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Abstract

Objectives: The Machine Learning Ischemia Risk Score (ML-IRS) is a machine-learning based 

algorithm designed to identify hemodynamically significant coronary disease using quantitative 

coronary computed tomography angiography (CCTA). The purpose of this study was to examine 

whether the ML-IRS can predict revascularization in patients referred for invasive coronary 

angiography (ICA) after CCTA.
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Methods: This study was a post-hoc analysis of a prospective dual-center registry of sequential 

patients undergoing CCTA followed by ICA within three months, referred from inpatient, 

outpatient, and emergency department settings (n=352, age 63±10 years, 68% male). The primary 

outcome was revascularization by either percutaneous coronary revascularization or coronary 

artery bypass grafting. Blinded readers performed semi-automated quantitative coronary plaque 

analysis. The ML-IRS was automatically computed. Relationships between clinical risk factors, 

coronary plaque features, and ML-IRS with revascularization were examined.

Results: The study cohort consisted of 352 subjects with 1056 analyzable vessels. The ML-IRS 

ranged between 0-81% with a median of 18.7% (6.4-34.8). Revascularization was performed in 

26% of vessels. Vessels receiving revascularization had higher ML-IRS (33.6%(21.1-55.0) versus 

13.0%(4.5-29.1), p<0.0001), as well as higher contrast density difference, and total, non-calcified, 

calcified, and low-density plaque burden. ML-IRS, when added to a traditional risk model based 

on clinical data and stenosis to predict revascularization, resulted in increased area-under-the-

curve from 0.69(95% CI:0.65-0.72) to 0.78(95% CI:0.75-0.81),p<0.0001); with an overall 

continuous net reclassification improvement of 0.636(95% CI:0.503-0.769),p<0.0001.

Conclusions: ML-IRS from quantitative coronary CT angiography improved the prediction of 

future revascularization and can potentially identify patients likely to receive revascularization if 

referred to cardiac catheterization.
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Coronary CT angiography; machine learning; artificial intelligence; coronary revascularization; 
cardiac catheterization

Introduction

The diagnostic yield of invasive coronary angiography (ICA) has been a well-documented 

concern in cardiology. A major study in 2010 revealed that only 37% of patients receiving 

ICA were found to have stenosis of ≥50%.[1] Coronary CT angiography (CCTA) has 

emerged as a powerful tool for assessment of patients with suspected coronary artery disease 

(CAD).[2] It has grown into an increasing role as a gatekeeper for referral to ICA[3] but 

further optimization is needed. The PROMISE trial showed that CCTA resulted in a higher 

rate of ICA than functional testing in symptomatic patients with suspected CAD. 

Furthermore, a coronary intervention was performed only half of the time despite stenosis of 

≥50% on ICA was usually present.[4] In order to improve CCTA’s role as a gatekeeper, a 

method to safely and effectively decrease the proportion of patients referred for ICA who do 

not receive intervention is essential.

An algorithm called the Machine Learning Ischemia Risk Score (ML-IRS) has been 

previously developed.[5] It used automated feature selection followed by machine learning 

integration to predict lesion-specific ischemia defined by invasive fractional flow reserve 

(FFR) ≤ 0.8. The machine learning model incorporates quantitative CCTA factors and 

demographic information to generate a percent probability of pathological FFR on a per-

vessel basis. It has been shown to improve prediction of lesion-specific ischemia over 
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traditional measurements and is integrated into coronary plaque analysis research software 

for application to new data.[5]

Patients receiving CCTA who are subsequently referred for cardiac catheterization, but do 

not receive revascularization, are a high-cost population with low yield from the invasive 

procedure; and it would therefore be beneficial to effectively identify these patients. The 

purpose of this study was to examine whether the ML-IRS from quantitative CT can predict 

revascularization in patients referred to ICA after CCTA, in a prospective dual-center 

registry.

