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Abstract

The ability to accurately predict the binding site, binding pose, and binding affinity for ligand-

RNA binding is important for RNA-targeted drug design. Here we describe a new computational 

method, RLDOCK, for predicting the binding site and binding pose for ligand-RNA binding. By 

developing an energy-based scoring function, we sample exhaustively all the possible binding sites 

with flexible ligand conformations for a ligand-RNA pair based on the geometric and energetic 

scores. The model distinguishes from other approaches in three notable features. First, the model 

enables exhaustive scanning of all the possible binding sites, including multiple alternative or 

coexisting binding sites, for a given ligand-RNA pair. Second, the model is based on a new 

energy-based scoring function developed here. Third, the model employs a novel multi-step 

screening algorithm to improve computational efficiency. Specifically, first, for each binding site, 

we use a gird-based energy map to rank the binding sites according to the minimum Lennard-

Jones potential energy for the different ligand poses. Second, for a given selected binding site, we 

predict the ligand pose using a two-step algorithm. In the first step, we quickly identify the 

probable ligand poses using a coarse-grained simplified energy function. In the second step, for 

each of the probable ligand poses, we predict the ligand poses using a refined energy function. 

Tests of the RLDOCK for a set of 230 RNA-ligand bound structures indicate that RLDOCK can 

successfully predict ligand poses for 27.8%, 58.3%, and 69.6% of all the test cases with the root-

mean-square deviation within 1.0, 2.0, and 3.0 Å, respectively, for the top-three predicted docking 

poses. The computational method presented here may enable the development of a new, more 

comprehensive framework for the prediction of ligand-RNA binding with an ensemble of RNA 

conformations and the metal ions effects.
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1 Introduction

RNA molecules can fold into complicated tertiary structures that contain various motifs such 

as pseudoknots, kissing loops, and deep major groove.1 Such a plethora of tertiary structural 

motifs can lead to a variety of ideal binding sites for small molecules and hence make RNAs 

potential drug targets.2 The RNA druggability is particularly important as protein 

druggability is severely limited by the lack of proper binding pockets.3,4 Furthermore, RNA 

is critical to gene expression,5 thus inhibiting RNA function may lead to the termination of 

the production of dozens or more proteins.6,7 A notable example for the effect of ligand-

RNA binding is riboswitch,8–12 where ligand binding results in the termination or go-

through for transcription or translation.12 Furthermore, because RNAs can directly 

participate in the protein syntheses6 through the formation of specific active sites in the 

ribosome,13 or ligand-RNA binding can directly impact gene expression and viral replication 

in viral gene regulation.14

In recent years, computational docking/scoring methods, such as such as rDOCK,15,16 

DrugScoreRNA,18,19 LigandRNA,17 DOCK6,20 and MORDOR,21 have been developed to 

predict RNA-ligand interactions. These docking/scoring methods can be classified into two 

types:

1. Knowledge-based methods. DrugScoreRNA18,19 uses a set of distance-

dependent knowledge-based potentials to score and rank the ligand poses for an 

RNA target. The potentials used in DrugScoreRNA18,19 are described by the 

distance between a pair of atoms in the ligand and the RNA, respectively. The 

potentials are derived from 670 crystallographic RNA-ligand and RNA-protein 

complexes. However, only 50 of them are RNA-ligand. LigandRNA17 is another 

knowledge-based method. Its potentials consider not only the distances but also 

the angles between RNA atom pairs and ligand atoms. The potentials used in 

LigandRNA17 are derived from 251 RNA-ligand complexes. rDOCK16 is an 

open-source software that can predict ligand binding poses in nucleic acids and 

proteins. The (empirical) scoring functions in rDOCK15 account for specific 

RNA-ligand interactions such as those involving aromatic groups.
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2. Physics-based methods. MORDOR21 applies all-atom CHARMM27 force 

field22 to the target and general AMBER force field23 to the ligand. This model 

allows both ligand and target to be flexible. DOCK620 is another typical physics-

based docking procedure. In DOCK6, AMBER force field23,24 is applied to both 

ligand and RNA, and the scoring function contains the solvent and (sodium) ion 

effects on docking. In comparison, MORDOR may provide higher accuracy in 

predictions of a specific ligand database, while DOCK6 has higher efficiency and 

be applicable to a broader database.20 In addition to MORDOR and DOCK6, 

other physics-based scoring/docking methods focus mainly on special types of 

ligand such as aminoglycoside antibiotics,25 or targets such as purine riboswitch.
26

The applications of the existing scoring/docking methods have been successful at different 

levels.27 The accuracy of the knowledge-based methods is dependent on the training 

database of RNA-ligand complexes. Compared with protein-ligand complexes,28 we have 

much less experimentally determined structures available for the RNA-ligand complexes. 

Nevertheless, with the development of rigorous physical models, we can realistically expect 

that with the expansion of the RNA-ligand complex structure family, the accuracy of the 

predictions can be continuously improved.29 Moreover, given the limited dataset of available 

structures, physics-based docking/scoring methods are particularly needed. Despite the 

significant efforts devoted to the development of physics-based algorithms, limitations of the 

current approaches remain. For example, DOCK620 requires expert knowledge to choose the 

various parameter options for reliable calculations.

