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Abstract

Purpose: The purpose of this paper is to present and validate an originally devel-

oped application SkinCare used for skin dose mapping in interventional procedures,

which are associated with relatively high radiation doses to the patient’s skin and

possible skin reactions.

Methods: SkinCare is an application tool for generating skin dose maps following

interventional radiology and cardiology procedures using the realistic 3D patient

models. Skin dose is calculated using data from Digital Imaging and Communications

in Medicine (DICOM) Radiation Dose Structured Reports (RDSRs). SkinCare valida-

tion was performed by using the data from the Siemens Artis Zee Biplane fluo-

roscopy system and conducting “Acceptance and quality control protocols for skin

dose calculating software solutions in interventional cardiology” developed and

tested in the frame of the VERIDIC project. XR-RV3 Gafchromic films were used as

dosimeters to compare peak skin doses (PSDs) and dose maps obtained through

measurements and calculations. DICOM RDSRs from four fluoroscopy systems of

different vendors (Canon, GE, Philips, and Siemens) were used for the development

of the SkinCare and for the comparison of skin dose maps generated using SkinCare

to skin dose maps generated by different commercial software tools (Dose Tracking

System (DTS) from Canon, RadimetricsTM from Bayer and RDM from MEDS-

QUARE). The same RDSRs generated during a cardiology clinical procedure (percu-

taneous coronary intervention—PCI) were used for comparison.

Results: Validation performed using VERIDIC’s protocols for skin dose calculation soft-

ware showed that PSD calculated by SkinCare is within 17% and 16% accuracy com-

pared to measurements using XR-RV3 Gafchromic films for fundamental irradiation

setups and simplified clinical procedures, respectively. Good visual agreement between

dose maps generated by SkinCare and DTS, RadimetricsTM and RDM was obtained.

Conclusions: SkinCare is proved to be very convenient solution that can be used

for monitoring delivered dose following interventional procedures.
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1 | INTRODUCTION

Interventional procedures in radiology and cardiology are associ-

ated with relatively high radiation doses to the patient’s skin

which may lead to skin reactions.1 Even though peak skin dose

(PSD) assessment can be accomplished with a wide selection of

detectors,2 using software tools is more convenient and economi-

cal. At the present time, most equipment vendors have developed

online solutions for skin dose calculations. CareMonitor by Sie-

mens and DoseWise by Philips are solutions which basically pro-

vide the accumulated peak air kerma in the current projection.3

On the other hand, Dose Map from GE is an advanced two-di-

mensional (2D) solution,4–6 while Dose Tracking System (DTS)

from Canon (Toshiba) represents a state of the art three-dimen-

sional (3D) solution for skin dose mapping.7–9 The most important

drawback of previously mentioned solutions is that they are ven-

dor specific and cannot be used in fluoroscopy systems from

other manufacturers.

Utilizing Digital Imaging and Communications in Medicine

(DICOM) Radiation Dose Structured Report (RDSR) generated at the

end of the intervention is the only way to make vendor-independent

solutions.10 RDSR was added to the DICOM standard11 with inten-

tion to standardized format of recording all the information related

to the exposure parameters used for each irradiation event under-

gone by the patient. RDSR contains all the necessary technical, geo-

metric, and dosimetric data necessary to assess the patient skin

dose. In addition to online solutions mentioned above, there are

commercial offline software tools which utilize DICOM headers and/

or RDSRs for skin dose calculations such as em.dose from

Esprimed,12,13 RDM by MEDSQUARE,3 DOSE from Qaelum,14

NEXO[DOSE]® by Bracco,15,16 RadimetricsTM from Bayer,17 and Skin

Dose Map® tool integrated in DoseWatch® by GE Healthcare.18

Other software solutions can be found in literature.19–23

The objective of this paper is to present an originally developed

skin dose mapping application SkinCare that can be readily used with

interventional units from different manufacturers. The application

was validated by using the data from the Siemens Artis Zee fluo-

roscopy system and conducting the “Acceptance and quality control

protocols for skin dose calculating software solutions in interven-

tional cardiology” developed and tested in the frame of the Valida-

tion and Estimation of Radiation Skin Dose in Interventional

Cardiology (VERIDIC) project.24 VERIDIC project, funded under

European Joint Programme for the Integration of Radiation Protec-

tion Research, H2020 (Grant agreement No 662287), was focused

on the skin dose calculation (SDC) software products in interven-

tional cardiology, with an aim to contribute to the harmonization

and the validation of SDC software products in interventional cardi-

ology.24 Additionally, SkinCare’s dose maps generated using different

RDSRs were compared visually with different validated commercial

software tools for Canon (Toshiba), GE, Philips, and Siemens fluo-

roscopy systems in order to verify the correctness of applied geo-

metric algorithm.

