±0.06 log mg/dL; P<0.01) in the 

CR group; no between-group differences in ALT (−1±1 IU/L; P>0.99) or AST (2±2 IU/L; P=0.68) 

were revealed. However, sex-by-treatment-by-time interactions (P<0.01) were observed, with CR 

(vs. control) inducing reduced ALT and GGT and increased AST in men only (P≤0.02).

Conclusions: In metabolically healthy individuals without obesity, two years of CR improves 

several liver biomarkers, with potentially greater improvements in men. These data suggest that 

sustained CR may improve long-term liver and metabolic disease risk in healthy adults.

Trial registration: Clinicaltrials.gov (NCT00427193) Registered January 2007.
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1. INTRODUCTION

Aging predisposes individuals to functional and structural impairments in the liver, as well 

as metabolic disease [1]. The development of non-alcoholic fatty liver disease (NAFLD), the 

prominent cause of chronic liver disease [2] and a risk factor for cardiovascular disease [3], 

is multifaceted. Among accepted theories, insulin resistance triggers intrahepatic fat 

accumulation, with a subsequent increase in lipid intermediates further deteriorating insulin 

resistance [4–6]. Although the precise processes are not known, decreased adiponectin is 

implicated in the development of insulin resistance by promoting the progression of a pro-

inflammatory milieu in the liver [7–9]. This elevation in inflammation is critical in 

accelerating the hepatic aging process [10].

Liver function is commonly assessed via biomarkers linked to liver health. These include 

liver enzymes, such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), 

alkaline phosphatase (ALP) and gamma-glutamyl transferase (GGT), and the end product of 

heme catabolism, bilirubin. Higher concentrations of liver enzymes are related positively to 

adiposity [11] and negatively to insulin sensitivity [12, 13], whereas bilirubin has been 

negatively associated with the former and positively with the latter [14]. Further, within 

healthy ranges, higher concentrations of liver enzymes and lower concentrations of bilirubin 

are related to increased risk of NAFLD [15, 16], cardiovascular disease [17, 18] and 

mortality [19, 20].

As a dietary regimen that restricts energy intake without malnutrition, calorie restriction 

(CR) is a lifestyle modification that improves longevity and aging in multiple species [21, 

22]. Improvements in liver biomarkers after energy restriction diets have been observed in 

individuals with obesity [23, 24], abnormal concentrations of liver biomarkers [25] and 

cardiometabolic conditions [26]. Intriguingly, in one study, liver biomarker concentrations 

were improved in men but not in women after a four-month low-calorie diet, suggesting sex 

may modulate the change in liver health in response to CR [27]. However, to our knowledge, 
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no study has examined the effect of long-term CR on liver biomarkers in metabolically 

healthy participants without obesity. Liver biomarker responses to CR in healthy individuals 

will inform whether CR can be used as a general preventive strategy for metabolic 

conditions. In the Comprehensive Assessment of Long-term Effects of Reducing Intake of 

Energy (CALERIE) phase 1 trial, six months of CR stimulated a 9% reduction in ALT and 

ALP in individuals without obesity [28]. The second phase of CALERIE, which examined 

the effects of two years of CR on biomarkers of aging, has illustrated the positive metabolic 

benefits of CR [22, 29], but the effect of sustained (> 1 year) CR on levels of an array of 

liver biomarkers is unknown.

Therefore, the primary aim was to assess the effect of sustained CR on liver biomarkers in 

metabolically healthy individuals without obesity enrolled in the CALERIE phase 2 trial. We 

hypothesized that CR would alter concentrations of liver biomarkers in a direction consistent 

with improved metabolic health. Our exploratory aims were to examine if sex modulates the 

influence of CR on liver biomarkers and if changes in anthropometry, insulin sensitivity, and 

adiponectin are related to changes in liver biomarkers.