Materials and Methods

Study Population:

The study cohort included 352 consecutive patients (age 63±10 years, 68% male) between 

2013 and 2017 at two advanced cardiac care facilities within the United States (Cedars Sinai 

Medical Center, Los Angeles, CA; Oklahoma Heart Institute, Tulsa, OK). The cohort 

selected patients who were referred for standard clinical CCTA followed by ICA due to 

decision by a primary treating physician within 3 months. Patients with incomplete clinical 

data, poor image quality, coronary calcium score (CCS) >1000 Agatston units (AU), or prior 

revascularization by coronary artery bypass grafting or percutaneous coronary intervention 

were excluded. IRB approval was obtained at both institutions. Written informed consent 

was obtained for all patients. There was no overlap in subjects from any prior publications.

Clinical data including age, sex, body mass index, history of hypertension, hyperlipidemia, 

current tobacco use, family history of CAD, symptoms of chest pain or shortness of breath 

and referral location (inpatient, emergency department, or outpatient) were obtained by 

database or chart review. Procedural reports from cardiac catheterization were extracted for 

all patients. The report was analyzed for operator-determined estimate of vessel stenosis, any 

intervention performed, fractional flow reserve measurement, and intravascular ultrasound 

measurement. Patients who received percutaneous coronary intervention or were referred for 

coronary artery bypass grafting as stated in the procedure report were counted as having 

received revascularization.

CT Acquisition:

CT scans were performed on multiple dual-source CT scanner platforms (Siemens 

Definition, Flash, and Force scanners, Siemens Heathineers), using standard clinical 

coronary imaging protocols as previously described.[6] In patients without 

contraindications, sublingual nitroglycerin was administered. Beta blockade with metoprolol 

was given prior to imaging with primary heart rate goal of ≤ 65 bpm. Iohexol (Omipaque 

350mg/mL, GE Healthcare) was administered via large-bore intravenous catheter. Contrast 

volume (90 to 140 mL) and injection rate (5 to 9 mL/s) were adapted to body surface area 

and followed by saline flush. Timing bolus or automated bolus tracking at the descending 

aorta was used to trigger acquisition. Whole-volume image acquisition was completed in a 

single breath-hold. The patients did not receive FFRct analysis following CCTA.
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CT Analysis

Standard clinical measurement of CCS by Agatston score was performed and recorded at the 

time of CCTA. Quantitative image analysis was performed by two readers (A.K., over 3 

years’ experience and P.A.M., over 1.5 years’ experience with cardiac CT) who were 

blinded to clinical characteristics, ICA data, and previous clinical CCTA read. Plaque 

analysis was performed in all vessels with distal normal reference ≥ 2.0 mm using semi-

automated software (Autoplaque version 2.5, Cedars-Sinai Medical Center). Readers 

identified regions with visible disease. Vessel lumen and wall contours were generated, 

followed by manual adjustment as needed. Plaque characterization was performed 

automatically using adaptive scan-specific attenuation thresholds. Low-density non-calcified 

plaque was defined as HU < 30, as described previously. Coronary segments with 

uncertainty in plaque presence were reviewed and adjudicated by two readers. Approximate 

time for analysis per case was 20 minutes.

Vessel parameters including maximal diameter stenosis, plaque volumes, plaque burdens, 

and contrast density difference (CDD) were calculated automatically after completion of 

quantitative semi-automated plaque analysis. Quantitative stenosis was calculated by 

dividing the narrowest luminal diameter by the mean of two normal non-diseased reference 

points. Significant stenosis was defined by quantitative diameter stenosis ≥ 70%. Plaque 

burden was defined as plaque volume normalized by total diseased vessel volume. CDD over 

a lesion was computed as follows: the luminal contrast density, defined as mean luminal 

attenuation per unit area, was computed automatically over 1-mm cross-sections of the 

arterial segment. The CDD was defined as the maximum percentage difference in contrast 

densities, relative to the proximal reference cross-section with no disease.

