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1 | INTRODUCTION

Over the past few decades, the morbidity of malignant tumours has
increased at an alarming rate, which may be attributed to increased

life expectancy, altered lifestyle habits, and interactions between

| RuiWang? | WangLi® |

Abstract

Studies have shown that transcription factor activating enhancer binding protein 4
(TFAP4) plays a vital role in multiple types of cancer; however, the TFAP4 expres-
sion profile is still unknown, as is its value within the human pan-cancer analysis.
The present study comprehensively analysed TFAP4 expression patterns from 33
types of malignancies, along with the significance of TFAP4 for prognosis prediction
and cancer immunity. TFAP4 displayed inconsistent levels of gene expression across
the diverse cancer cell lines, and displayed abnormal expression within most ma-
lignant tumours, which closely corresponded to overall survival. More importantly,
the TFAP4 level was also significantly related to the degree of tumour infiltration.
TFAP4 was correlated using gene markers in tumour-infiltrating immune cells and
immune scores. TFAP4 expression was correlated with tumour mutation burden and
microsatellite instability in different cancer types, and enrichment analyses identi-
fied TFAP4-associated terms and pathways. The present study comprehensively ana-
lysed the expression of TFAP4 across 33 distinct types of cancers, which revealed
that TFAP4 may possibly play a vital role during cancer formation and development.
TFAP4 is related to differing degrees of immune infiltration within cancers, which
suggests the potential of TFAP4 as an immunotherapy target in cancers. Our study
demonstrated that TFAP4 plays an important role in tumorigenesis as a prognostic

biomarker, which highlights the possibility of developing new targeted treatments.
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genetic factors and external agents (physical, chemical and biolog-
ical carcinogens). Malignant tumours are one of the leading causes
of death worldwide, with low therapeutic success in both developed
and developing countries.! Pan-cancer analysis has been widely uti-
lized in cancer research to shed more light on the common features,

heterogeneities, emerging themes and analytical breadth of various
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human malignancies.2 Pan-cancer analysis is the analysis of the mo-
lecular abnormalities of various types of cancer, which can identify
any common features and heterogeneities during vital biological pro-
cesses that are under dysregulation as the result of diverse cancer
cell lineages. Pan-cancer analysis projects, such as the Cancer Cell
Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA),
have been created based on the assessment of different human
cancer cell lines and tissues at epigenomic, genomic, proteomic and
transcriptomic levels.>”® Recently, pan-cancer analysis has been used
to identify certain functional and pathway genes, which allows for
a comprehensive and thorough understanding of human cancers.
For example, tumour hypoxia-associated multiomic molecular char-
acteristics have been investigated, and it has been suggested that
some molecular alterations can be correlated with drug sensitivity
or resistance to antitumour agents. This helps to comprehensively
understand tumour hypoxia at the molecular level and has certain
implications for cancer treatment in clinical practice.® New data on
FOXM1 up-regulation frequency, aetiology and outcomes in human
cancers have been defined from 33 TCGA-derived cancers.” The in-
formation obtained from these cancers has revealed IncRNA-medi-
ated dysregulation within the cancer at a system level, and provides
a valuable approach and resources to investigate IncRNA functions
in the context of cancer.? Characterizing immune phenotype occur-
rence frequency and variability in a variety of types of cancer helps
to understand the immune status of untreated cancers, and this ap-
proach has been used in more than 9000 TCGA-derived cancer gene
expression data sets.” Therefore, pan-cancer analysis can illustrate
patterns beneficial for developing combination and individualized
therapies for the treatment of various cancers.