Here we report a new RNA-ligand docking (RLDOCK) model. The model has three key 

novel ingredients. First, we develop a new scoring function based on ligand-RNA energetics,
27 including the van der Waals (VDW) interaction, electrostatic interaction, polar and 

nonpolar hydration effects, and hydrogen bond effect. Second, we employ a novel global 

search algorithm to identify all the potential docking sites for a given ligand. Third, the 

model enables docking with an ensemble of ligand conformers. To derive the scoring 

function, we use a total of 230 RNA-ligand complexes that have been experimentally 

determined (Table S1 in the Supplemental Information (SI)), among which 30 are the 

training set for the extraction of the statistical potential and 200 are the test set. Comparisons 

between other existing models suggest that RLDOCK can give better predictions for ligand 

docking pose.

2 Model and methods

2.1 Preparations for RNA and ligand

We download all the (totally 230) experimentally determined RNA-ligand complex 

structures, from the protein data bank (PDB).30 For the NMR structures that contain multiple 

models, we select the first model. If an RNA-ligand complex contains multiple types of 

ligands, we select the ligand that has the largest number of heavy atoms and ignore the other 

ligands. For example, the RNA-ligand complex of PDB identifier (ID) 3DIL31 has five 

ligand molecules, a lysine with 8 heavy atoms, three fragments of pentaethylene glycol with 

3, 3, and 5 heavy atoms, respectively, and an isopropyl alcohol with 4 atoms. We keep only 
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the lysine for the docking prediction. For a ligand with rotatable bonds, we generate an 

ensemble of ligand conformers. Specifically, we use the cheminformatics toolkit Open Babel 

3.032 to generate at least 200 distinct conformers. The generated ligand conformers along 

with the native (crystal) conformer are classified into at least 30 clusters based on the 

RMSDs between the different conformations. The centroid structures of the clusters are 

selected to form the conformational ensemble of a ligand. For a cluster that contains the 

crystal structure of the ligand, the crystal structure is used. To cover a broad range of 

conformations, we adopt an adaptive method for conformational clustering. A larger RMSD 

cut-off between the conformations would lead to a smaller number of clusters and hence a 

less diverse conformational ensemble. In our calculation, we gradually reduce the RMSD 

cut-off value until the number of the resultant clusters is no less than 30. We then select the 

largest 30 clusters for ligand conformers. To further test the reliability of the model, we also 

generate conformational ensembles of ligands by excluding all the native poses. The 

ensembles are used to test the ability of the model to predict the (near-native) binding poses 

without prior knowledge about the (experimental) native poses.

We use RMSD with respect to the native pose to assess the accuracy of the theoretical 

predictions for the ligand poses. The detailed information about the RNA-ligand complexes, 

such as the experiment method (NMR or X-ray) and the ligand name, are listed in Table S2 

in the SI.

To calculate the electrostatic interaction energy, we assign partial charges using the “Dock 

prep” module in Chimera.33 For a given RNA or ligand, we implement the “Dock prep” 

module for alternate location deletion (keeping the highest occupancy), hydrogen addition, 

partial charges addition, and output with Mol2 format. Here we apply the hydrogen addition 

to generate possible protonation states at the physiological pH. In the step of partial charges 

addition, we use AMBER ff14SB (with Parm99) to assign charges34,35 of standard RNA 

residues. For the ligand and nonstandard residues in RNA, we first calculate the partial 

charges using ANTECHAMBER with the AM1-BCC (AM1 for short) method.36,37 If AM1 

fails to assign the partial charges, we then use Gasteiger (GAS for short)38 to calculate the 

partial charges. Both AM1 (by default) and GAS are included in the “Prep Dock” module. 

See Table S2 in the SI for a summary of the methods that we use to assign partial charges.

2.2 The RLDOCK model and the scoring function

The procedure above for an RNA-ligand complex results in two files of the RNA and the 

ligands in the format of Mol2 that contain the information about the atomic coordinates and 

partial charges. In our model, the different types of atoms are treated as spheres with specific 

VDW radii (listed in Table S3 in the SI). We describe a ligand pose using four variables 

(R,L,A,O), where R denotes the coordinate of the candidate binding site (an effective anchor 

point for the ligand), L represents the ligand conformer used for docking, A refers to the 

ligand atom to be placed at site R, and O denotes the three-dimensional orientation of the 

ligand. We use Euler angles (α,β,γ) about the anchor point R to represent the ligand 

orientation O.

To efficiently sample the ligand binding pose for a given RNA structure, we first sample the 

possible binding sites R and the different ligand atoms A to be placed at the binding site R 
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for all the different ligand conformers, then generate all the possible ligand orientations 

through 3D rotation about the ligand atom at the site. We configure the RNA in a box such 

that the six boundaries of the box are 3 Å away from the outermost atoms of the RNA, and 

discretize the space using a simple cubic lattice of grid 0.5 Å. We note that the distance 3 Å 

is slightly larger than the hydration layer, which has a decay length around 1.4 Å. To sample 

the binding configurations for a given binding sites R, we place a ligand (heavy) atom A in a 

conformer L at R. For each give set of (R,L,A), we sample ligand poses through 3D rotation 

around atom A. We generate the rotation through the Euler angles O with 10◦ increment for 

each angle in each step. In the next step, we score each binding pose (R,L,A,O) using a 

novel energy-based scoring function described below.