2. MATERIAL AND METHODS

The CALERIE phase 2 study was a two-year, parallel-group, randomized control trial 

(clinicaltrials.gov registration: NCT00427193) that was conducted at three clinical sites: 

Pennington Biomedical Research Center (Baton Rouge, LA, USA), Washington University 

School of Medicine (St Louis, MO, USA) and Tufts University (Boston, MA, USA) [30]. 

Duke Clinical Research Institute (Durham, NC, USA) served as the coordinating center for 

the study.

As detailed elsewhere [30], participants were randomly enrolled to either a CR group or an 

ad libitum (AL) control group. The CR group participated in an intensive behavioral 

intervention aimed to decrease energy intake by 25%, while the AL group was instructed to 

maintain habitual energy intake. All institutions received approval from their respective 

institutional review boards. Participants provided written informed consent before inclusion 

in the trial and obtained financial compensation for their participation.

2.1 Participants

Recruitment, screening processes and exclusion criteria for CALERIE phase 2 have been 

reported [30, 31]. In short, participants were eligible at screening if they were aged 20–50 

years (men) or 20–47 years (women), had a body mass index (BMI) of 22.0–27.9 kg/m2, and 

completed comprehensive screening assessments. They were ineligible if they had 

significant medical conditions (history or clinical manifestation of cardiovascular disease or 

diabetes), psychiatric or behavioral problems (history or clinical manifestation of any eating 

disorders) or had engaged in drug or alcohol abuse in the previous two years. Women were 

also excluded if they were pregnant or had plans to become pregnant during the trial [30].

2.2 Study design

Before randomization, baseline testing was performed over a 6-week period and included 

numerous health-related assessments, as well as two 14-day back-to-back measures of 
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doubly labelled water (DLW) to determine participants’ habitual energy intake and 25% CR 

prescription. Randomization was stratified by study site, sex, and BMI, with the BMI 

dichotomized into normal weight (22.0 ≤ BMI < 25.0 kg/m2) and overweigt (25.0 ≤ BMI < 

28.0 kg/m2). Participants were allocated in a 2:1 ratio in favor of CR in each stratum, with 

randomization sequences produced via a permuted block randomization technique.

Details of the CR intervention have been reported elsewhere [32]. Briefly, the intervention 

targeted an immediate and sustained 25% decrease in energy intake relative to habitual 

intake, as determined at baseline [33]. No stringent requirements were enforced with respect 

to macronutrient intake and meal timing, and participants modified their diet as they pleased 

to ensure sufficient adherence to the CR regimen [30, 32]. Adherence to CR was determined 

at 6-month intervals by measuring the total daily energy expenditure via DLW and adjusting 

for changes in body composition [33]. Additionally, as detailed previously [32, 34], 

mathematical models that estimated weight changes during CR served as a guide for 

participant adherence. More specifically, weight change was measured and compared to 

estimated weight change during individual and group sessions that were led by study 

interventionists. Food records were administered to estimate percent energy from fat, 

carbohydrate, and protein [35].

The intervention was administered by behaviorists and nutritionists. Individual counselling 

sessions were delivered weekly during the first month, twice monthly until month 12, and 

then monthly until trial completion. To facilitate adherence, additional sessions were 

arranged if required and sessions were cus tomized in accord with the participants’ dietary 

requirements and weight targets. In addition to individual sessions, group sessions were 

initiated after week four and occurred twice monthly [32]. Numerous techniques were used 

to assist the CR group [32]. Each participant was instructed to self-monitor food intake and 

review this with their interventionist. This was aided by the provision of food scales, 

measuring cups and spoons, and portion size training. Other topics were incorporated in the 

intervention, including maintaining motivation, managing food cravings, managing hunger, 

goal setting, and social support [32]. The AL group had quarterly sessions with study 

investigators, but did not receive any counseling and were instructed to maintain their usual 

dietary intake. Both groups were provided multivitamin and calcium supplements, and 

neither group received an exercise prescription.