Machine-Learning Ischemia Risk Score

The ML-IRS is automatically generated as the probability (%) of lesion-specific ischemia 

(invasive FFR≤0.8) for the left anterior descending, left circumflex, and right coronary 

arteries. The ML-IRS was previously developed in an independent population, using a 

supervised learning process by feature selection with information gain ranking and ensemble 

classification boosting with ten-fold cross-validation to predict invasive lesion-specific 

ischemia. It includes factors based on quantitative CT variables (CDD, maximum 

quantitative stenosis, minimum luminal diameter, low-density non-calcified plaque volume, 

total non-calcified plaque volume, plaque length, total plaque volume, vessel volume, 

minimal luminal area, low-density non-calcified plaque composition, maximum area 

stenosis, low-density non-calcified plaque burden, myocardial mass, non-calcified plaque 

burden, total plaque burden, non-calcified plaque composition, and maximum remodeling 

index) plus age and gender of the patient obtained from the image DICOM header.[5]

The primary endpoint in our study was revascularization during or as a direct referral after 

ICA. Secondary analysis was prediction of lesion-specific ischemia (FFR≤0.80) and 

prediction of revascularization within the sub-cohort of patients who received invasive FFR 

during ICA.
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Statistical Analysis

Continuous variables were expressed as a mean and standard deviation when normally 

distributed and median and interquartile range when not. Univariable and multivariable 

analyses were performed on both a per-patient and per-vessel basis. Per-vessel analyses 

included vessel-specific quantitative plaque features, ML-IRS, and whether revascularization 

was performed in the vessel. Per-patient analyses included total quantitative plaque features, 

highest ML-IRS, and whether revascularization was performed in any vessel in the patient. 

Univariable analysis used two-sample Wilcoxon rank-sum tests for non-parametric values, 

chi- squared test for categorical variables, and Student’s T test for normally distributed 

numerical variables. Simple logistic regression was used for FFR subgroup analysis. 

Multivariable logistic regression was used to assess associations between clinical risk factors 

(age, sex, presence of symptoms, history of hypertension, hyperlipidemia, or diabetes, and 

family history of CAD), significant stenosis, patient referral location (emergency department 

or inpatient versus outpatient) and ML-IRS with revascularization. Optimized cutoff for ML-

IRS was calculated on a per-vessel basis using the two-graph ROC analysis as the 

intersection of the sensitivity and specificity graphs.[7] Elements with missing data were 

excluded from logistic regression analysis.

Three multivariable models were created to assess the ability of the ML-IRS to improve 

prediction compared with other methods. Model 1 represented clinical risk assessment and 

included age, sex, referral location, symptoms, hypertension, hyperlipidemia, diabetes, 

current tobacco use, and family history. Model 2 represented a clinical risk assessment 

combined with traditional use of CCTA and combined the covariates in Model 1 plus 

presence of significant stenosis by CCTA. In Model 3 we added ML-IRS to the covariates in 

Model 2 to assess whether ML-IRS could improve on traditional prediction models. ROC 

curves were generated for the models and AUC’s were compared. Incremental predictive 

value between Models 2 and 3 was also measured using continuous net reclassification 

improvement (NRI), as pre-existing established risk categories were not known for the ML-

IRS.[8; 9] All statistical analyses were performed with Stata version 15.1. The NRI 

computation was performed using a SAS v9.4 module. All p-values <0.05 were considered 

significant.

Results

A total of 352 patients who received CCTA followed by ICA were identified and analyzed, 

with 1056 total vessels included in the analysis (Table 1). The mean age was 63.2 ± 10.4 

years and 67.6% of the patients were male. Most patients (85.1%) presented with symptoms. 