The RLDOCK scoring function is based on the physical interaction energies between RNA 

and ligand, including the VDW interaction, electrostatic interaction, polar and nonpolar 

hydration interactions, hydrogen-bond interaction, and ligand intramolecular van der Waals 

(VDW) interaction. We use the generalized Born approximation with solvent-accessible 

surface area (GB/SA model)39–44 to treat the polar and nonpolar hydration interactions. In 

the energy calculation, we neglect the hydrogen atoms in RNA and ligand and add their 

charges to the directly connected heavy atoms. For a given ligand pose (R,L,A,O), the 

energy score is given by:

S(R, L, A, O) = clj × ΔUlj + ce × ΔUe + cℎ × ΔUℎ + csa × ΔUsa +
cpol × ΔUpol + cself

R × ΔUself
R + cself

L × ΔUself
L + cinternal

L × ΔUinternal
L , (1)

where we use the weight coefficients45 c to account for the correlation (nonadditivity) 

effects for the different interactions. In what follows, we illustrate the calculation of each 

energy term in the scoring function above.

We use the Lennard-Jones (LJ) potential ΔUlj to represent VDW interaction:

ΔUlj = ∑
r

∑
l

σrl
rrl

12
− σrl

rrl

6
. (2)

Here the subscripts r and l denote the atom r in the RNA and the atom l in the ligand. rrl 

represents the distance between the two atoms and σrl = 0.8(Rr + Rl) is the equilibrium 

distance, where Rr and Rl are the radii of atom r and l, respectively. We apply a cut-off 

distance rcut = 2.5(Rr + Rl) in the LJ potential calculation.

We calculate the electrostatic interaction ΔUe between the ligand and RNA using the 

following formula:

ΔUe = ∑
r

∑
l

ZrZle2

εcrrl
. (3)

Here Zr and Zl are the electric charges of the atoms r in RNA and l in ligand, respectively, e 
is the electronic charge, εc (=20 in our calculation) is the dielectric constant of the RNA-

ligand complex.
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We evaluate the hydrogen-bond interaction energy ΔUh between the RNA and ligand as:

ΔUℎ = ∑
r

∑
l

uℎ rrl , (4)

where uh(rrl) is the hydrogen-bond energy of an RNA-ligand atom pair. We apply an 

empirical formula15 to evaluate the hydrogen-bond energy:

uℎ rrl =

−1 rrl ≤ rmin

−1 + rrl − rmin
rmax − rmin

rmin < rrl < rmax

0 rrl ≥ rmax

(5)

Here rmin = 0.8(Rr + Rl) and rmax = 1.3(Rr + Rl).

To account for the change of the hydration energy upon ligand-RNA binding, we consider a 

hydration layer of width 1.4 Å around the surface 46,47 of the RNA, ligand, and ligand-RNA 

complex structures. We evaluate the nonpolar hydration energy ΔUsa according to the 

change in the solvent-accessible surface area (SASA):48–50

ΔUsa = σ × ΔSA . (6)

where ΔSA is the total SASA change before and after the ligand docking.

ΔSA = SAcomplex − SARNA + SAligand . (7)

Here SAcomplex denotes the SASA of the RNA-ligand complex with the pose (R, L, A, O). 

SARNA and SAligand are the SASA of the RNA alone and ligand alone, respectively (see Fig. 

S1 in SI). We choose σ = 0.0054kcal/(mol·Å2 for the empirical atomic solvation parameter σ 
in Eq. 6.51

We decompose the polar hydration interaction into three parts:52 the self-polarization energy 

changes ΔUself
R  for the RNA and ΔUself

L  for the ligand, and the mutual polarization energy 

change ΔUpol induced by other atoms:

ΔUpol = Upol
complex − Upol

RNA + Upol
ligand , (8)

where Upol
complex, Upol

RNA, and Upol
ligand are the mutual polarization of the complex, the RNA 

alone, and the ligand alone, respectively. We estimate the three mutual polarization energies 

from the GB model:39–44

Upol = 1
2

1
εw

− 1
εc

∑
ij

ZiZje2

rij2 + BiBjexp −
rij2

4BiBj

,
(9)
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where εw (=78) denotes the dielectric constant of water. We assume the same dielectric 

constant εc for the bound and the unbound RNA and ligand. The subscripts i and j (i ≠ j)
represent respective molecule (complex, RNA alone, or ligand alone). rij denotes the 

distance between these two atoms. Bi and Bj are the Born radii of atoms i and j (see Eqs. S1-

S4 in the SI). We compute The self-polarization energies ΔUself
R  of the RNA and ΔUself

L  of 

the ligand as the following:

ΔUself
R = 1

εw
− 1

εc
∑

r

1
Br

a − 1
Br

b Zr
2e2

ΔUself
L = 1

εw
− 1

εc
∑

l

1
Bl

a − 1
Bl

b Zl
2e2

(10)

Here Br(or l)
b  and Br(or l)

a  denote the Born radius of atom r (or l) in the RNA (or ligand) before 

and after the ligand-RNA docking, respectively.

For a given conformer L, we use the intra-molecular LJ potential ΔUinternal
L  within ligand to 

characterize its energy:

ΔUinternal
L = ∑

i

L
∑

j(j ≠ i)

L σij
rij

12
− σij

rij

6
. (11)

Here i and j denote a non-bonded atom pair in the ligand, rij is the distance between the two 

atoms, and σij = 0.8(Ri + Rj) is the equilibrium distance, where Ri and Rj are the radii of 

atom i and j, respectively. A cut-off distance rcut = 2.5(Ri + Rj) is applied here for the LJ 

potential.