2.3 Outcomes

All outcomes reported herein were collected during assessments performed at baseline and 

within a 14-day window at months 6, 12, and 24.

2.3.1 Body weight, waist circumference, and percent CR—Body weight was 

measured using a calibrated scale (Scale-Tronix 5200, Welch Allyn). Waist circumference 

was measured at the minimal and umbilical points using a tape measure. Percent CR was 

calculated using the intake balance method [21], relying on concurrent measures of total 

daily energy expenditure and body composition [33]. Percent energy intake from fat, 

carbohydrate, and protein, were measured using six-day food diaries and analyzed with 

Nutrition Data System for Research (Minneapolis, MN, USA).
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2.3.2 Blood biomarkers—Serum blood samples were collected in the morning 

following an overnight fast and analyzed in a central laboratory at the University of 

Vermont. Ortho Clinical Diagnostics Vitros (Rochester, NY, USA) chemistry analyzers were 

used to measure concentrations of ALT, AST, ALP, GGT, and bilirubin. Glucose (YSI 

Instruments, Fullerton, CA, USA) and insulin (Elecsys 2010, Roche Diagnostics, 

Indianapolis, IN, USA) were measured during an oral glucose tolerance test, with samples 

taken at baseline, 30 min, 60 min, 90 min and 120 min. Adiponectin was assessed with an 

enzyme immunoassay (R&D Systems, Minneapolis, MN, USA).

2.4 Statistical methods

Power calculations revealed that the CALERIE phase 2 trial had greater than 90% power to 

detect between-group differences in the two primary outcomes of the study: resting 

metabolic rate and core temperature [30]. The present manuscript assesses exploratory 

endpoints of CALERIE phase 2; hence, as done previously [21, 22], intent-to-treat analyses 

were performed by including all participants who started the intervention. Comparisons at 

baseline were made via the Wilcoxon rank-sum test. For change scores, an intent-to-treat 

criterion was used [21], with variables that departed from normality in data distribution 

histograms log-transformed. A repeated-measures analysis of covariance was performed, 

with treatment, time and treatment x time as independent variables, and change from 

baseline as the dependent variable. Baseline measures, study site, sex, and baseline BMI 

stratum were used as covariates. In addition, self-reported alcohol consumption was used as 

a covariate for the change in liver enzymes. Between-group differences at individual time 

points and within-group changes over time were examined by defining contrasts among the 

regression variables. Type-1 error was controlled using hierarchical gatekeeping (i.e. the 

treatment x time interaction was tested first and, if significant, between-group differences at 

each time were tested at α = 0.05). If nonsignificant, the treatment main effect was tested 

next and, if significant, between-group differences at each time point were tested at α = 

0.05. In other instances, a Bonferroni correction was applied at each time point and P values 

were adjusted by multiplying the nominal P value by the number of comparisons. To explore 

the effect of sex-related variations, sex-by-treatment-by-time interactions, sex-by-treatment 

interactions, and main effects of sex were included in models, with the same gatekeeping 

strategy applied. A similar approach was performed for BMI strata.

Absolute standardized effect sizes (ES) are included to supplement key change scores, with 

between-group ESs calculated from pooled models and sex-specific ESs calculated from 

separate models for men and women. Without clinical anchors, an ES of 0.20 was 

considered the minimum important difference, whereas 0.5 and 0.8 were considered 

moderate and large, respectively [36]. Spearman correlations were determined in the CR 

group to investigate if the change in liver biomarkers was related to change in weight, waist 

circumference, insulin sensitivity (based on the Matsuda Index [37]), or change in 

adiponectin. Data analysis was performed using SAS, version 9.2 (SAS Institute Inc). Unless 

otherwise documented, data are presented as adjusted mean (±SE).
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3. RESULTS

3.1 Participants

As detailed elsewhere [21] and in Fig. 1, an intent-to-treat cohort of 218 participants (143 

CR, 75 AL) started the trial. For multiple reasons, 30 participants (26 CR, 4 AL) withdrew 

during the trial. Participants were predominantly women (69.7%) and Caucasian (77.1%), 

with age and BMI ranging from 20.7 to 50.8 years and 21.3 to 29.0 kg/m2, respectively, at 

baseline. Baseline demographic and anthropometric characteristics did not differ between 

groups (P ≥ 0.34; Table 1).