Transcription factor activating enhancer binding protein 4
(TFAP4) is involved in cancer proliferation, metastasis, differentia-
tion, angiogenesis and other biological functions.’® In recent years, it
has been suggested that the overexpression of TFAP4 may indicate
a poor prognosis for various cancers, including hepatocellular carci-
noma (HCC), non-small cell lung carcinoma (NSCLC), prostate cancer
(PCa), colorectal cancer (CRC) and gastric cancer (GC).***> According
to our prior research, TFAP4 plays a role as an efficient prognostic
biomarker, which also activates the PIBK/AKT signal transduction
pathway to enhance the metastasis and invasion of HCC.1® Other
studies have been carried out to examine the proliferation, overex-
pression or mutation of TFAP4 in specific types of cancer, but those
studies had low sample sizes and diverse methods. Additionally,
research on TFAP4 has mainly focused on an individual or limited
number of types of cancers, and no available studies have com-
prehensively examined several types of cancers simultaneously to
identify their similarities and differences. This information is of great
importance for understanding the roles of TFAP4 in various cancers,
so a comprehensive analysis is urgently needed.

To that end, and taking advantage of the large data sets from
TCGA, the present study aimed to examine TFAP4 expression profiles
and their prognostic significance among human cancers. Additionally,
the associations between TFAP4 and the levels of tumour infiltration,

tumour mutational burden (TMB) and microsatellite instability (MSI)
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were analysed for different types of tumour using correlation analysis.
Gene set enrichment analysis (GSEA) was conducted to investigate
any possible underlying mechanisms. The results of the present study
can help to understand vital parts of TFAP4 in the context of tumours,
reveal the possible association of TFAP4 with tumour-immune inter-

actions and illustrate the potential mechanism.

2 | MATERIALS AND METHODS
2.1 | Patient data sets and processing

TCGA, a cornerstone of the cancer genomics projects, had char-
acterized more than 20,000 primary cancer samples and corre-
sponding non-carcinoma samples from 33 types of cancers. In the
present study, the TCGA-processed level 3 RNA-sequencing data
sets, along with the corresponding clinical annotations, were ob-
tained using the University of California Santa Cruz (UCSC) can-
cer genome browser (https://tcga.xenahubs.net, accessed April
2020). The CCLE public project has comprehensively characterized
a tremendous number of human tumour models both genetically
and pharmacologically (https://portals.broadinstitute.org/ccle). To
examine differential gene expression in cancers on a larger scale,
the CCLE database, which contains RNA-sequencing data sets for
over 1,000 cell lines, was used. For this research, only open-access
data were used, which precluded the requirement of approval of
the Ethics Committee.

2.2 | Screening of TFAP4 differential expression and
its survival-associated cancers

To compare gene expression levels between the cancerous and ad-
jacent normal samples, data regarding TFAP4 gene expression were
extracted from the 33 TCGA cancer types to form an expression
matrix, as shown in Table S1. Thereafter, the expression matrix and
clinical information were matched by patient ID. Afterwards, a uni-
variate Cox model was used to calculate any association between
gene expression levels and patient survival, where a difference of
P < .05 for TFAP4 in a specific cancer was deemed statistically sig-
nificant. The survival-associated forest plot was further drawn, and
a Kaplan-Meier (KM) analysis was conducted to compare the overall
survival (OS) for TCGA cancer patients stratified according to the
median TFAP4 expression level, using the log-rank test.

2.3 | TFAP4 and tumour immunity

The Tumour Immune Estimation Resource (TIMER, https://cistrome.
shinyapps.io/timer/) represents the integrated approach to systemi-
cally analysing the immune infiltrates of different types of cancers.!”
In TIMER, the deconvolution statistical approach is used for infer-

ring tumour-infiltrating immunocyte levels based on gene expression
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FIGURE 1 The TFAP4 expression level in human pan-cancer analyses. (A) The mRNA level of TFAP4 in CCLE. (B) The mRNA level of
TFAP4 in TCGA. The blue and red bar graphs indicate normal and tumour tissues, respectively. *P < .05; **P < .01; ***P < .001

data.'® Using the TIMER algorithm, we examined the associations
between TFAP4 levels and six different immune infiltrate levels

(CD4 + T cells, CD8 + T cells, B cells, neutrophils, dendritic cells and

macrophages).