The median body mass index (BMI) was 27.5 kg/m2 (24.7-31.8) and the median coronary 

calcium score by Agatston was 264.7 (82.0-533.1). The FFR subpopulation consisted of 74 

patients with 83 analyzable vessels and had similar patient demographics compared to the 

overall population (Table 1). Figures 1 and 2 show case examples from our patient 

population.
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Per-Patient Univariable Analysis

Revascularization was performed in 59% of the total subjects (Table 1). There was a higher 

proportion of male gender, symptoms, and family history of CAD in patients receiving 

revascularization in the total population. In the sub-population with FFR performed there 

was a higher proportion of men, higher CCS, and a lower proportion of patients with 

diabetes. None of these differences met statistical significance and may be partially or 

wholly due to uncontrolled biases. There was no relation between site (Cedars Sinai versus 

Oklahoma Heart Institute) and revascularization.

Per-Vessel Univariable Analysis

In the per-vessel analysis, the ML-IRS ranged between 0 to 81% with a median of 18.7% 

(6.4-34.8) (Table 2). Revascularization was performed in 26% of the vessels. Univariable 

analysis found that vessels receiving revascularization had higher ML-IRS (33.6% 

(21.1-55.0) versus 13.0% (4.5-28.1), p<0.0001). Revascularized vessels also had higher 

CDD, total plaque burden, non-calcified plaque burden, low-density plaque burden, and 

calcified plaque burden. Interquartile ranges of plaque components are noted to overlap 

between revascularization and non-revascularization groups despite statistical significance. 

This suggests that while there are differences between groups, individual plaque features 

alone are insufficient to predict revascularization.

In the FFR sub-cohort (83 vessels, 74 patients) the average FFR was 0.80 ± 0.10, with an 

average of 0.74 ± 0.08 in vessels receiving revascularization versus 0.85 ± 0.07 in vessels 

not revascularized (p<0.0001) (Table 2). Only ML-IRS and CDD were significantly different 

between patients who received revascularization versus those who did not in this sub-

population. Overlap of interquartile range is again seen; this overlap may be reduced by 

sampling higher numbers. ML-IRS in patients with FFR≤0.8 was 38.5% (25.6-50.6) versus 

21.3% (12.9-31.8) for FFR>0.8, p=0.0007 for difference. Univariable logistic regression for 

ML-IRS’s association with invasive FFR≤0.8 was significant. Odds of FFR≤0.8 was 

increased by 55% for every 10% increase in ML-IRS (p=0.003). Similarly within the FFR 

population, odds of revascularization increased by 39% for every 10% increase in ML-IRS 

(p=0.016).

Multivariable Analysis

Per-vessel and per-patient logistic multivariable analyses were performed for prediction of 

revascularization (Table 3). Variables included were age, sex, symptoms (as defined by chest 

pain or shortness of breath), clinical risk factors (hypertension, hyperlipidemia, diabetes, 

current tobacco use, and family history), significant stenosis > 70% (present in any vessel 

for per-patient analysis), referral location (inpatient or emergency department versus 

outpatient), and ML-IRS (maximum score for per-patient analysis). In the per-vessel 

analysis, a 10% increase in ML-IRS resulted in a 46% increase in odds of revascularization 

(p<0.0001). In the per-patient analysis, odds of revascularization increased by 20% per 10% 

increase in ML-IRS (p=0.011). If significant stenosis was present, odds increased by 98% 

(p=0.007) in the per-vessel and 94% (p=0.038) in the per-patient analysis. Presence of 

family history of CAD increased odds of revascularization by 49% (p=0.019) in per-vessel 

and 74% (p=0.025) in per-patient analysis. Symptoms were significant in the per-vessel 
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analysis but not the per-patient analysis. Unexpectedly, the presence of symptoms appeared 

protective (OR 0.64 with symptoms, p=0.039). Referral location was associated with an 

increased odds of revascularization by 76% for patients from inpatient or emergency 

department in the per-patient analysis (p=0.042). Per-vessel ML-IRS had an optimized 

cutoff within the population at a value of 23.9%, which yielded an odds ratio for 

revascularization of 5.5 (4.0-7.4), a sensitivity of 73.2% and specificity of 68.0%, positive 

predictive value of 44.2%, negative predictive value of 88.0%.