3.2 Adherence and anthropometry

The CR group achieved an average 11.9 ± 0.7% decrease in energy intake over the 2-year 

intervention, whereas the AL group showed no change in energy intake (P < 0.01 versus CR 

group). Food records indicated that percent calories from fat decreased by 4.8% ± 0.4% and 

3.4% ± 0.5% in the CR group at month 12 and month 24, respectively (P < 0.01 versus CR 

group). Percent calories from carbohydrate (month 12: 3.6% ± 0.5%; month 24: 2.4% ± 

0.5%) and protein (month 12: 1.8% ± 0.3%; month 24: 1.1% ± 0.3%) increased in the CR 

group at months 12 and 24 (P ≤ 0.07 versus CR group). During the trial, men and women 

showed a similar change in DLW-derived energy intake (P ≥ 0.20). Food records suggested 

no sex-related differences in percent energy intake from carbohydrate or fat (P ≥ 0.11), yet 

men increased their percent energy intake from protein compared to females in response to 

CR (P < 0.05).

The CR group lost 7.5 ± 0.3 kg from baseline to month 24, which was greater than the AL 

group (P < 0.01), whose weight did not change (P < 0.01 versus CR group). The CR group 

likewise displayed a reduction in waist circumference at month 24 (6.1 ±, 0.4 cm; P < 0.01); 

no change was observed in the AL group (P < 0.01 versus CR group). Weight loss from 

baseline to month 24 was influenced by sex in the CR group, with men losing 1.0 ± 0.5 kg 

more than women (P = 0.04); however, sex did not affect change in waist circumference in 

the CR group (P > 0.05).

3.3 Circulating liver biomarkers

At baseline, men displayed higher concentrations of all liver biomarkers than women (P < 

0.01), though no differences between the CR group and the AL group were observed (P ≥ 

0.15; Table 2). Concentrations of all biomarkers were within safe ranges and remained so for 

the duration of the trial [38].

No between-group differences were observed in ALT or AST at any time point (P ≥ 0.29; 

Table 3), but sex-by-treatment-by-time interactions were observed (P < 0.01). Post-hoc 

comparisons showed that in men, the CR group demonstrated a reduction in ALT at month 

12 (CR: −0 ± 2 IU/L vs. AL: 7 ± 2 IU/L; P < 0.01; ES = 0.57) and month 24 (CR: −3 ± 1 

IU/L vs. AL: 4 ± 2 IU/L; P < 0.01; ES = 0.93) compared to the AL group (Fig. 2a). There 

were, conversely, no between-group differences in ALT in women (P ≥ 0.23; ES ≤ 0.23; Fig. 

2b). In addition, men in the CR group had an increase in AST relative to the AL group at 

month 6 (CR: 3 ± 1 IU/L vs. AL: −3 ± 2 IU/L; P < 0.01; ES = 0.52; Fig. 2c), but no 
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differences were observed at any other time point (P ≥ 0.71), and no between-group 

differences were seen in women (P ≥ 0.12; ES ≤ 0.30; Fig. 2d). Changes in ALT and AST in 

response to CR were not significantly altered by baseline BMI (P ≥ 0.11; data not shown).