The relative subsets of RNA transcripts (CIBERSORT) were used
to calculate relative fractions of 22 types of leucocyte. CIBERSORT

is a highly accurate metagene tool, which precisely estimates 22

phenotypes of human immunocytes, as previously reported for all
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FIGURE 2 The box plot shows the association of TFAP4 expression

TCGA samples ¥ (Table S2). For the present study, the association of
TFAP4 expression with each leucocyte phenotype across 33 cancer
types was computed.

Additionally, we examined the associations of TFAP4 levels with
tumour-infiltrating immunocyte gene markers selected based on
previous research.?%?2 The correlation analysis generated the esti-
mated statistical significance and Spearman's correlation coefficient.
Then, an expression heat map was plotted for gene pair within the
specific type of cancer.

The estimation of stromal and immune cells in malignant tumour
tissues using expression data (refer to ESTIMATE for short) rep-
resents an approach that uses gene expression profiles to predict
the purity of both tumours and the infiltrating stromal cells/immu-
nocytes within tumour tissues.?® The ESTIMATE algorithm produces

with pathological stages for 21 types of cancers

three scores on the basis of single sample Gene Set Enrichment
Analysis (ssGSEA), including 1) stromal score, which determines
stromal cells within the tumour tissues, 2) immune score, which as-
sesses immunocyte infiltration within the tumour tissues, and 3) es-
timate score, which can infer the purity of tumour. In this study, we
used the ESTIMATE algorithm to estimate both immune and stromal
scores (Table S3) for tumour tissues according to the correspond-
ing transcription data. Then, we calculated the correlations between
these scores and TFAP4 expression.

TMB measures the mutation number in a specific cancer ge-
nome. Numerous studies have explored the significance of using
TMB as a biomarker for predicting which patients would be most
responsive to checkpoint inhibitors.?* We downloaded the somatic
mutation data for all TCGA patients (https://tcga.xenahubs.net),
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FIGURE 3 Association of TFAP4 expression with patient overall survival (OS). (A) Forest plot shows the relationship of TFAP4 expression
with patient OS. (B-H) Kaplan-Meier analyses show the association between TFAP4 expression and OS

calculated their TMB scores (Table S4) and then determined the
correlation between TMB and TFAP4. MSI is characterized by the
widespread length polymorphisms of microsatellite sequences due
to DNA polymerase slippage. Recently, it has been suggested that
patients with high-MSI cancers gain benefits from immunotherapy,
and MSI has been utilized as an indicator of genetic instability for
the cancer detection index.?> We computed the MSI score for each
patient, as shown in Table S5, and subsequently performed a correla-
tion analysis between MSI and TFAP4.

2.4 | Gene set enrichment analysis

Using JAVA (http://software.broadinstitute.org/gsea/index.jsp), we
conducted GSEA to assess for possible underlying mechanisms based
on the ‘Molecular Signatures Database’ of c¢5.all.v7.1.symbols and
c2.cp.kegg.v7.1.symbols. With a random sample permutation num-
ber of 100 and the threshold of significance as P < .05, Bioconductor
(http://bioconductor.org/) and R software (http: //r-project. org/)

were used to plot enrichment maps to visualize our results.
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(Continued)

TABLE 1

PFI

DFI

DSS

(0}

HR(95% Cl) value

HR

P-value

HR(95% Cl)

HR

HR(95% Cl) P-value

HR

HR(95% Cl) P-value

HR

Cancer

.008
837

.061

1.146-2.466
0.433-1.971

1.681
0.924
0.299

.013

1.166-3.626
0.253-5.217

2.056

.091
764
.004

0.927-2.790

1.608
0.879

.201
.370
.009

0.854-2.120

1.346
0.684
0.156

UCEC
UcCs

LIU eT AL.

.858

1.148

0.378-2.043
0.027-0.513

0.298-1.570

0.085-1.055

0.119

0.039-0.623

UVM

Abbreviations: DSS, disease-specific survival; DFI, disease-free interval; OS, overall survival; PFIl, progression-free interval.

2.5 | Statistical methods

For the present study, we selected clinical indicators, including OS,
disease-specific survival (DSS), progression-free interval (PFl) and
disease-free interval (DFI). OS was defined as the duration from the
date of diagnosis to death, from any cause. Unlike OS, for DSS, pa-
tients who died from causes other than the specified disease were
not counted. PFl was defined as disease progression or death, again,
from any cause. Unlike PFIl, patients who died from causes other
than the specified disease were not counted in the DFI.