Multivariable logistic regression models to predict revascularization were compared. Model 

1, (age, sex, referral location, symptoms, hypertension, hyperlipidemia, diabetes, current 

tobacco use, and family history) assessed clinical risk. The AUC for prediction of 

revascularization for Model 1 was 0.58 (0.54-0.62). Model 2 (Model 1 plus presence of 

significant stenosis) represented addition of traditional use of CCTA. The AUC for Model 2 

was 0.69 (0.65-0.72). Model 3 (Model 2 plus ML-IRS) assessed the additional importance of 

the ML-IRS. The AUC for Model 3 was 0.78 (0.75-0.81). There was a significant 

improvement between each model (p < 0.0001) (Figure 3). The continuous NRI for addition 

of ML-IRS to standard CCTA analysis (Model 3 over Model 2) was 0.636 (0.503-0.769 95% 

CI, p < 0.0001). This consisted of a 28% improvement in classification of patients receiving 

revascularization and a 36% improvement in those not receiving revascularization.

Discussion

In this study, ML-IRS was significantly associated with revascularization in both univariable 

and multivariable analyses. Prediction of revascularization significantly improved when the 

ML-IRS was added to a model with clinical information and CCTA analysis including 

stenosis. This suggests that this on-site machine-learning based tool may be able to improve 

current practice patterns and predict which patients would benefit the most from referral to 

ICA. The continuous NRI measure also showed significant improvement with the integration 

of the ML-IRS with traditional methods of risk assessment; notably 36% improvement in 

predicting patients not receiving revascularization, indicating that addition of ML-IRS may 

help patients avoid unnecessary cardiac catheterization. In our population, only patients who 

were referred for ICA after CCTA were included. This is a high-risk population, as shown 

by the high rate of revascularization. Expansion to a lower-risk population of patients 

receiving CCTA may improve ability to avoid unnecessary referral. The analysis also 

showed low predictive ability for revascularization using traditional risk factors and 

symptoms. Presence of symptoms showed inverse association with revascularization, 

potentially due to the overall high prevalence of symptoms or patients without acute 

symptoms being specifically referred for revascularization as outpatients. The analysis of the 

FFR sub-population helps explain the method by which predictive ability may be applied to 

the general population. The ML-IRS was internally validated in the NXT trial population to 

predict invasive FFR,[5] which was also consistent in a subset of our dual-center population. 

While invasive FFR may be the gold standard for assessing physiological significance of a 

coronary stenosis, in our study design we recognize that the cost, need for medication 

administration, and logistics of performing FFR in all patients leads to a minority of patients 

receiving invasive assessment. Our study was structured to assess the patient-centered 

endpoint of revascularization: the clinical question facing patients with stenoses as well as 
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their healthcare providers at the point of care. ML-IRS was more strongly associated with 

FFR than revascularization, which suggests that if invasive FFR had been used more broadly, 

revascularization rate may have been even more consistent with our predictions.

There have been multiple other approaches to artificial intelligence-based prediction of 

invasive FFR.[10-14], including commercially available noninvasive FFR (FFRct). FFRct 

uses computational fluid dynamics in a 3-D model of the coronary tree in order to provide 

an accurate prediction of invasive FFR from CCTA.[10; 15] While this approach has been 

successful, it incurs significant cost, and the need to send studies to an external location for 

analysis. Beyond luminal measurements alone, CTA also allows measurement of other 

features such as quantitative coronary plaque characteristics,[16; 17] and CDD[5], which are 

all included in the ML-IRS. Machine-learning based approaches have utilized quantitative 

CCTA to predict various outcomes including myocardial perfusion by PET[18] or CT,[19] or 

invasive FFR[14; 20] While these approaches have typically shown strong testing 

characteristics with relatively low processing times, to our knowledge, our study is the first 

to use a machine-learning based approach to predict revascularization. With the Youden’s 

index cutoff of 23.9%, the ML-IRS exhibited strong negative predictive value of 88.0%, 

despite the studied population being clinically challenging enough that all patients included 

received ICA after CCTA. This further suggests that use of the ML-IRS may help patients 

avoid unnecessary cardiac catheterization.