2 | MATERIALS AND METHODS

2.A | SkinCare

SkinCare is an application tool for generating skin dose maps follow-

ing interventional radiology and interventional cardiology procedures

using the realistic 3D patient models. RDSRs from Canon (Toshiba),

GE, Philips, and Siemens were used for development of the applica-

tion, making SkinCare compatible with major fluoroscopy unit ven-

dors. SkinCare is a standalone desktop application that runs in any

of the available web browsers. Easy configuration of the system cor-

rection factors and patient models provide fast way for generating

skin dose maps and visualization of RDSR content.

2.A.1 | Patient modeling

Patient models were created using MB-Lab,25 an open-source plug-

in for free and open-source 3D computer graphics software Blen-

der.26 SkinCare has a library of 42 3D patient models of height rang-

ing from 150 cm to 210 cm, with an increment of 10 cm. Male and

female models consider three different body types: thin, standard

size, and obese. All models have arms-down pose corresponding to

patient supine position. Two additional models of sizes

30 × 30 × 15 cm3 and 35.56 cm × 43.52 cm (14" × 17") represent

water phantom and XR-RV3 Gafchromic film, respectively, for the

purpose of quality control (QC) tests.

2.A.2 | Patient positioning

Since different manufacturers of the fluoroscopy systems define 3D

position of isocenter in relation to proprietary point in space, it is

necessary to determine the offsets for RDSR’s attributes Table Lateral

Position, Table Longitudinal Position, and Table Height Position. This

can be done by positioning the surface of table head end at the

isocenter. Values that are then recorded in RDSR need to be

inserted in SkinCare’s fields Lateral offset, Longitudinal offset, and

Height offset. Additionally, SkinCare also has field Head-Table distance

in order to improve the patient position estimation on the table, by

taking into account distance from patient head to the table end (this

value should be measured prior to the beginning of every proce-

dure). The orientation of the model is assumed to be supine and to

lie in the middle of the table.

2.A.3 | Skin dose calculation

Skin dose calculation is based on determining the affected points of

the 3D patient model by the x-ray beam. Once the 3D positions of

x-ray tube focal spot, detector, and patient are found for every irra-

diation event using data from RDSR, dose is calculated as entrance

surface dose, that is, only for 3D points in which x-ray beam enters

the patient model (x-ray beam exit points are not relevant).
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Dose is calculated by using [Eq. (1)]:

Dose¼Ka,r �CF�TAF�Fθ� dIRP
dpatient

� �2

�BSF�MAEC (1)

where Ka,r is the air kerma reported at the Interventional Reference

Point (IRP),27 CF is calibration factor for the KAP meter, TAF is table

attenuation factor, Fθ is oblique factor defined as relative fraction of

transmission between zero and nonzero angles of incidence, dIRP is

distance from source to IRP, dpatient is distance from source to

affected 3D point,BSF is backscatter factor interpolated from the

coefficients of Benmakhlouf H et al.,28 and MAEC is the dose con-

version factor from air to soft tissue interpolated from the coeffi-

cients of Benmakhlouf H et al.28

2.B | SkinCare validation

2.B.1 | Gafchromic film calibration

XR-RV3 Gafchromic films calibration was performed in the Second-

ary Standard Dosimetry Laboratory of Vinča Institute of Nuclear

Sciences. Films were cut in small square pieces of 2 cm × 2 cm and

the irradiation was carried out free-in-air, by positioning films at 1 m

distance from the radiation source. During calibration, film pieces

were oriented in such a way that the yellow side of the film was fac-

ing the x-ray tube. The film pieces were irradiated to 16 air kerma

values between 0 and 10 Gy using RQR8 standard beam quality.29

The conversion of air kerma to absorbed dose to skin is considered

to be equal to one.30

Scanning of the irradiated films was performed after 24 hr of

exposure with the Hewlett-Packard (HP) Scanjet 7650 flatbed scan-

ner. VueScan scanning software was used for linear (raw) scanning

which enables data acquisition straight from the scanner’s sensor

without any manipulation from the scanning software. Most soft-

ware packages that come with consumer scanners do not offer this

ability and perform processing on raw data. Film pieces were

scanned with a resolution of 300 PPI as 48 Bit RGB TIF files.

Scanned images were analyzed in the Python programming language

using only the red channel in order to ensure maximum sensitivity.

To obtain an image value corresponding to a particular air kerma, a

square region of interest (ROI) was formed with dimensions of 120

px (ROI was approximately 1 cm2). The formed ROI was shifted

throughout the whole image, and pixel values inside the ROI were

averaged. ROI with the lowest average pixel value corresponds to

the highest dose. Response of the XR-RV3 Gafchromic films as a

function of film dose was modeled using a rational function pro-

posed by Lewis et al.31:

D¼ aþb=ðxþcÞ (2)

where x represents the lowest average pixel value of ROI at dose D,

and a, b, and c are coefficients of the rational function. Calibration

curve was obtained using Levenberg–Marquardt nonlinear curve fit-

ting algorithm.