The CR group exhibited a reduction in ALP versus the AL group at all time points (P ≤ 0.01; 

Table 3), with greater overall reduction in women (main effect of sex; P = 0.03; 

Supplementary Fig. 1). The change in GGT was smaller in the CR group than the AL group 

at month 6 (P = 0.02) and month 24 (P = 0.02; Table 3). A three-way sex-by-treatment-by-

time interaction was observed (P < 0.01), with GGT in the CR group lower at month 12 

(CR: −0.09 ± 0.05 log IU/L vs. AL: 0.10 ± 0.07 log IU/L; P = 0.02; ES = 0.68) and month 

24 (CR: 0.10 ± 0.05 log IU/L vs. AL: 0.19 ± 0.07 log IU/L; P < 0.01; ES = 1.02) compared 

to the AL group in men (Fig. 2e) but not women (P ≥ 0.10; ES ≤ 0.30; Fig. 2f). Further, the 

CR-induced decrease in GGT was greater in individuals who were overweight compared to 

individuals who were normal weight (BMI-by-treatment effect; P = 0.02; Supplementary 

Fig. 2). In the CR group, there was an increase in bilirubin at months 12 (P = 0.04) and 24 (P 
< 0.01) compared to the AL group (Table 3), with an overall larger elevation in men (main 

effect of sex; P < 0.01; Supplementary Fig. 1). Baseline BMI did not affect the CR-induced 

changes in ALP and bilirubin (P ≥ 0.24; data not shown).

3.4 Liver biomarkers and indices of cardiometabolic health

Spearman correlations are reported in Table 4. Weight loss was positively related to 

reductions in ALT and GGT in the CR group at month 24 (P < 0.01), but weight loss was not 

associated with changes in other outcome variables (P ≥ 0.06; Table 4). A reduction in waist 

circumference was associated with ALT, AST, ALP, and GGT reductions (P ≤ 0.01), but no 

significant relationship was observed with change in bilirubin (P = 0.24).

No relationships were seen between change in liver biomarkers and change in insulin 

sensitivity estimated (P ≥ 0.15). However, change in adiponectin was negatively related to 

change in ALP and GGT (P ≤ 0.02; Table 4). No other significant correlations were revealed 

(P ≥ 0.05; Table 4).

4. DISCUSSION

The present analysis shows that sustained CR elicited small-to-moderate improvements in 

multiple liver biomarkers in healthy individuals without obesity. Overall, CR reduced ALP 

and GGT and increased bilirubin, with larger effects seen after prolonged CR. Despite no 

overall differences in the changes in ALT and AST between groups, there was a sex effect, 

with men having reductions in ALT and GGT and increases in AST. Such changes in healthy 

participants who presented with healthy liver biomarker concentrations at baseline suggest 

that sustained CR could enhance long-term liver and metabolic health.

Improvements in liver biomarkers have been observed after energy restrictive regimens in 

individuals with clinically altered concentrations and/or metabolic conditions [25, 26]. We 

showed that, in individuals without obesity, CR over 24 months provoked a small-to-

moderate reduction in ALP and GGT and a moderate increase in bilirubin. Together, these 

results bolster positive findings reported from CR-related studies in individuals with obesity 
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[27] or with shorter (≤ 6 months) interventions [28]. Although participants exhibited healthy 

liver biomarkers at baseline, the modest improvements within normal ranges of ALP, GGT 

and bilirubin are not negligible since they are linearly associated with metabolic disease 

[16–19] and mortality [20, 39]. The modest CR-induced changes in these biomarkers 

therefore likely reflects benefits to liver function and cardiometabolic health, underscoring 

the many other health improvements demonstrated in CALERIE phase 2 [22, 29]. These 

changes may also imply that sustained CR in healthy adulthood may retard or prevent the 

development of age- and obesity-related liver and metabolic conditions.