The Wilcoxon log-rank test was used to determine the presence
or absence of a markedly increased sum of gene expression z-scores
for cancerous tissues, as compared to adjacent normal tissues. The
difference in TFAP4 expression between different tumour stages was
compared using the Kruskal-Wallis test. Survival was analysed using
the KM curves, log-rank test and Cox proportional hazards regression
model. Spearman's test was used for correlation analysis. R language
(version 3.6.0; R Foundation) was used for all analyses. A two-sided
P-value < .05 indicated a statistically significant difference.

3 | RESULTS
3.1 | Pan-cancer expression landscape of TFAP4

According to CCLE analysis results, TFAP4 displayed inconsistent
gene expression levels among various cancer cell lines (P = 1.3e-11,
Figure 1A), with biliary tract cells showing a relatively higher gene
expression. Consistent with kidney cells, which showed a relatively
lower gene expression in CCLE, TFAP4 also displayed relatively
lower expression in TCGA-KICH, TCGA-KIRC and TCGA-KIRP. For
most of the 33 TCGA-derived cancer types, we detected signifi-
cantly up-regulated TFAP4 expression between cancer samples and
paired normal samples. Figure 1B shows the TFAP4 expression pro-
files of the TCGA-derived samples.

To assess the levels of gene expression for all tumour stages, we
compared TFAP4 expression in patients with stage |, I, lll or IV tu-
mours. Generally, TFAP4 expression was up-regulated in advanced
tumours in ESCA, KIRC, KIRP,LIHC, LUAD, TGCT and THCA, while
it was down-regulated in advanced tumours in BLCA, BRCA, KICH,
LUSC,MESO and SKCM, and was stable in advanced tumours in
ACC, CHOL, COAD, HNSC, PAAD, READ, STAD and UVM (Figure 2).

3.2 | Screening of TFAP4 survival-
associated cancers

In the OS analysis, Cox regression identified that high TFAP4 ex-
pression was a risk factor for ACC (P = .049), KIRC (P < .001), KIRP
(P < .001), SKCM (P = .026) and LIHC (P < .001); however, it ap-
peared to be a protective factor in UVM (P = .009), READ (P =.012),
STAD (P = .046) and LGG (P = .008), as shown in Figure 3A and
Table 1. KM analysis showed that patients with higher TFAP4 levels
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FIGURE 4 Association of TFAP4 expression with patient disease-specific survival (DSS). (A) The forest plot shows the relationship of
TFAP4 expression with DSS. (B-G) Kaplan-Meier analyses show the association between TFAP4 expression and DSS

had a shorter OS compared with patients with lower TFAP4 levels in
KIRC (P =.010), KIRP (P < .001), LIHC (P = .050) and UCEC (P =.015),
whereas those with increased TFAP4 levels showed a superior OS
to those with decreased TFAP4 levels in READ (P = .045), THYM
(P =.038) and UVM (P =.004), as seen in Figure 3B-H.

Cox regression analysis of DSS identified that high TFAP4 ex-
pression was a risk factor in KIRC (P < .001), LIHC (P = .019), KIRP
(P < .001), SKCM (P = .019) and THCA (P = .014). However, it was
a protective factor in LGG (P = .010), LUSC (P = .007) and UVM
(P = .004), as seen in Figure 4A. KM analysis showed that patients

with higher TFAP4 expression had poorer DSS than those with
lower TFAP4 expression in KIRC (P = .006), KIRP (P = .002), SKCM
(P=.046) and UCEC (P = .022). Patients with increased TFAP4 levels
showed superior DSS to those with decreased TFAP4 levels in BRCA
(P =.046) and UVM (P < .001), as seen in Figure 4B-G.