Uncertainties related to the use of XR-RV3 Gafchromic films for

patient skin dose assessment in the interventional environment have

been estimated in our previous work and published in Medical Phy-

sics.30 It is shown that overall uncertainty of skin dose measure-

ments using XR-RV3 Gafchromic films ranges from 9% (k = 2) for

tightly controlled measurement conditions, adequate laboratory cali-

brations and well-defined readout protocol to 78% (k = 2) in the

worst case scenario where the conditions of exposure, film handling,

and readout are weakly controlled and where corrections for the rel-

evant influence quantities are not made. In this work the overall

measurement uncertainty was assumed to be 41% (k = 2) since a

well-defined laboratory calibration is performed, while other influ-

encing parameters related to clinical application of dosimetry films

are less controlled.30

2.B.2 | VERIDIC’s acceptance and QC testing
protocols

One of the objectives of the VERIDIC project was to develop a pro-

tocol for acceptance and QC tests of SDC software to be used by

medical physicists in clinical practice.24 A slightly modified accep-

tance protocol which is originally composed of 13 fundamental irra-

diation setups and three simplified clinical procedures intended to

represent more realistic conditions, has been used. Fundamental set-

ups in addition to simplified clinical procedures are used to verify

that key parameters (collimated field area, table height, C-arm angu-

lation) which can significantly affect the PSD, were appropriately

taken into account by SkinCare. All irradiations were performed

using fluorographic (acquisition) mode.

First four fundamental irradiations intended to evaluate CF and

TAF for two beam qualities were not performed since thorough eval-

uation of CF and TAF was performed before conducting this protocol

in the Siemens service mode over wide range of beam qualities as

discussed in the next section. XR-RV3 Gafchromic films were used

as dosimeters to compare PSDs and dose maps obtained through

measurements and calculations. For such comparison, a tissue equiv-

alent slab phantom, combined of water and polymethyl methacrylate

(PMMA) plates (plates of 1 cm thickness, 30 × 30 cm2 surface), was

used to simulate a simplified patient of different sizes (10, 15, 20,

25, and 30 cm). Acceptability criteria require that the calculated PSD

values should not differ more than 40% from the measured values

for any of the fundamental irradiation events and the simplified pro-

cedures.24

2.B.3 | Calibration factor and Table attenuation
factor

Two multiplicative factors that significantly influence skin dose calcu-

lations are the calibration factor (CF) and the table attenuation factor

(TAF). RDSR provides for entry of a single CF which corrects air

kerma reported at the IRP, Ka,r , in such a way by calibration of the

Ka,r against quality control measurements. The allowable tolerance

for the displayed Ka,r and kerma-area product (KAP) values should

not deviate from the actual values by more than � 35% above

100 mGy and 2.5 Gy-cm2, respectively.32 The effect of the patient
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table and the mattress on the x-ray beam transmission is taken into

account by using TAF which depends on beam quality, field size, and

C-arm angulation. DeLorenzo et al.33 found that TAF values at 0° for

table plus pad ranged from 0.59 to 0.89 for three different fluo-

roscopy systems. Such a large tolerance for CF and the fact that TAF

is not defined in RDSR could lead to very inaccurate skin dose calcu-

lations.

Evaluation of calibration factor

Calibration of the KAP meters in the Siemens Artis Zee Biplane sys-

tem was performed with a solid-state semiconductor detector

R100B (RTI Electronics AB, Molndal, Sweden), calibrated in the Sec-

ondary Standard Dosimetry Laboratory at the Vinča Institute of

Nuclear Sciences in standard RQR beam qualities.29 Setups used for

determination of the calibration factors are shown in Fig 1. The fron-

tal tube (Plane A) was set at the under-table position (primary

angle = 0ο, secondary angle = 0ο), and the lateral tube (Plane B) was

set at the lateral position (primary angle = �90ο, secondary angle =

0ο). R100B detector was taped at the beam entrance side of the

table for Plane A measurements, while it was taped at the beam

entrance side of the PMMA phantom for Plane B measurements. A

radiopaque ruler was used to measure dimensions of the x-ray field

which was set to approximately 10 × 10 cm in the plane of the

detector.

The Siemens Artis Zee Biplane was operated in service mode in

order to determine the CF for different beam qualities. Exposures

were made using X-ray tube voltages ranging from 60 to 120 kVp

with 10 kVp increments at six different copper filter thicknesses: 0,

0.1, 0.2, 0.3, 0.6, and 0.9 mm. The KAP measured by the system’s

KAP meter and the incident air kerma (Ka,i) measured by R100B

were recorded for each exposure. Calibration factor for each expo-

sure was calculated as:

CF¼Ka,i �A
KAP

(3)

where CFis the calibration factor, Ka,iis the incident air kerma mea-

sured by R100B, Ais the field area in the plane of the R100B, and

KAPis air kerma-area product measured by the KAP meter.