The total number of the ligand poses generated in the sampling algorithm above is equal to 

(the number of grid points) × (the number of ligand conformers) × (the number of ligand 

atoms) × (the number of orientations). The complete enumeration of all these possible ligand 

docking poses and the evaluation of their energy scores are computationally demanding. To 

enhance the computational efficiency, we develop a novel approach.

2.3 Global sampling and search for binding mode (R, L, A)

To enhance the efficiency in the sampling of the ligand poses, we develop the following 

multi-step screening approach (see the flowchart in Fig. 1).

First, we remove all the grid points R that can cause steric clashes between the ligand and 

the RNA. We determine the steric clash using a spherical probe of radius rball = 2Å, which is 

slightly larger than the largest atom phosphor (of radius 1.9Å shown in table S3 in SI). For a 

given site R = (x, y, z), if the probe centered at R touches RNA heavy atoms, i.e., the 

distance between R and an RNA atom is within rball + ratom, where ratom is the radius of the 

atom, we exclude the grid site R from the sampling space of the binding site (anchor point 

for the ligand).
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Second, we search for all the pocket regions on RNA surface. These regions are potential 

RNA binding sites. To identify the binding pockets, we move the probe sphere a distance (6 

Å) along the positive and negative x, y, and z directions (a total of 6 directions). If this probe 

sphere in the above movements meets the heavy atom(s) of RNA in at least 5 directions, we 

keep the site R. Otherwise, the site is not in an RNA pocket and is removed from further 

sampling steps.

The above two-step screening results in a significant reduction in the available number of 

grid points R as candidate binding sites; See Fig. 2A for three examples (PDB IDs: 1KOC, 

1AKX, and 2BEE) and Table S4 in the SI for the resultant number of candidate binding 

sites.

After generating the putative binding sites, we sample the different ligand configurations at 

each candidate binding site. The sampling involves two steps. First, for each candidate 

binding site R(anchor points) sampled above, we place the different atoms A from 

conformer L at the site R. Second, for a given assignment of the atom A, we sample the 

ligand orientation by rotating the conformer L about the atom A (anchored at R). We use 

Euler angles for the 3D rotation about R to generate an ensemble of ligand orientations. This 

step results in an ensemble of ligand pose (and RNA-ligand complex structure) described by 

(R, L, A, O).

We employ a crude, computationally efficient method to further sieve the ensemble of ligand 

binding poses above. We prepare a grid energy map with grid spacing of 0.2 Å for common 

atom types (C, N, O, P, S, etc) in advance. For each atom type placed at the different grid 

sites, we calculate and tabulate the LJ potential energy values between the atom and the 

RNA. For an arbitrary binding configuration (R, L, A, O), some atoms may not be 

positioned exactly on grid sites. For the off-grid atoms, we use the LJ energy values on the 

nearest grid sites. With the pre-tabulated grid energy data, we can quickly calculate ΔUij(R, 
L, A, O) (see Eq. 2) by simply adding the corresponding numbers in the energy table. 

Among the different orientations, we call the one with the lowest LJ potential as the 

“geometrically preferred orientation” and the corresponding LJ potential energy as the 

geometric compatibility score SCORELJ(R, L, A). Similarly, for a given binding site R, 

among all the different conformers L and all the different assignments of the ligand (bound) 

atom A at R, we identify the conformer L* and the corresponding atom A* that has the best 

(lowest) SCORELJ(R, L, A).

We evaluate the success of the global search algorithm above for the potential binding site R 
and the binding atom A using the experimentally determined RNA-ligand complex structure. 

We rank the candidate binding sites R according to SCORELJ(R, L, A) and consider a 

prediction for the candidate site R to be successful if R is the closest to the atom A(R, Lexp) 

in the experimental structure (here Lexp denotes the experimental conformer) and the 

distance is within 0.5Å (grid spacing). As shown in Fig. 2B for the success rate for the 30 

RNA-ligand complexes as the training set (see also Table S4 in the SI), we find that the most 

poorly predicted case is (PDB ID) 3DIX, for which the most native-like ligand binding pose 

is ranked the 207th in list of the candidate poses. Among the 30 cases, 3DIX has the largest 

RNA (174-nt) and the ligand has a relatively simple structure with only 10 heavy atoms. 
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Predicting the binding sites for large RNAs and small ligands is challenging because a larger 

RNA usually has a larger number of potential anchor points and a smaller ligand is less 

sensitive to the geometric compatibility scores at the different anchor points.

After generating the above ensemble of binding poses (R,L,A,O) on the basis of the LJ 

potential, we apply a more refined energy function to score the candidate poses. To reach the 

optimal balance between the computational efficiency and the accuracy, we keep the top 300 

ranked binding sites R*, and for each R* we keep 3 conformers L* each with 3 different 

assignments of the bound ligand atom A* according to the SCORELJ(R*, L*, A*) score.