Cox regression analysis of PFl identified high TFAP4 expression as
arisk factor in ACC (P = .010), KIRP (P = .032), KIRC (P < .001), PRAD
(P=.001), LIHC (P <.001), THCA (P =.004) and UCEC (P =.008), while
it was a protective factor in GBM (P = .004), LGG (P < .001) and LUSC
(P = .017) (Figure 5A). Results of KM analysis showed that patients
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FIGURE 5 Association of TFAP4 expression with patient progression-free interval (PFI). (A) The forest plot shows the relationship of
TFAP4 expression with PFI. (B-J) Kaplan-Meier analyses show the association between TFAP4 expression and PFI
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FIGURE 6 Association of TFAP4 expression with patient disease-free interval (DFI). (A) The forest plot shows the relationship of TFAP4
expression with DFI. (B-E) Kaplan-Meier analyses show the association between TFAP4 expression and DFI

with higher TFAP4 expression had a poorer OS relative to patients with
lower TFAP4 levels in ACC (P =.007), KIRC (P =.006), LIHC (P < .001),
PRAD (P < .001), THCA (P = .018) and UCEC (P = .006), whereas pa-
tients with increased TFAP4 levels showed a superior OS to those with
decreased TFAP4 levels in GBM (P = .016), LGG (P = .008) and UVM
(P =.044), as shown in Figure 5B-J.

Cox regression analysis of DFI identified that higher TFAP4 ex-
pression was a risk factor for ACC (P = .007), LIHC (P =.001), PRAD
(P =.001) and UCEC (P = .013), as seen in Figure 6A. Of note, KM
analysis also showed that higher TFAP4 expression predicted a
worse prognosis in these 4 types of cancers (P = .009, 0.006, 0.015
and 0.032, respectively) (Figure 6B-E).

3.3 | TFAP4 level was related to the level of immune
infiltration

Tumour-infiltrating lymphocytes (TILs) can serve as independent
predictors of sentinel lymph node status and cancer survival. As a
result, the present study examined the correlation between TFAP4
levels and the levels of immune infiltration across various types of
cancer derived from TIMER. It was found that the TFAP4 level was

significantly related to the tumour purity for 25 types of cancer

types. Moreover, TFAP4 levels were significantly correlated with
CD4 + T and CD8 + T cell infiltration in 15 types of cancer, B cells
in 12 types, neutrophils in 16 types, macrophages in 18 types and
dendritic cells in 14 types. As TFAP4 was found to show prognostic
value in LIHC, the association of TFAP4 level with the degree of im-
mune infiltration in LIHC is shown in Figure 7A, and pan-cancer as-
sociations of TFAP4 levels with the levels of immune infiltration are
presented in Figure S1 and Table Sé.

Using CIBERSORT, detailed immunocyte compositions of all
TCGA patients were calculated, after which the correlations be-
tween 22 immunocytes and TFAP4 expression were determined for
33 types of cancer, as seen in Table S7. We found that many immu-
nocytes were significantly correlated with TFAP4 levels. As seen in
Figure 7B, in CHOL, OV, UCS and UVM, only one type of immuno-
cyte was correlated with TFAP4 level, while at least two immuno-

cytes were correlated with TFAP4 levels in other cancers.

3.4 | Correlations of TFAP4 level with
immune markers

To investigate the association of TFAP4 expression with different im-

mune infiltrating cells, the relationships between TFAP4 expression
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TABLE 2 Correlation analysis of TFAP4 expression with
ESTIMATE scores