There are limitations in our study. Our population of patients receiving ICA after CCTA 

results in selection bias, and results may be different in all patients receiving CCTA. 

Additionally, only a portion of patients (21%) received invasive FFR. This limits the 

interpretability within the FFR sub-population. We note that our FFR utilization is consistent 

with real-world utilization of FFR in intermediate lesions.[21] FFR utilization in all patients 

may help support the efficacy of the algorithm; however, this may not reflect “real-world” 

practice of revascularization as shown in our study.[5; 22] The primary endpoint of 

revascularization does not capture long-term patient hard outcomes, which were not 

available to us at both sites. We did not directly compare our results to FFRct, since it was 

not available for all patients and could not be added for research purposes only. We 

recognize that this represents a separate, validated approach. While hypothesis-generating, 

our findings cannot make definitive statements regarding the ability of the ML-IRS to 

improve economic or clinical outcomes without prospective clinical studies.

In conclusion, ML-IRS from quantitative coronary CT angiography improved the prediction 

of future revascularization and can potentially identify patients likely to receive 

revascularization if referred to cardiac catheterization. This ML score is correlated with 

invasive FFR measurements providing dual-center external validation and improves on 

clinical risk prediction models.
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BMI Body Mass Index

CAD Coronary Artery Disease

CCS Coronary Calcium Score

CCTA Coronary CT Angiography

CDD Contrast Density Difference

FFR Fractional Flow Reserve

ICA Invasive Coronary Angiography

ML-IRS Machine Learning Ischemia Risk Score
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Key Points:

• Machine learning ischemia risk from quantitative coronary CT angiography 

was significantly higher in patients who received revascularization versus 

those who did not receive revascularization.

• The machine learning ischemia risk score was significantly higher in patients 

with invasive fractional flow ≤ 0.8 versus those with > 0.8.

• The machine learning ischemia risk score improved the prediction of future 

revascularization significantly when added to a standard prediction model 

including stenosis.
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Figure 1: 
Case example: Machine Learning Ischemia Risk Score (ML-IRS) and coronary plaque 

analysis in a 67-year old male symptomatic patient undergoing coronary CT Angiography, 

left anterior descending (LAD) artery. Panel A: Sample output of quantitative analysis and 

ML-IRS. Panel B: Multiplanar oblique views of LAD coronary atherosclerosis (red: non-

calcified plaque, yellow: calcified plaque). Panel C: Curved multiplanar reformat of LAD 

atherosclerosis. ML-IRS in the LAD was 60%, invasive fractional flow reserve measured in 

the LAD was 0.73 (ischemic).
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Figure 2: 
Case example: Machine Learning Ischemia Risk Score (ML-IRS) and coronary plaque 

analysis in a 57-year old male symptomatic patient undergoing coronary CT Angiography, 

left anterior descending (LAD) artery. Panel A: Sample output of quantitative analysis and 

ML-IRS. Left circumflex artery had no coronary plaque and therefore risk was not 

estimated. Panel B: Multiplanar oblique views of LAD coronary atherosclerosis (red: non-

calcified plaque, yellow: calcified plaque). Panel C: Curved multiplanar reformat of LAD 

atherosclerosis. ML-IRS in the LAD was 11%, invasive fractional flow reserve measured in 

the LAD was 0.83 (not ischemic).
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Figure 3: 
Per-vessel prediction of revascularization with ROCs from multivariable models. P<0.0001 

for difference between models. Model 1 (yellow): age, sex, symptoms, hypertension, 

hyperlipidemia, current smoking, diabetes, family history, and referral location; Model 2 

(green): Model 1 + significant stenosis; and Model 3 (blue): Model 2 + ML-IRS.
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Table 1.