Although the above procedure leads to a drastic reduction in the number of the candidate 

binding sites and the binding atoms in each site, for a given set of binding site R*, 

conformer L*(R*), and atom A*(R*, L*), there exist a huge number (> 105) of ligand 

orientations. Because a slight change in the ligand orientation may incur a notable change in 

the SASA of the RNA-ligand complex SAcomplex (see Eq. 7) and new Born radii of the 

atoms in complex(see Eqs. S1-S4 in SI), we need to update the SASA and Born radii for 

each ligand orientation sampled. SASA and Born radii calculations involve all the atoms in 

the RNA-ligand complex, thus, an exhaustive computation for all the possible orientations 

can be time-consuming (several seconds per orientation). To speed-up the overall 

computational efficiency, before applying the complete (high-resolution) scoring function 

(Eqs. 1–11; denoted as SF-h for the high-resolution scoring function), we first use a 

computationally efficient, simplified (low-resolution) scoring function (denoted as SF-l for 

the low-resolution scoring function) to select the highly probable ligand orientations for a 

given (R*, L*, A*).

2.4 The simplified scoring function

In the simplified scoring function(SF-l), we employ a fast method to estimate the GB/SA 

energy terms.39–44

1. Simplified in SASA. When considering the SASA change for a pair of ligand-

RNA atoms, we ignore the effect from other atoms (see Fig. S1 in SI), and 

estimate the SASA change ΔSA using the following approximation:

ΔSA = ∑
r

∑
l

− 2π Rr* × Hr* + Rl* × Hl* . (12)

Here Rr* = Rr + 1.4Å  and Rl* Rl + 1.4Å  denote the radii of the RNA atom r 

(with a hydration shell) and the ligand atom l (with a hydration shell). Hr* and 

Hl* are the heights of the overlapping spherical crown of the atoms (see Fig. S1 

in SI).

2. Simplified Born radii. Ignoring the changes in the Born radii for the RNA upon 

ligand docking, we assume ΔUself
R = 0 in the Eq. 10 and neglect the changes in 

the RNA-RNA mutual polarization interactions Upol
complex and Upol

RNA in Eq. 9. For 

the ligand atoms before docking, we estimate the Born radii using the VDW radii 
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Bl
b = ratom . For a ligand atoms, we estimate the post-docking Born radii by 

placing the atom at the binding site R*. For example, for a ligand consisting of 

three types of atoms N, C, and O, we position atoms N, C, and O one by one at 

the binding site R* and calculate their Born radii separately. With the above 

approximations, we can assume atoms in a ligand bound at a given site with 

different orientations to have the same Born radii.

Compared to the original full scoring function, the above simplified scoring function (SF-l) 
can lead to thousands-fold reduction in computational time.

2.5 Refined scoring function

We first employ the SF-l above to perform a quick screening of ligand orientations in a 

binding site, then apply the rigorous SF-h (Eqs. 1–11) to refine the ranking of the ligand 

poses. We use the aforementioned 30 RNA-ligand complexes to train the weight coefficients 

in the scoring function. The training set covers a wide variety of ligands from the totally 230 

RNA-ligand structures. In the training process, each coefficient varies from 0.02 to 5.00 with 

a step 0.02. As shown below, we repeat the coordinate descent method to find out the 

different quasi-optimal sets of the weight coefficients and then determine the optimal values 

of the weight coefficients by minimizing the heavy-atom RMSD between the predicted 

ligand pose and the native pose (in the PDB structure). The resultant weight coefficients can 

give the heavy-atom RMSD within 2 Å for the top-three ranked poses. In detail, the 

computation for the weight coefficients involves three steps.

First, we use the crude SF-l to calculate the seven interaction terms in Eq. 1 for a quick 

estimation of the coefficients by the coordinate descent method; See Table 1. Because 

ΔUself
R = 0 in SF-l, the corresponding coefficient is not included in the calculation.

Second, we apply the rigorous SF-h to refine the predicted weight coefficients. Specifically, 

we run the calculation for the top-five poses predicted in the first step above for each set of 

the binding site R, conformer L, and atom A. In this step, the coefficients of the VDW 

interaction, electrostatic interaction, hydrogen-bond interaction, and ligand internal 

intramolecular VDW interaction remain the same as those obtained in the first step because 

these ligand-RNA interactions are the same in the SF-l and SF-h. The refined results for the 

coefficients are shown in Table 1. This step leads to the final scoring function.

Third, we start from the top-ranked pose and group the ligand poses into clusters using a 

heavy-atom RMSD cut-off 2 Å. In each cluster, the pose with the best score is chosen to 

represent the cluster. This step leads to a new list of ranked poses, each representing a 

cluster.

3 Results

The prediction of a ligand-RNA bound structure involves five steps in the RLDOCK model: 

(1) search for the possible binding sites R using the spherical probe; (2) determine the 

binding atoms A of conformer L through the geometric fit; (3) select the binding orientations 

O using the crude, simplified scoring function; (4) rank the ligand docking poses using the 
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original, refined scoring function; and (5) generate the final rank list after the cluster 

calculation. Our test results are shown in Table S2 in the SI.

3.1 Success rate of RLDOCK

Success rates using multiple RMSD thresholds are necessary for the evaluation of a ligand 

pose prediction model.53 We measure the accuracy for the prediction of the ligand binding 

pose in terms of the heavy-atom RMSD to the ligand pose in the crystal structure. Fig. 3 

shows the success rate with the increased RMSD cutoff from (A) < 1 Å, (B) < 2 Å, and (C)< 

3 Å for all 230 RNA-ligand complexes. In Fig. S2 of the SI, we show the success rates for 

the training set (30 complexes) and the test set (200 complexes), respectively. If we use only 

the crude SF-l (without using the more accurate SF-h) in the RLDOCK model, the model 

can successfully predict 8.3%, 22.2%, and 29.6% of all the cases within RMSD thresholds 1 

Å, 2 Å, and 3 Å, respectively. The use of SF-h (after the SF-l-based quick, initial screening) 

would increase the fractions to 17%, 40.4%, and 49.1%, respectively, for the top-ranked 

pose.