P-value
Cancer StromalScore ImmuneScore ESTIMATEScore
ACC 0.935957 0.37771 0.584187
BLCA 0 2.24E-10 2.11E-14
BRCA 0 2.03E-09 0
CESC 8.75E-05 0.14378 0.004065
CHOL 0.914703 0.637162 0.8321
COAD 9.34E-09 1.08E-13 4.50E-12
DLBC 0.405008 0.109136 0.139427
ESCA 0.004661 0.004048 0.001886
GBM 7.49E-10 4.33E-10 8.71E-11
HNSC 7.24E-07 0.008614 6.67E-05
KICH 0.05225 0.54298 0.223598
KIRC 0.189648 0.25622 0.930842
KIRP 6.43E-07 0.001451 6.05E-05
LAML 8.16E-05 5.94E-06 1.43E-05
LGG 0 3.52E-07 1.65E-13
LIHC 2.31E-06 0.068378 0.001169
LUAD 8.38E-16 2.74E-08 1.04E-13
LUSC 0 0 0
MESO 0.00277 0.000435 0.000154
oV 5.92E-09 2.14E-08 2.01E-10
PAAD 2.52E-07 0.009034 6.20E-05
PCPG 0.933774 0.049116 0.369698
PRAD 0.000594 0.004838 0.000955
READ 0.000191 4.01E-06 3.88E-06
SARC 1.15E-08 0.001775 1.22E-05
SKCM 2.40E-10 1.68E-12 2.90E-13
STAD 4.06E-06 0.010348 8.30E-05
TGCT 0.000637 7.35E-06 1.36E-07
THCA 0.001201 0.00509 0.001172
THYM 0.014624 0.129059 0.991124
UCEC 1.50E-11 8.77E-10 2.64E-12
ucs 0.896022 0.156406 0.478438
UVM 0.017035 0.003438 0.003283

and immune markers in a variety of immunocyte types were analysed,
as shown in Figure 7C. TFAP4 expression was shown to have a sig-
nificant correlation with the majority of immune markers in a vari-
ety of immunocytes and distinct T cells, as shown in Table S8. TFAP4
was found to be correlated with TIL gene markers in HCC, including
those for B cells (CD19 and CD79A), CD8 + T cells (CD8B), monocytes
(CD86 and CSF1R), M1 macrophages (NOS2 and IRF5), tumour-asso-
ciated macrophages (CD68 and IL10), neutrophils (ITGAM), natural
killer cells (KIR2DL4), dendritic cells (HLA-DPB1, HLA-DRA,NRP1
and ITGAX), T-helper 1 cells (STAT1, IFNG and TNF), T-helper 2 cells
(STAT6 and STAT5A), follicular helper T cells (BCL6), Tregs (FOXP3,

STAT5B and TGFB1) and exhausted T cells (PDCD1, CTLA4, LAG3
and HAVCR?2). Interestingly, we found that TFAP4 was negatively
correlated with the expression levels of PD1 (PDCD1) and CTLA4
in BLCA, COAD, LGG, LUSC, PCPG, SKCM, TGCT, UCEC and UVM,
but positively correlated with KIRC and LIHC, suggesting that TFAP4
might regulate the immune response in these cancer types.

3.5 | Correlation analysis with ESTIMATE score,
TMB and MSI

The ESTIMATE method was developed to calculate the immune and
stromal scores of cancer tissues. Using the ESTIMATE method, we
calculated the immune, stromal and estimate scores, after which we
evaluated the relationship between immune/stromal scores and TFAP4
expression. Figure 7D shows the typical results for HCC, in which
TFAP4 expression is significantly correlated with both stromal and esti-
mate scores. The detailed correlation results are summarized in Table 2.

Moreover, the association between TMB/MSI and TFAP4 expres-
sion was also evaluated, as seen in Table 3. We found that TFAP4 ex-
pression was positively correlated with TMB in CESC (P =.030), BLCA
(P =.005), KIRC (P = .023), HNSC (P < .001), LUAD (P = .013), LGG
(P=.046), MESO (P =.043), LUSC (P =.015), PRAD (P < .001), PAAD
(P = .004),STAD (P < .001), SARC (P = .013) and THCA (P = .005),
but negatively correlated with COAD THYM (P < .001) and COAD
(P =.026), as seen in Figure 8A. We also found that the TFAP4 level
was positively correlated with MSIin HNSC (P = .020), GBM (P =.030),
KICH (P =.021), LIHC (P = .003), PRAD (P = .002), LUAD (P < .001),
SARC (P =.001), LUSC (P < .001) and STAD (P < .001), but negatively
correlated with COAD (P = .032), as seen in Figure 8B.