Notable sex-specific effects on liver enzymes were observed during CR. We found CR-

induced decreases in ALT in men but not women. Specifically, at month 24, men in the CR 

group presented a 3 IU/L decrease, whereas men in the AL group showed a 4 IU/L rise. A 

rise in ALT increases NAFLD risk in a dose-response manner, with a 55% decreased risk of 

NAFLD development in men when concentrations are 19–21 IU/L compared to 26–34 IU/L 

[15]. Thus, potentially, men experienced a reduced risk of NAFLD in response to sustained 

CR. Greater reductions in GGT in response to CR were also displayed in men compared to 

women. Alongside ALT, this observation is consistent with one study which showed that 

only men exhibited a decrease in ALT and GGT after a four-month low-calorie diet [27]. It 

is possible the greater reduction in weight seen in men during CALERIE phase 2 was 

implicated by associations between changes in enzyme and weight. Differences could also 

be linked to the greater percent energy intake from protein exhibited by men during CR, as 

consumption of this macronutrient can influence liver fat and biomarkers [40]. However, 

studies are needed to confirm these differences, since self-report estimates of food intake can 

be unreliable [41] and long-term percent CR was similar between sexes.

In addition, CR exerted sex-specific effects on AST. At month 6, men in the CR group 

presented a 6 IU/L increase in AST compared to the AL group, while there were no 

between-group differences in women. An increase in AST after short-term (≤ 6 months) 

dietary restriction possibly occurs due to temporary increases in portal inflammation [23, 

27], yet the reasons for sexual dimorphism are unclear. Regardless, the absence of between-

group differences at months 12 and 24 indicates that the rise in AST was abolished with 

prolonged CR. Clearly, more studies are required because sex-based variations in the hepatic 

pathways linked to liver disease exist, with men showing higher risk for NAFLD [42] and 

worse liver health independent of BMI [43]. Work in rodents likewise reports differential 

sex-related liver responses to CR [44], indicating that sex-specific treatment responses may 

need to be considered [42].

Obesity is a well-established predictor of liver enzymes [45]. In this regard, we observed 

positive correlations between weight change and changes in ALT and GGT. Additionally, 

CR-induced reductions in GGT were greater in individuals who were overweight, suggesting 

CR may have greater benefits for individuals with increased adiposity. However, weight 

change was not associated with ALP and AST, plus BMI at baseline did not moderate the 

effect of CR on other liver biomarkers. Waist circumference is a stronger indicator of 

adverse metabolic conditions than body weight or subcutaneous adiposity [46]. Indeed, 

individuals who display a normal BMI can develop liver and cardiovascular conditions in the 

presence of a large waist circumference [47, 48]. In this respect, the change in all liver 
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enzymes was positively related to the change in waist circumference, supporting work 

showing that waist circumference is a stronger predictor of hepatic enzyme concentrations 

than weight [11, 49].

While the precise function of liver biomarkers and their role in the pathogenesis of NAFLD 

and cardiovascular disease is unclear, a decrease in insulin sensitivity could initiate the 

development of these conditions [5]. In this context, we found that the change in liver 

biomarkers were not related to change in insulin sensitivity. Our results are at odds with 

evidence reporting associations between liver biomarkers and insulin sensitivity [12, 14]. It 

is possible that, relative to these studies, our cohort of healthy individuals without obesity 

were insulin sensitive and exhibited limited variability in endpoints.

We did observe negative correlations between the change in adiponectin and the changes in 

GGT and ALP during CR. Several lines of evidence indicate that adiponectin impacts liver 

integrity: it increases glucose utilization within hepatocytes [50]; it is lower in individuals 

with NAFLD versus controls [7]; and it potently lowers inflammation [8, 9], which is a 

prominent driver of liver aging [10]. As such, the relationships we saw may suggest that the 

CR-induced changes in liver biomarkers are involved in decreasing the pro-inflammatory 

milieu and in turn metabolic disease risk [51]. We did not, however, find consistent 

relationships with liver biomarkers and adiponectin. Further scientific inquiry is required to 

elucidate the interconnections linking liver biomarkers with metabolic disease and 

investigate how they contribute to improved metabolic health during CR.