Because RLDOCK uses the top-ranked pose as the starting point for clustering, the success 

rates of the SF-h-based predictions with and without clustering are the same for the top-

ranked pose. However, for the results that include the top-10 poses, the use of clusters can 

cause a notable increase in the success rate by 3.9% (from 40.4% to 44.3%), 10.0% (from 

64.3% to 74.3%), and 7.9% (from 74.3% to 82.2%) for RMSD within 1 Å, 2 Å, and 3 Å, 

respectively. According to the results shown in Fig. 3, within the top-50 ligand docking 

poses, the RLDOCK model based on SF-h (after applying SF-l) and the cluster of the poses 

can give successful predictions for 64.3% (RMSD <1 Å), 87.0% (RMSD <2 Å), and 95.7% 

(RMSD <3 Å) of all the RNA-ligand complexes, respectively.

3.2 Predictions for ligand binding with multiple binding sites

Among all the 230 RNA-ligand complexes, there are 51 cases that contain multiple ligands, 

each bound to different binding sites (PDB IDs listed in Table S5 in the SI). The novel 

global search method for all the possible binding sites enables the RLDOCK model to find 

out the multi-ligand poses in these (51) cases (also see Table S5 in SI).

Our test results show that RLDOCK can successfully predict 62.7% of the 51 cases, where 

the top ranked pose is an experimental pose within 2 Å RMSD; See Fig. 4A. The success 

rate is increased to 84.3% and 86.3% if we consider the top-three and top-five poses, 

respectively. For 10 out of the 51 (19.6%) cases, the top-two ranked poses correspond 

exactly to the two experimental ligand poses. The apparent low success rate (19.6%) is due 

to our strict criteria that the top-two poses correspond exactly to the experimentally observed 

two alternative binding poses. In fact, the top few ranked poses often cluster around the top-

one binding site before the second, distinct, binding pose/site emerges in the ranked list. 

Indeed, the success rate for the prediction of the multiple binding poses rises rapidly to 

37.3% and 60.8% if we include the top-three and top-ten poses, respectively. Moreover, the 

success rate increases to 82.4% cases if we include the top-100 ranked poses. These 100 

predicted poses form less than ten clusters, demonstrating the reliability of RLDOCK in 

predicting multiple docking poses.
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3.3 Comparisons to other models

Here we compare our RLDOCK model to other models, such as the original version of 

rDOCK reported in 2004,15 LigandRNA,17,29 DrugScoreRNA,18,19 DOCK6,20 and 

MORDOR.21 In the comparisons, we use a collection of 42 RNA-ligand complexes reported 

in Ref. 17 as the test set (see Table S6 and S7 in the SI). Among the 42 test cases, 1FJG, 

1HNW, 1XPB, and 2OGN (PDB id) are ribosomal complexes. RLDOCK may not provide 

accurate predictions for these systems because the proteins in the complexes may influence 

ligand binding and the huge number (> 105) of the potential binding sites in these large 

systems (> 2000 nts) may render the sampling and scoring for the binding poses 

computationally infeasible.

Using the top-ranked pose with RMSD ≤ 2Å as the criteria for a successful prediction, out of 

the 42 test cases, LigandRNA, DrugScoreRNA, and DOCK6 can successfully predict 15, 13, 

and 15 cases, respectively (see Table S6 in SI). The combination of the LigandRNA and 

DOCK6 can find 20 cases. Our RLDOCK model alone finds 21 out of 38 cases. 

Furthermore, the original version of rDOCK, the original DrugScoreRNA, and MODDOR 

can predict 5 out of 10, 12 out of 21 cases, and 20 out of 32 cases, respectively. Considering 

the 38 cases that RLDOCK can treat, we find that RLDOCK outperforms the other models 

listed in Table 2 for both the top-one ranked poses and the top-three poses (see the details in 

Table S7 in SI).

4 Discussions

RLDOCK is a physics-based model for ligand-RNA binding. The model has three key 

ingredients: (a) a global search algorithm for the potential binding sites, (b) a scoring 

function for ligand-RNA interactions, and (c) conformational sampling of flexible ligands. 

Our tests indicate that the RLDOCK model can identify the native ligand pose with an 

improved success rate. Moreover, the score versus RMSD plot supports a positive discerning 

ability of the scoring function; See Figs. 5A-C.

Furthermore, for the cases in Figs. 5A-C, we also plot the Receiver Operating Characteristic 

(ROC) curve for the top 100 poses and calculate the corresponding Area Under Curve 

(AUC) of each ROC curve (see Fig. S3 in SI). The value of AUC is a binary identifier 

evaluation indicator and it varies between 0.5 and 1, where 0.5 denotes a random guess and 

1 denotes to a perfect identifier.54 The AUC-ROC results further support RLDOCK as a 

good identifier. Even for the case that a ligand has two binding sites in the RNA receptor, the 

RLDOCK model can find both ligand poses/sites, such as the case of PDB ID 2BE0 as 

shown in Fig. 5D. Here, in order to discriminate the predicted ligand poses in Fig. 5D, we 

use the native ligand pose in site 1 as the reference ligand pose to calculate the RMSD (same 

for the case of PDB ID 2BEE in Fig. 6A3). The first and the second top-ranked poses 

correspond to the native ligand pose in site 2 and site 1 respectively, as shown in Fig. 6E.