Demographic information for total cohort and for sub-cohort of patients with fractional flow reserve

Total Population Revascularization No Revascularization p-value

Total Patients 352 208 (59%) 144 (41%)

Age (years) 63.2±10.4 62.6±10.5 64.1±10.3 0.19

Sex (male) 238 (67.6%) 148 (71.2%) 90 (62.5%) 0.09

Symptomatic 298 (85.1%) 171 (48.9%) 127 (36.3%) 0.11

Hypertension 227 (64.5%) 131 (63.0%) 96 (66.7%) 0.48

Hyperlipidemia 198 (56.2%) 116 (55.8%) 82 (56.9%) 0.83

Diabetes 93 (26.4%) 57 (27.4%) 36 (25.0%) 0.62

Tobacco 56 (15.9%) 36 (17.3%) 20 (13.9%) 0.39

Family CAD 180 (51.1%) 113 (54.3%) 67 (46.5%) 0.15

Inpatient/ED 260 (74.9%) 158 (77.5%) 102 (71.3%) 0.2

BMI (kg/m2) 27.6 (24.7-31.8) 27.3 (24.7-31.8) 28.0 (24.5-31.8) 0.47

CCS 262 (82.0-533) 299 (91.8-550) 216 (68.6-530) 0.14

Site (from site 1) 226 (64.2%) 138 (66.3%) 88 (61.1%) 0.37

Patients witd FFR 74 (21.1%) 47 (63.5%) 27 (36.5%)

Age (years) 63.5±9.7 62.9±10.2 63.3±9.0 0.89

Sex (male) 49 (66.2%) 33 (70.2%) 16 (59.3%) 0.48

Symptomatic 62 (84.9%) 39 (84.8%) 23 (85.2%) 0.96

Hypertension 48 (64.9%) 31 (66.0%) 17 (63.0%) 0.8

Hyperlipidemia 43 (58.1%) 27 (57.4%) 16 (59.3%) 0.88

Diabetes 17 (23.0%) 9 (19.1%) 8 (29.6%) 0.3

Tobacco 11 (14.9%) 8 (17.0%) 3 (11.1%) 0.49

Family CAD 40 (54.1%) 26 (55.3%) 14 (51.9%) 0.77

Inpatient/ED 64 (86.5%) 40 (85.1%) 24 (88.9%) 0.65

BMI (kg/m2) 27.6 (24.2-30.9) 27.2 (24.5-30.8) 28.2 (23.6-30.8) 0.99

CCS 263.1 (88.7-530.9) 315.7 (120.2-524.0 154.0 (73.6-580.5) 0.25

Site (from site 1) 56 (76%) 37 (78%) 19 (70%) 0.6

*
Results expressed as mean ± standard deviation, frequency (percent), or median (interquartile range). BMI: Body mass index, CAD: Coronary 

artery disease, CCS: Coronary calcium score, ED: Emergency Department referral location. FFR: Fractional flow reserve.
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Table 2.

Per-vessel plaque features in relation to revascularization in all vessels, and in the subgroup with measured 

FFR.

Total Population Revascularization No Revascularization p-value

Total Vessels 1056 271 (26%) 785 (74%)

Significant Diameter Stenosis > 70% 135 (12.8%) 84 (31%) 51 (6.5%) <0.0001

Machine-Learning Ischemia Risk Score 18.7% (6.4-34.8) 33.6% (21.1-55.0) 13.0% (4.5-28.1) <0.0001

Total Plaque Burden 47.8% (36.1-56.4) 54.5% (47.2-60.7) 44.9% (38.0-54.3) <0.0001

Non-Calcified Plaque Burden 44.4% (33.1-52.3) 49.6% (42.7-57.6) 42.0% (24.8-50.7) <0.0001