Evaluation of table attenuation factor

TAF was measured using the frontal tube (Plane A) set at the under-

table x-ray tube position (primary angle = 0ο, secondary angle = 0ο)

using detector R100B. Setups used for determination of TAF values

are shown in Fig 2. Setup 1 was used to measure air kerma rates

without the patient table influence, while setup 2 was used to mea-

sure air kerma rates when table and mattress were in the beam path.

A radiopaque ruler was used to measure dimensions of x-ray field

for setup 2.

Service-mode projections were acquired for each value of the x-

ray tube voltage ranging from 60 to 120 kVp with 10 kVp incre-

ments and varying copper thicknesses of 0, 0.1, 0.2, 0.3, 0.6, and

0.9 mm. Also, three field sizes of 10 × 10 cm2, 15 × 15 cm2, and

20 × 20 cm2 in the plane of R100B have been employed. Air kerma

rates measured by R100B were recorded for each exposure. Table at-

tenuation factor for each exposure was calculated as:

TAF¼ Ka,2

Ka,1 � d1
d2

� �2
(4)

where TAFis the table attenuation factor, Ka,1is the air kerma rate

from setup 1,Ka,2 is the air kerma rate from setup 2, and the ratio
d2
d1

� �2
stands for the inverse-square-law correction for distance.

For a beam incident on the table surface at a nonperpendicular

angle, θ, TAF should be multiplied with oblique factor, Fθ , which is

defined as a relative fraction of transmission between zero and non-

zero angles of incidence. Using methodology proposed by Rana

et al.,9 oblique factor was calculated as:

Fθ ¼ elog TAFð Þ�ðsec θð Þ�1Þ (5)

2.B.4 | Comparison of patient skin dose maps
generated using different commercial software tools

Apart from acceptance protocol, the accuracy of SkinCare was evalu-

ated by visual comparison of skin dose maps generated by SkinCare

and different commercial software tools using DICOM RDSRs gener-

ated after cardiology clinical procedures (percutaneous coronary

intervention-PCI) performed on patients. These procedures were

performed on fluoroscopy units from different vendors (Canon, GE,

Philips and Siemens) and their corresponding RDSRs were used to

generate skin dose maps by SkinCare and to compare them to skin

dose maps generated by different commercial software tools (DTS

from Canon, RadimetricsTM from Bayer and RDM from MEDS-

QUARE). These skin dose mapping software tools were chosen

because they have been validated against the fluoroscopy units from

above-mentioned manufacturers. The main objective of this

F I G . 1 . Calibration factor evaluation
setup for (a) plane a and (b) plane B. Plane
A was set in under-table position and
Plane B was set at the lateral position.
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comparison was to verify the correctness of applied geometric algo-

rithm for different manufacturers, while PSD comparison was not

performed because the lack of the knowledge of fluoroscopy system

specific values of CF and TAF would result in incorrect comparison.

3 | RESULTS

3.A | SkinCare

The graphical user interface (GUI) of SkinCare is shown in Figure 3.

It is a single-page long-scrolling standalone application that runs in

any web browser. Modern design and ease of use enables very fast

acquisition of skin dose map and PSD.

SkinCare enables usage of single CF and TAF values through the

AUTO mode (by pressing AUTO button) or multiple CF and TAF val-

ues via the FILE mode (by pressing FILE button). In the FILE mode

user needs to choose a .csv file filled with values for given template.

Table 1 and Table 2 present templates filled with arbitrary values for

CF and TAF determination, respectively. In Table 2 “FOV” corre-

sponds to table top square field size. There is no limit in number of

rows for templates, so it is up to medical physicists to decide on

number of measurements. Last two columns of templates corre-

spond to CF and TAF values for fluoroscopy and image acquisition,

thus this mode enables very accurate skin dose assessment. In this

work we only acquired CF and TAF for image acquisition but it is

possible to acquire separate factors for both fluoroscopy and image

F I G . 2 . Table attenuation factor
measurements for (a) setup 1 and (b) setup
2. Setup 1 was used to measure air kerma
rates when there was no influence of
table, whereas setup 2 was used to
measure air kerma rates when table and
mattress were in the beam path.

F I G . 3 . SkinCare user interface.
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acquisition. Interpolated CF and TAF values are then calculated for

every irradiation event based on values inserted in templates.

Patient model configuration is performed by setting the height,

size, and gender of a patient. Apart from patient models, there are

two additional models (slab phantom and XR-RV3 Gafchromic film)

which enable medical physicists to perform QC test of the system.

Rotation of the models enables easier visualization of the skin dose

map, especially when larger angulations and oblique projections are

present.