A key strength of the present study was that our data were yielded from a highly structured 

two-year randomized controlled trial containing comprehensive assessments of body 

composition and liver biomarkers. The trial is limited by the unequal enrolment of men and 

women, and differences in sample size may limit generalizability and could have influenced 

the power to detect sex-related variations [52]. Moreover, in spite of data from a subset of 

participants that suggested CR stimulated a small decrease in liver lipid content [29], it is 

unfortunate that we were unable to capture changes in liver fat or the microscopic structure 

of hepatocytes in all CALERIE phase 2 participants, given the role these biomarkers play in 

liver health [53]. It is also possible, given the relative infrequency of food intake 

measurement and the flaws associated with self-report measures [41], we did not capture 

reliable insights into macronutrient intake, and further work is required to test the effect of 

diet composition on liver biomarkers [54]. Nonetheless, we note that the primary goal of the 

intervention was to stimulate CR, and our long-term assessments of percent CR were 

determined by DLW, which is a more objective and robust estimate of free-living energy 

intake [33].

Taken together, in metabolically healthy individuals without obesity, a two-year CR 

intervention modestly improves several liver biomarkers, with potentially larger 

improvements in men. In agreement with evidence suggesting that CR augments healthspan, 

we postulate that these findings are indicative of CR’s potential in improving metabolic 

function and slowing age-related liver and cardiometabolic disease in young and middle-

aged adults who are healthy. Follow-up studies over several years are now needed to 

determine if these changes alter the development of metabolic conditions.
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Fig. 1. 
CALERIE phase 2 CONSORT diagram
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Fig. 2. 
Adjusted changes in alanine amino transferase (ALT; a & b), aspartate aminotransferase 

(AST; c & d) and gamma-glutamyl transferase (GGT; e & f) in men and women during 

CALERIE phase 2. Dashed lines represent calorie restriction (CR), whereas solid lines 

represent ad libitum (AL) control group. *P < 0.05 between CR and AL groups
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Table 1.

Baseline demographic and anthropometric measures of CALERIE phase 2 participants.

Characteristic AL (n = 75) CR (n = 143)

Age (years) 37.9 (7.0) 38.0 (7.3)

Sex

 Men 22 (29.3) 44 (30.8)

 Women 53 (70.7) 99 (69.2)

Race

 White 57 (76.0) 111 (77.6)

 African American 11 (14.7) 15 (10.5)

 Other
a 7 (9.3) 17 (11.9)

Height (cm) 168.4 (8.3) 168.9 (8.6)

Weight (kg) 71.3 (8.6) 71.8 (9.2)

Body mass index (kg/m2) 25.1 (1.6) 25.2 (1.8)

Body fat (%) 33.6 (6.6) 32.9 (6.1)

Abbreviations: AL, ad libitum; CR, calorie restriction.

Values are mean (± SD) except for Sex and Race, which are mean (%).

a
Includes American Indian/Alaska Native, Asian, more than one race, and unknown.

Wilcoxon rank sum test revealed no significant differences between CR and AL groups (P ≥ 0.34).
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Table 2.

Baseline concentrations of liver-related biomarkers in CALERIE phase 2 participants.

Men Women Overall

AL (n = 22) CR (n = 44) AL (n = 53) CR (n = 99) AL (n = 75) CR (n = 143)

ALT (IU/L) 26 (12) 24 (9) 15 (5) 16 (6) 18 (9) 18 (8)

AST (IU/L) 22 (6) 22 (5) 19 (4) 19 (6) 20 (5) 20 (5)

ALP (IU/L) 70 (16) 65 (16) 58 (15) 57 (18) 62 (16) 59 (18)

GGT (IU/L) 27 (19) 24 (13) 14 (6) 16 (11) 18 (13) 18 (12)

Bilirubin (mg/dL) 0.71 (0.46) 0.62 (0.30) 0.59 (0.42) 0.48 (0.23) 0.63 (0.43) 0.52 (0.26)

Abbreviations: AL, ad libitum; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CR, calorie restriction; 
GGT, gamma-glutamyl transferase.