Low-Density Non-Calcified Plaque Burden 5.6% (2.1-8.8) 7.9% (5.3-10.7) 4.3% (0.8-7.9) <0.0001

Calcified Plaque Burden 1.5% (0-4.1) 2.8% (0.7-5.3) 1.1% (0-3.4) <0.0001

Contrast Density Difference 18.5 (5.2-29.8) 27.1 (18.9-37.0) 14.1 (0-25.6) <0.0001

Vessels with FFR 83 (7.9%) 41 (49.4%) 42 (50.6%)

Significant Diameter Stenosis > 70% 15 (18%) 9 (10.8%) 6 (7.2%) 0.364

Average FFR 0.80±0.10 0.74±0.08 0.85±0.07 <0.0001

Machine-Learning Ischemia Risk Score 31.4% (18.7-48) 36.0% (25.5-50.7) 21.5% (14.9-43.2) 0.006

Total Plaque Burden 52.4% (47.0-58.2) 54.1% (47.6-59.2) 50.3% (46.2-58.2) 0.420

Non-Calcified Plaque Burden 48.2% (41.6-55.2) 49.2% (41.0-55.4) 47.2% (43.7-54.8) 0.800

Low-Density Non-Calcified Plaque Burden 7.2% (4.3-9.8) 7.9% (5.8-10.4) 6.4% (3.6-8.5) 0.070

Calcified Plaque Burden 2.4% (0.9-6.1) 2.9% (1.8-6.2) 2.1% (0.6-5.7) 0.140

Contrast Density Difference 24.0 (16.5-33.7) 26.2 (21.1-37.7) 21.6 (10.6-32.4) 0.016

*
Results expressed as mean ± standard deviation, frequency (percent), or median (interquartile range). FFR: Fractional flow reserve.

Eur Radiol. Author manuscript; available in PMC 2022 March 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kwan et al. Page 17

Table 3.

Per-vessel and Per-patient multivariable analyses for predicting revascularization including clinical risk 

factors, significant stenosis, and Machine Learning Ischemia Risk Score (per 10% change).

Per Vessel Odds Ratio 95% CI B p-value

Age (year) 0.998 (0.982-1.014) −0.002 0.779

Male Sex 0.777 (0.543-1.113) −0.252 0.169

Symptomatic 0.64 (0.418-0.979) −0.447 0.039

Hypertension 0.769 (0.551-1.073) −0.263 0.122

Hyperlipidemia 1.063 (0.771-1.466) 0.061 0.708

Diabetes 1.074 (0.755-1.529) 0.072 0.691

Tobacco 1.058 (0.694-1.612) 0.056 0.794

Family CAD 1.486 (1.069-2.065) 0.396 0.019

Referral Location 1.212 (0.842-1.745) 0.192 0.301

Significant Stenosis 1.981 (1.201-3.263) 0.683 0.007

ML-IRS (per-10%) 1.464 (1.338-1.602) 0.381 <0.001

Per Patient Odds Ratio 95% CI B p-value

Age (year) 1.003 (0.980-1.027) 0.003 0.815

Male Sex 1.042 (0.618-1.760) 0.042 0.876

Symptomatic 0.523 (0.262-1.043) −0.648 0.065

Hypertension 0.666 (0.405-1.095) −0.407 0.109

Hyperlipidemia 1.041 (0.648-1.674) 0.041 0.866

Diabetes 1.131 (0.664-1.927) 0.123 0.651

Tobacco 1.583 (0.830-3.016) 0.459 0.162

Family CAD 1.744 (1.072-2.835) 0.556 0.025

Referral Location 1.761 (1.019-3.043) 0.566 0.042

Significant Stenosis 1.939 (1.035-3.630) 0.662 0.038

Maximum ML-IRS (per-10%) 1.211 (1.192-1.230) 0.191 0.011

*
CAD: Coronary artery disease, ML-IRS: Machine learning ischemia risk score, CI: Confidence Interval
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