Below the skin dose map is scrollable table in horizontal and ver-

tical directions which contains data from RDSR (event number, table

lateral position, table longitudinal position, table height position,

source to isocenter distance, source to detector distance, event type,

primary angle, secondary angle, air kerma at IRP, tube voltage, and

copper filtration) and data calculated by SkinCare (field-of-view, BSF,

CF, TAF, field-of-view at entrance side of patient, and source to

patient distance) for each irradiation event. Two doughnut charts

that show image acquisition vs fluoroscopy dose and time distribu-

tions are positioned below the table.

Skin dose maps for different RDSRs are shown in Fig 4. Color

coded dose map is relative to the PSD for each individual patient.

Figure 4 highlights the effectiveness of SkinCare for producing very

detailed dose maps from different fluoroscopy system manufacturers

on a diverse patient population.

Figure 5 shows models of the XR-RV3 Gafchromic film (left) and

slab phantom (right). Since the models have flat surfaces and good

spatial resolution, medical physicists can perform fast measurements

for the purpose of QC tests.

3.B | SkinCare validation

3.B.1 | Gafchromic film calibration

XR-RV3 Gafchromic calibration curve for determining skin dose is

shown in Figure 6. Fitting coefficients have the following values:

a¼�851:1,b¼1:754∗107,c¼�4828. Table 3 shows measured val-

ues, predicted values, and percent errors for all data used during

TAB L E 1 Template for CF determination.

kV [kV] Cu [mm] CF fluoroscopy CF image acquisition

60 0 0.80 0.80

80 0.1 0.81 0.81

100 0.2 0.82 0.82

120

⋮
0.3

⋮
0.83

⋮
0.83

⋮

TAB L E 2 Template for TAF determination.

FOV [cm] kV [kV] Cu [mm] TAF fluoroscopy
TAF image
acquisition

7 60 0 0.80 0.80

7 80 0.1 0.81 0.81

7 100 0.2 0.82 0.82

7

⋮
120

⋮
0.3

⋮
0.83

⋮
0.83

⋮

F I G . 4 . Skin dose maps for different
RDSRs. Color map is relative to the PSD
for each individual patient.

F I G . 5 . Models of XR-RV3 Gafchromic
film (left) and slab phantom (right) with
dose maps.
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calibration. Fitting errors in the high dose range (>2 Gy) where tissue

reactions may occur to the skin are within 3.2%. Additionally, root

mean square error (RMSE) goodness-of-fit indicator was calculated

in order to evaluate the performance of the fitting equation. Fitting

equation produces an RMSE of 92 mGy which demonstrates small

error of fitting.

3.B.2 | Calibration factor and Table attenuation
factor

Calibration factors for each beam quality for both tubes of biplane

system are presented in Figures 7 and 8. For each particular filter

thickness for all tube voltages, differences between the lowest and

the highest calibration factors values were calculated. For Plane A

differences ranged from 1.3% to 4.5%, whereas for Plane B differ-

ences ranged from 3.2% to 7.0%.

Table attenuation factors for Siemens Artis Zee Biplane fluo-

roscopy system can be found in Table 4. With the increase in the x-

ray tube voltage and by increasing the field size and added Cu

filtration of the primary x-ray beam, TAF value has increased. The

recorded TAF values ranged from 0.69 to 0.88. Table 5 shows the

oblique factor Fθ as a function of incident angle, kVp and added Cu

filtration for the 10 x 10 cm2
field size. Fθ decreased with the

increase in the incident angle and at 10ο, 20ο, 30ο, and 40ο ranged

from 0.994 to 0.997, 0.977 to 0.989, 0.945 to 0.973, and 0.894 to

0.948, respectively. Field size had a small influence on Fθ .

3.B.3 | VERIDIC’s acceptance and QC testing
protocols

In Table 6 eight fundamental irradiation setups used to validate Skin-

Care and PSD comparison between XR-RV3 Gafchromic films and

SkinCare are displayed. During all irradiations the tube voltage and

the added filtration were automatically set by the system, while

RDSR attributes Table Height position, Distance source to detector,

and Collimated field area were set at 15 cm, 120 cm, and 900 cm2,

respectively. First five setups were used for the purpose of testing

the effect of the phantom scatter, sixth and seventh were used for

testing of the effect of field overlap, whereas eighth was used for

testing the effect of lateral irradiations. The tests have shown that

PSD calculated by SkinCare is within 17% accuracy compared with

measurements using XR-RV3 Gafchromic films.