Values are mean (± SD).

Wilcoxon rank sum test revealed significant differences between men and women for all biomarkers (P < 0.01), but no significant differences 
between CR and AL groups were observed (P ≥ 0.15).
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Table 3.

Adjusted changes from baseline in liver-related biomarkers during CALERIE phase 2 at months 6, 12, and 24.

AL (n = 75) CR (n = 143) Between-group difference

Change
a Within P value

b
Change

a Within P value
b

P value
b

Effect size
c

ALT (IU/L)

   Month 6 −1 (1) 0.45 −0 (1) >0.99 >0.99 0.14

   Month 12 2 (1) 0.64 0 (1) >0.99 >0.99 0.14

   Month 24 1 (1) >0.99 −1 (1) >0.99 >0.99 0.14

AST (IU/L)

   Month 6 −1 (1) 0.69 1 ( 1) 0.82 0.29 0.25

   Month 12 0 (1) >0.99
2 (1)

† 0.03 0.76 0.17

   Month 24 1 (1) >0.99
3 (1)

† 0.02 0.68 0.18

ALP (IU/L)

   Month 6 −1 (1) 0.35
−5 (1)

†* <0. 01 <0.01 0.44

   Month 12 0 (1) >0.99
−4 (1)

†* <001 0.01 0.46

   Month 24 2 (1) 0.45
−5 (1)

†* <0.01 <0.01 0.73

GGT (log IU/L)

   Month 6 −0.02 (0.03) >0. 99
−0.10 (0.02)

†* <0. 01 0.02 0.36

   Month 12 −0.00 (0.03) >0.99 −0.01 (0.03) >0.99 0.86 0.03

   Month 24 0.06 (0.04) 0.26 −0.04 (0.03)* 0.39 0.02 0.35

Bilirubin (log mg/dL)

   Month 6 0.08 (0.04) 0.19
0.17 (0.03)

† <0. 01 0.08 0.31

   Month 12 −0.00 (0.05) >0.99
0.11 (0.03 )

†* <0.01 0.04 0.33

   Month 24 −0.06 (0.05) 0.66
0.16 (0.04)

†* <0.01 <0.01 0.58

Abbreviations: AL, ad libitum; ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; CR, calorie restriction; 
GGT, gamma-glutamyl transferase.

a
Values are the least-squares adjusted means (SE) obtained from analyses that used an intention-to-treat approach to determine whether change in 

the outcome variables differed between the CR and AL groups. Comparisons are controlled for baseline values.

b
All P values reflect Bonferroni corrections, truncated at >0.99 where necessary.

c
Values are absolute Cohen effect sizes of between-group differences.

†
Significant difference from baseline (P < 0.05).

*
Significant difference versus AL group (P < 0.05).
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Table 4.

Spearman correlation coefficients between change in liver-related biomarkers and changes in weight, waist 

circumference, Matsuda index and adiponectin at month 24 in the calorie restriction group (n = 143).

ALT (IU/L) AST (IU/L) ALP (IU/L) GGT (log IU/L) Bilirubin (mg/dL)

ρ p ρ p ρ p ρ p ρ p

Weight (kg) 0.30* <0.01 0.17 0.06 0.17 0.06 0.29* <0.01 −0.04 0.70

Waist circumference (cm) 0.39* <0.01 0.30* <0.01 0.26* <0.01 0.25* 0.01 −0.11 0.24

Matsuda index −0.08 0.47 −0.02 0.84 −0.14 0.20 −0.16 0.15 0.14 0.21

Adiponectin (ng/mL) −0.12 0.20 −0.18 0.05 −0.21* 0.02 −0.25* 0.01 −0.00 0.97

Abbreviations: ALP, alkaline phosphatase; ALT, alanine aminotransferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transferase. 
Values are Spearmans rho (ρ) and P values from simple linear correlations.

*
Significant Spearman correlation (P < 0.05).
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