However, due to the fact that ligand pose prediction is based on the global search around the 

given RNA receptor, we find that the first or the first few high-ranked poses could be located 

in a false binding pocket in the RNA (see the four selected examples in Fig. 6). A close 
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examination of such cases suggests other potentially important factors that need to be 

considered for ligand-RNA docking.

1. Ligand flexibility. The current RLDOCK can treat flexible ligand 

conformations. Combined with exhaustive 3D rotation of the ligand 

conformations, we generate a large ensemble of binding configurations. A 

limited sampling of the ligand conformations can impact the accuracy of the 

model prediction. Taking the ligand streptomycin (with 16 rotatable bonds) in 

PDB ID 1NTA as an example, the furanose and pyranose rings are positioned 

outside the RNA pocket and are less well defined than the streptidine anchored 

inside the binding pocket.55 Although the streptidine part of the top-ranked pose 

is also buried deep inside the pocket with other two rings outside, the predicted 

configuration shows a relatively large RMSD of 5.1 Å, as shown in Fig. 6A1 and 

B1. In addition, the streptidine has two guanidino and three hydroxyl groups 

which cause many possible ways of inter-molecular interactions. Thus, more 

binding configurations need to be considered in order to predict more accurate 

top-ranked poses. Moreover, we only consider the intramolecular VDW 

interaction (see Eq. 11) for each ligand conformer. For a ligand with many 

rotatable bonds, however, the highly flexible conformations may cause other 

important interactions beyond the VDW.

2. Metal ion binding. The metal ions play an essential roles in RNA folding and 

stability.56,57 The metal ions can be trapped at specific binding sites in RNAs.27 

The bound ions, especially multivalent ions, can exclude ligand binding in the 

same pocket region. As shown in Figs. 6A1 and B1 for the 1NTA case, poses 

with large RMSDs represented by the second-ranked pose are located at the 

pocket that is actually occupied by two Ba2+ ions (yellow balls) in the crystal 

structure. Moreover, other ions such as Na+ ions (purple balls) can also influence 

the ligand docking pose. In the current version of RLDOCK, effects from such 

specifically bound ions are ignored. In fact, our test calculation shows that if we 

consider the bound ions (by keeping them in the RNA mol2 file), the first 

successfully predicted pose would move up in the ranking system from the 200th 

to the 40th.

3. Competition between the different types of ligands. In some cases, the crystal 

structure contains different types of ligands bound to the RNA. For example, the 

structure of PDB ID 2EES contains two types of ligands (ACT and HPA), as 

shown in Fig. 6B2. In RLDOCK, only the ligand with the most heavy atoms 

(HPA in this example) is used for the prediction (see the subsection 2.1). The 

experimental structure shows that the RLDOCK-predicted top two poses are 

located in the RNA pocket occupied by the ACT ligand (Fig. 6A2 and B2). The 

result suggests that ACT out-competes HPA in the binding to this pocket.

4. Correlation between the same type of ligands. For the cases of a ligand having 

two or more binding sites, the current RLDOCK model dock ligands one by one 

as if the different ligands bind to RNA independently. The model neglects the 

correlation between the different ligand binding events and may cause false 
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predictions. For example, in the case of PDB ID 2BEE as shown in Fig. 6A3 and 

B3, the crystal structure shows two ligands bound at site 1 and 2, respectively. 

Although the top-two poses predicted from RLDOCK are located not far from 

the two native poses, the ligand (ID: JS4) is an antibiotics after amination from 

paromomycin with a physiological charge is +7.58 So the ligand is very sensitive 

to the charged environment, therefore, the correlation between the two ligands 

cannot be ignored. If the correlation is considered by placing a ligand in site 1 (or 

site 2), the RLDOCK model can successfully predict the top-ranked pose with 

RMSD = 0.805 Å at site 2 (or RMSD = 0.861 Å at site 1).

5. Other RNA-ligand interactions neglected in the scoring function. We find 

that in some cases, such as 3SUX (see Fig. 6A4 and B4) and 4LVX (see group 3 

in Fig. 4B), a few top-ranked poses will be located at the “false” binding pockets. 

The result may be attributed to RNA-ligand interactions that are neglected in the 

scoring function, such as the attractive lipophilic interaction and aromatic 

stacking interaction.15

Further refinement of the RLDOCK model can also come from an improved computational 

efficiency. The computational efficiency is limited by the sampling of all the possible 

binding sites; See Table S4 in the SI for the computer time of the global search of binding 

sites. The complexity of global search is correlated to the square of the number of ligand 

atoms. This is because for a given binding site R, all the ligand atoms are tried at the binding 

site and for each binding pose, the calculation for the VDW intra-molecular interaction 

energy involves the sum over all the ligand atom pairs. RLDOCK computations with larger 

ligands such as those in PDB structures 1ET4, 2BE0, 2BEE, and 2FD0 are much more 

demanding in computation time due to the sampling of a much larger ensemble of flexible 

ligand conformers. In addition, the complexity of global search is also correlated to the 

number of candidate binding sites. Therefore, global search for the binding sites on a large 

RNA such as ribosome can be time demanding and memory intensive.