Table 7 shows setups of the simplified clinical procedures. During

all irradiations the tube voltage and the added filtration were auto-

matically set by the system, while the distance source to detector

was kept constant at 120 cm. Slab phantom with an addition of

10 cm PMMA layer were used as the phantom. Procedures varied

considerably as it can be seen from Table 7 and Fig. 9. Figure 9

shows comparison between scanned XR-RV3 Gafchromic films and

dose maps obtained using SkinCare’s XR-RV3 Gafchromic phantom

for all three simplified clinical procedures. It should be noted that

the scanner used for geometrical comparison in Figure 9 was not

used for calibration and PSD assessment due to the presence of hor-

izontal lines on scanned images. On both of the images for the same

procedures there are letters A–D used for comparison of the spatial

distribution of dose and numbers 1–4 used for dose comparison. In

Table 8 the comparison results are displayed. The doses calculated

by SkinCare were within 16% accuracy compared with measure-

ments using XR-RV3 Gafchromic films. Spatial distribution of dose as

calculated on the SkinCare’s XR-RV3 Gafchromic phantom were

within 9% accuracy compared to spatial distributions recorded on

the GafChromic film for all points except for one point where accu-

racy was −20.7% (2.8 cm in this case).

3.B.4 | Comparison of patient skin dose maps
generated using different commercial software tools

Figure 10 presents comparison of a skin dose map generated by

SkinCare to skin dose maps from different commercial software

tools, all based on the same RDSRs generated during routine clinical

PCI procedure. In particular, RDRSs from Canon, Philips, and GE/Sie-

mens fluoroscopy units were used to compare skin dose maps from

F I G . 6 . XR-RV3 Gafchromic calibration curve.

TAB L E 3 Assessment of fitting function from Equation 2.

Point Measured (mGy) Predicted (mGy) Error (%)

1 100 162.6 62.6

2 250 330.7 32.28

3 500 508.1 1.62

4 750 723.4 −3.55

5 1000 996.4 −0.36

6 1250 1190.4 −4.77

7 1500 1395.5 −6.97

8 2000 2007.8 0.39

9 3000 2942.5 −1.92

10 4000 3875.1 −3.12

11 5000 5007.5 0.15

12 6000 6040.0 0.66

13 7000 7110.3 1.57

14 8000 8228.8 2.86

15 9000 8910.1 −1.00

16 10000 9867.0 −1.33
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SkinCare to skin dose map from DTS, RadimetricsTM, and RDM,

respectively. Good visual agreement between dose maps proved that

SkinCare’s geometry methodology is correct for all major vendors.

From the presented results, it is evident that 3D patient repre-

sentation clearly shows advantages compared to 2D patient repre-

sentation, especially in the case of larger angulations and oblique

projections. Unlike other software which display color maps relative

to the PSD, RadimetricsTM displays color map on an absolute dose

scale which makes harder to locate highest irradiated region on

patient’s skin. Furthermore, RadimetricsTM has slightly worse spatial

resolution of dose maps, which makes edges of dose maps saw-

tooth-shaped. In addition, DTS models without arms are good way

to address cases when patient’s arms are in overhead position, unlike

RadimetricsTM and SkinCare which calculate skin dose for patient’s

arms if they are in x-ray beam path.

4 | DISCUSSION

Standalone vendor-independent application SkinCare presented in

this paper is elegant and efficient way for skin dose mapping in

interventional radiology and interventional cardiology. Validation per-

formed by using the data from the Siemens Artis Zee Biplane fluo-

roscopy system and conducting VERIDIC’s “Acceptance and quality

control protocols for skin dose calculating software solutions in

interventional cardiology” showed that PSD calculated by SkinCare

was within 17% accuracy compared with measurements using XR-

RV3 Gafchromic films for fundamental irradiation setups, whereas

doses calculated by SkinCare were within 16% accuracy compared

with measurements using XR-RV3 Gafchromic films for simplified

clinical procedures. With respect to the overall uncertainty of skin

dose measurements using Gafchromic films, that ranges from 9% to

F I G . 7 . Siemens Artis Zee Biplane
fluoroscopy system calibration factors for
Plane a.

F I G . 8 . Siemens Artis Zee Biplane
fluoroscopy system calibration factors for
Plane b.
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78%, depending on the level of control of various film dosimetry

steps,30 the difference of < 20% is considered to be acceptable.

The obtained results are in the same range as those obtained

with similar studies that were carried out by other research groups

by evaluating software with predefined protocol. Bordier et al.5 com-

pared a calculation method that produces dose maps using Gafchro-

mic XR-RV3 films on an anthropomorphic phantom and found that

doses agreed within better than 15% compared with the Gafchromic

films. Using the Radiation Dose Monitor tool, Habib Geryes et al.3

accomplished average difference of 10 � 7% and 9 � 7% between

the calculated and the measured PSD values for 34 test conditions

performed on PMMA phantom using Siemens Artis Zee and GE

Innova IGS interventional systems, respectively. Methodology to

evaluate software described by Habib Geryes et al. was used in

study by Greffier et al.18 and it was found that average differences

between the measured PSD by XR-RV3 Gafchromic films and the

calculated PSD using interactive Skin Dose Map® tool (SDMTool)

integrated to the radiation dose management system (RDMS) Dose-

Watch® were 6% � 6% (range from − 3% to 22%) for flat phantom

and 5% � 7% (range from − 3% to 25%) for ICRP phantom. Rana

et al.9 found that biplane dose tracking system (Biplane-DTS) was

able to determine the entrance dose within 6% and the spatial distri-

bution of the dose within 4% compared to the measurements with

the ionization chamber and film for the SK150 head phantom.