3.6 | Functional analysis

Thebiological effectof TFAP4 expression wasassessed using GSEA. In
HCC, TFAP4 showedsignificantenrichmentinthefollowing GO terms:
GO_MRNA _BINDING, GO_GENE_SILENCING_BY_RNA,GO_CELL_
FATE_COMMITMENT, GO_NEURON_FATE_COMMITMENT, GO_
FOREBRAIN_NEURON_DIFFERENTIATION and GO_NEGATIVE_
REGULATION_OF_REACTIVE_OXYGEN_SPECIES_
BIOSYNTHETIC_PROCESS. The following KEGG terms also
showed enrichment: KEGG_PRIMARY_BILE_ACID_
BIOSYNTHESIS and KEGG_GLYCINE_SERINE_AND_THREONINE_
METABOLISM. These can be seen in Figure 8C and 8D, respectively.
The pan-cancer functional GO and KEGG lists of TFAP4 are available
in Tables S9 and S10.

significant

4 | DISCUSSION

The present study aimed to demonstrate a comprehensive work-
flow for pan-cancer analysis and to extensively investigate the role

of TFAP4 as it relates to various cancers. Based on our results, we
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TABLE 3 Correlation analysis of TFAP4
expression with TMB and MSI

TMB MSI

Cancer Correlation P-value correlation
ACC 0.213990477 .058269 0.221205
BLCA 0.138340844 .005122 0.037982
BRCA 0.054822285 .087259 0.012035
CESC 0.12800435 .030451 0.046697
CHOL -0.088367935 .608301 0.057915
COAD -0.11221118 .025551 -0.10778

DLBC 0.059981034 .723559 0.018258
ESCA -0.116478286 142433 0.057006
GBM 0.046330797 .576053 0.178938
HNSC 0.218042857 1.04E-06 0.104512
KICH 0.146133987 245415 0.285998
KIRC 0.124706288 .023052 0.007689
KIRP -0.057764267 337264 0.079092
LAML 0.001201751 992542 0.008382
LGG 0.089256972 .045843 -0.00852

LIHC 0.100357725 .057476 0.154218
LUAD 0.110989813 .012747 0.165302
LUsC 0.110235151 .014836 0.224462
MESO 0.22860519 042722 0.019671
oV -0.090001627 .138736 0.042903
PAAD 0.23122869 .004282 -0.13079

PCPG -0.09261469 .220174 0.040581
PRAD 0.321266464 4.92E-13 0.141294
READ 0.02842207 746313 -0.07814

SARC 0.161479303 .013193 0.215262
SKCM -0.016322013 .725557 0.009055
STAD 0.249946559 1.20E-06 0.193492
TGCT 0.143339703 .085434 0.073046
THCA 0.127527734 .005047 0.009191
THYM -0.38568753 1.75E-05 -0.03537

UCEC -0.032979509 450814 0.054971
ucs -0.072182054 .597035 0.016918
UVM 0.017096006 .880358 -0.15461

Abbreviations: TMB, tumour mutation burden; MSI, microsatellite instability.

found that TFAP4 expression varied among different types of can-
cer. We also found that most cancer types had a higher number of
TFAP4 alternations, and that abnormal TFAP4 expression served
as a prognostic factor in some types of cancer, based on both Cox
and KM survival analyses. These cancers included KIRC, KIRP, LIHC,
READ, THYM and UVM. More importantly, we predicted that TFAP4
overexpression was associated with cancer immunity, and it was, in
fact, found to correlate with TMB and MSI. Bioinformatics analyses
were carried out to identify the TFAP4 expression-associated GO
terms and KEGG pathways.