5 Conclusions

We here present a newly developed model, RLDOCK, to predict the ligand docking pose in 

a ligand-RNA complex. In the prediction, the structures and partial charges for the RNA and 

an ensemble of ligand conformers are used as the input information, RLDOCK predicts the 

ligand binding poses in the following steps: (a) To select the candidate binding sites over the 

entire RNA using a sphere probe; (b) To determine the ligand atom to be placed at the 

selected binding sites according to the geometric compatibility between the RNA and ligand, 

(c) To choose the probable ligand orientations through quick computation by applying the 

simplified scoring function (SF-l); (d) To score the (hundreds to thousands) ligand poses 

using the rigorous scoring function (SF-h); (e) To rank the poses with cluster analysis.

Currently the database of the experimentally determined RNA-ligand complex structures is 

relatively limited compared with the protein-ligand complexes.28 Therefore, a physics-based 

approach such as RLDOCK is highly needed. We note that the RLDOCK model developed 

here has several unique advantages.
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1. The novel multi-step sieving algorithm for the global search of the binding sites 

and poses (section 2.3) can optimize the balance between efficiency and 

robustness. In particular, the global search method enables the RLDOCK model 

to predict multiple binding sites/poses.

2. The RLDOCK scoring function (see Eq. 1) consists of various RNA-ligand 

interactions, such as the VDW interaction, electrostatic interaction, polar and 

nonpolar solvent effects, the hydrogen-bond interaction, and ligand internal 

VDW interactions.

3. With the sampling of ligand conformers, RLDOCK can account for a broad 

sampling space for the conformations and binding sites, which leads to an 

improved performance as compared with other models.

The model, which is trained using only 30 known complexes, can successfully predict other 

200 test complexes (Table 3 and Fig. S2). The result suggests that the parameters are 

transferable and the model may be robust. In fact, even the “false” predicted poses by the 

RLDOCK may provide useful information (see the example in Fig. 6A3 and B3). Future 

development of the RLDOCK model should address several significant issues such as 

computational efficiency, effects from metal ions and other ligands, and a more accurate 

scoring function.
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Figure 1: 
The flowchart of the RLDOCK model.
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Figure 2: 
(A) The binding sites after the probe detect. The RNAs and ligands are marked by red and 

blue. The green points represent the candidate binding sites. (B) The success rate of the 

global search as a function of the number of the ranked sites for the 30 RNA-ligand cases in 

training set.
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Figure 3: 
The success rate as a function of the number of the top-ranked poses with RMSD within 1 Å 

(A), 2 Å (B), and 3 Å (C) for all 230 RNA-ligand binding cases. In the statistic of the 

success rate for RMSD within 1 Å, we use the cut-off RMSD = 1Å in the cluster 

calculations.
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Figure 4: 
The success rate as a function of the number of the top-ranked poses with RMSD within 2 Å 

from the 51 cases containing multiple binding sites.
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Figure 5: 
(A)-(D) score-RMSD dependence for the four selected RNA-ligand complexes with PDB 

IDs 1FMN (A), 1PBR (B), 1RAW (C), and 2BE0 (D), respectively. (E) The structure of 

RNA-ligand complex with PDB ID 2BE0. The experimental ligands and the predicted 

ligands are depicted in blue and green.
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Figure 6: 
(A1)-(A4) score-RMSD dependence for the four selected RNA-ligand complexes with PDB 

IDs 1NTA (A1), 2EES (A2), 2BEE (A3), and 3SUX (A4), respectively. (B1)-(B4) The 

structures of RNA-ligand complexes corresponding to the four cases in (A1)-(A4). The 

experimental ligands and the predicted ligands are depicted in blue and green. Yellow and 

purple balls represent the Ba2+ and Na+ ions observed in crystal structures.
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Table 1:

The coefficients in the simplified and precise scoring functions

coefficients clj ce ch csa cpol cself
R cself

L cvdw
L

simplified 3.30 1.32 0.10 0.30 0.36 — 0.58 0.66

precise 3.30 1.32 0.10 1.26 1.38 4.98 2.78 0.66
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Table 2:

The success rate of various docking models
a

LigandRNA17 DrugscoreRNA 18,19 DOCK620 ligandRNA+DOCK617 RLDOCK

top 1
b 39.5%(35.7%) 28.9%(31.0%) 36.8%(35.7%) 50.0%(47.6%) 55.3%(40.4%)

top 3
c 47.4%(45.2%) 39.5%(42.9%) 44.7%(42.9%) 57.9%(47.6%) 60.5% (57.8%)

a
the percentage without parenthesis is calculated for the 38 RNA-ligand cases in Ref. (17). the value with parenthesis is calculated for the 42 test 

cases in Ref. (17) and the 230 complexes in the present study.

b
the success rate of the top-ranked poses.

c
the success rate (measured by the best RMSD) of the three top-ranked poses. the best results are indicated in bold.
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Table 3:

The comparisons of the success rate between the training set and test set

training set test set

RMSD top 1 top 3 top 10 top 1 top 3 top 10

< 1Å 20.0% 23.3% 36.7% 16.5% 28.5% 45.5%

< 2Å 50.0% 70.0% 86.7% 39.0% 56.5% 72.5%

< 3Å 63.3% 76.7% 90.0% 47.0% 68.5% 81.5%
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