Quantitative analysis by comparing geometry of dose maps

between Skincare and other commercial software was not possible

to conduct due to lack of information about input parameters for

the calibration and table offsets used by other solutions. Neverthe-

less, good visual agreement between dose maps obtained by Skin-

Care and commercial software tools (DTS from Canon,

RadimetricsTM from Bayer and RDM from MEDSQUARE) proved

that SkinCare can be used by medical physicists in practice for most

of the modern fluoroscopy units.

Two multiplicative factors that significantly influence skin dose

calculations are CF and TAF. RDSR have only one CF, whereas TAF

is not defined in RDSR. Additionally, a large range of possible TAF

values and allowable tolerance of � 35% above 100 mGy and

2.5 Gy-cm2 for the displayed Ka,r and KAP, respectively, could lead

to very inaccurate skin dose calculations. Wunderle et al.34 showed

that for typical adult beam qualities, applying a single CF determined

at tube voltage of 100 kV with cooper filtration in the beam results

in a deviation of less than 5% due to beam quality variation. There-

fore, attribute in RDSR containing multiple values for these factors is

mandatory since single CF and unavailable TAF cannot account for

typical beam qualities used during interventional procedures.

SkinCare calculates skin dose map and PSD completely based on

RDSR, thus any difference between RDSRs from different vendors

greatly affect calculation. For instance, only Siemens and Philips have

defined Table Lateral Position and Table Longitudinal Position fields

according to the DICOM standard, however, some RDSRs from Phi-

lips record these fields in RDSR only for cine acquisitions. Similarly,

Siemens and GE report square fields by automatically converting

rectangular fields into square equivalent fields which can affect spa-

tial distribution of dose as shown in Table 8, whereas Toshiba’s

(Canon) RDSR fields Collimated field height and Collimated field width

TAB L E 4 Siemens Artis Zee Biplane fluoroscopy system table
attenuation factors.

Field
Size
(cm2)

Tube
voltage
(kV)

Additional filtration (mm Cu)

0 0.1 0.2 0.3 0.6 0.9

10 × 10 60 0.694 0.745 0.769 0.783 0.808 0.825

70 0.713 0.762 0.785 0.798 0.822 0.833

80 0.724 0.772 0.793 0.806 0.827 0.836

90 0.734 0.779 0.799 0.810 0.829 0.836

100

110

0.743 0.785 0.805 0.814 0.831 0.836

0.750 0.790 0.808 0.817 0.832 0.838

120 0.756 0.794 0.811 0.823 0.834 0.839

15 × 15 60 0.703 0.755 0.782 0.796 0.823 0.834

70 0.721 0.774 0.798 0.810 0.838 0.848

80 0.732 0.783 0.807 0.819 0.842 0.851

90 0.743 0.790 0.812 0.823 0.845 0.848

100 0.751 0.796 0.817 0.827 0.845 0.851

110 0.759 0.801 0.821 0.830 0.845 0.852

120 0.765 0.805 0.824 0.833 0.848 0.853

20 × 20 60 0.720 0.772 0.795 0.814 0.830 0.843

70 0.741 0.791 0.812 0.830 0.849 0.860

80 0.753 0.802 0.823 0.840 0.856 0.866

90 0.765 0.811 0.830 0.847 0.862 0.870

100 0.775 0.817 0.839 0.851 0.866 0.874

110 0.784 0.823 0.844 0.855 0.867 0.876

120 0.790 0.828 0.849 0.858 0.871 0.878

TAB L E 5 Siemens Artis Zee Biplane table oblique factors.

Field Size (cm2) Tube voltage (kV) Additional filtration (mm Cu) 10ο 20ο 30ο 40ο

10 × 10 60-120 0 0.994-0.996 0.977-0.982 0.945-0.958 0.894-0.918

60-120 0.1 0.995-0.996 0.981-0.985 0.955-0.965 0.914-0.932

60-120 0.2 0.996-0.997 0.983-0.987 0.960-0.968 0.923-0.938

60-120 0.3 0.996-0.997 0.984-0.988 0.963-0.970 0.928-0.942

60-120 0.6 0.997-0.997 0.986-0.988 0.968-0.972 0.937-0.946

60-120 0.9 0.997-0.997 0.988-0.989 0.971-0.973 0.943-0.948
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when multiplied give a result which is larger than the value in Colli-

mated field area. Philips has defined fields Bottom shutter, Left shut-

ter, Right shutter, and Top shutter at 1 m from the focal spot in some

DICOM conformance statements while in others definition is not

provided so it is up to medical physicist to check this in practice. GE

sometimes does not report additional filtration while Philips in some

RDSRs does not report Distance Source to Detector for every event.

From above it is obvious that taking into account all possible

vendor specific exceptions can be a problem. Thus, harmonizing

RDSRs is mandatory for easier and more accurate assessment of

PSD. Additionally, if vendors come up with accurate way of assess-

ing patient position on table and implement that in RDSR, then

cumulative skin dose could be accurately calculated for repeated

procedures.

5 | CONCLUSION

This paper presents originally developed standalone desktop applica-

tion SkinCare for generating skin dose maps and PSD calculation

after completion of interventional radiology and cardiology proce-

dures on realistic 3D patient models using DICOM RDSRs from

Canon (Toshiba), GE, Philips, and Siemens fluoroscopy systems. Skin-

Care is proved to be very convenient solution that can be used for

TAB L E 6 Fundamental irradiation setups.

Setup Configuration Tube projection
Dose (IRP)
total (mGy)

PSD (mGy)

AccuracyXR-RV3 SkinCare

1* Phantom 15 cm + table + mattress PA 968 1362 1184 −13.1%

2* Phantom 20 cm + table + mattress PA 673 784 765 −2.4%

3* Phantom 25 cm + table + mattress PA 556 605 630 4.1%

4* Phantom 30 cm + table + mattress PA 1180 1463 1414 −3.3%

5* Phantom 10 cm + table + mattress PA 96 130 108 −16.9%

6* Phantom 25 cm + mattress + table PA + LAO 20ο 1528 2187 1947 −11.0%

7* Phantom 25 cm + mattress + table PA + LAO 20ο + PA CRAN 15ο 1638 2240 2086 −6.9%

8* Phantom 25 cm + mattress + table LAO 90ο 1317 1777 1869 5.2%

*Table Height position = 15 cm, Distance source to detector = 120 cm, FOV = 29 cm, tube voltage and additional filtration (mm Cu) - Automated

selection.

TAB L E 7 Simplified clinical procedures.

Procedure
Primary Angle (de-
grees)

Secondary Angle (de-
grees)

Collimated Field Area
(cm2)

Table Height Position
(cm)

Cumulative Ka,r

(mGy)

1* −30 −10 745 15 498

−30 −5 439 15 533

−25 −5 439 15 431

30 −15 751 15 469

30 −5 751 15 346

35 −15 285 15 372

2* 30 5 506 10 191

25 −5 815 10 176

30 0 815 10 183

−10 5 234 10 141

20 0 234 10 165

−30 30 838 10 221

3* 20 10 552 5 248

50 10 552 5 461

−30 15 552 5 277

25 35 552 5 327

30 20 552 5 320

50 10 552 5 703

*Distance source to detector = 120 cm, tube voltage and additional filtration (mm Cu) - Automated selection.
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F I G . 9 . Comparison of the dose maps
obtained using XR-RV3 Gafchromic films
(left) and SkinCare’s XR-RV3 Gafchromic
phantom (right) for three simplified clinical
procedures. On both images for the same
procedures there are letters a-d used for
comparison of the spatial distribution of
dose and numbers 1–4 used for dose
comparison. First row represents first
procedure, second row second procedure,
and third row third procedure.

TAB L E 8 Comparison of the doses and spatial distribution of dose measured by XR-RV3 Gafchromic films and SkinCare.

Procedure Point

Dose (mGy)

Accuracy Point

Distance (cm)

AccuracyXR-RV3 SkinCare XR-RV3 SkinCare

1 1 1794 1809 0.8% A 11.4 11.4 0.0%

2 1042 1078 3.5% B 9.0 8.9 −1.1%

3 1068 1025 −4.0% C 8.2 8.2 0.0%

4 1505 1552 3.1% D 10.1 9.9 −2.0%

2 1 127 133 4.7% A 7.5 8.0 6.7%

2 310 358 15.5% B 4.4 4.0 −8.6%

3 422 370 −12.3% C 16.0 16.0 0.0%

4 781 721 −7.7% D 7.4 7.5 1.1%

3 1 1079 1015 −5.9% A 11.9 12.5 5.0%

2 1898 1971 3.8% B 13.8 14.1 2.2%

3 565 647 14.5% C 13.5 10.7 −20.7%

4 1556 1464 −5.9% D 12.4 12.6 1.6%
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monitoring delivered dose following the interventional procedures.

The goal of future research is the validation considering the clinical

use of SkinCare and expanding SkinCare’s capabilities to support all

interventional radiology and cardiology procedures and setups.
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