It is important to identify the abnormal expression of genes

among different tumour types, and it is even more important to

P-value

.050099
444196
.707558
431466
736499
.032229
914584
473985
.029554
.020414
.020915
.888997
188562
.948881
.849165
.003396
.000196
5.59E-07
.863384
485128
109451
.591759
.001873
.373142
.000919
.845603
.000188
.382587
.840494
.705023
.208579
.901509
170892

identify tumour-specific targets or features for individualized treat-
ment, allowing us to increase the chance of successfully treating or
curing cancer cases.?® Pan-cancer analysis of TFAP4 is valuable for
identifying differential expressions and the role of TFAP4 in many
cancer types.27'28 Using CCLE and TCGA, data on various types of
cancers with large sample sizes were obtained, which aided in the
discovery of abnormal expressions of TFAP4 among different types
of cancers. Using CCLE, a thorough pan-cancer cellular analysis can
be performed to assess the expression of genes, which may shed light
on future cellular experiments. On the other hand, TCGA genomic
and survival analyses may provide guidance for clinical implications

and future studies. For example, in the present study, we found that
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FIGURE 8 Correlation of TFAP4 expression with TMB and MSI, and the subsequent GSEA analysis. (A) Radar chart displays the overlap
between TFAP4 and TMB. Blue number represents the Spearman correlation coefficient. (B) Radar chart displays the overlap between
TFAP4 and MSI. Blue number represents the Spearman correlation coefficient. (C) GSEA shows the top GO terms or KEGG pathways
correlated with TFAP4 expression in HCC. *P < .05; **P < .01; ***P < .001

TFAP4 indicated a worse prognosis for HCC, which is consistent
with our previously published study.'® Meanwhile, TFAP4 indicated
a worse prognosis for KIRC and KIRP, while TFAP4 predicted a bet-
ter prognosis for READ, THYM and UVM. Nonetheless, the role of
TFAP4 in these cancers still needs to be further investigated.

In recent years, immunotherapy has exhibited an increased ef-
ficacy in treating tumours. Notably, the present study has demon-
strated that the TFAP4 level was related to cancer immunity. Based
on the results of this study, the TFAP4 level was related to the degree
of immune infiltration in a variety of cancers. We used HCC as an
example for illustration purposes. We found that TFAP4 levels were
significantly correlated with the degree of infiltration in CD4 + T
cells, CD8 + T cells, B cells, neutrophils, macrophages and dendritic
cells, based on TIMER analysis. In addition, the TFAP4 level was

found to be significantly correlated with the degree of infiltration

in Macrophages MO, Macrophages M2, T cells gamma delta, T cells
follicular helper and Mast cells resting, based on CIBERSORT anal-
ysis. TFAP4 was also found to be correlated with TIL gene markers,
as seen in Figure 7C. ESTIMATE was reported as a metric for eval-
uating cancer patient prognosis.” Recently, numerous studies have
used the ESTIMATE method to assess various tumours, and it has
been successfully applied to genomic data. For instance, ESTIMATE
is used to predict prognoses in glioblastoma and cutaneous mela-
noma patients.3%3! Using the TCGA cohort, the ESTIMATE approach
was utilized to generate immune and stromal scores. We found that
TFAP4 was negatively correlated with the ESTIMATE scores.

Gene mutations are the primary cause of cancer formation.?
Specific gene mutations may predict patient prognosis and treatment
response.®*** The adaptive immune system can identify and detect

cancers through somatic mutation-associated non-self neoantigens.
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TMB levels affect immunogenic peptide generation, thus affecting the
patient response to immune checkpoint inhibitors.3>3 As a result, it is
highly important to carry out a thorough investigation on the associ-
ation of TFAP4 expression with TMB levels in cancer patients, based
on the TCGA-derived matched data with high quality. Moreover, TMB
and MSI levels indicate that new antibodies are produced. It has been
well reported that numerous patients with high microsatellite instabil-
ity (MSI-H) have increased TMB levels.®” As discovered by Bonneville
et al,*® cervical squamous cell and adrenocortical carcinomas that had
MSI-H showed abnormally high mutation frequencies. MSl is a vital
index for predicting tumorigenesis and development.?> MS testing has
been recommended for all CRC subtypes by the NCCN guidelines, as
mortality can be reduced by the early detection of MSI.%? PD-1 inhib-
itors are highly effective for MSI-H solid tumours,*® and as a result,
the FDA has approved the use of Keytruda for MSI-H solid tumours.**
Therefore, both TMB and MSI can be used as predictive factors for
the potential efficacy of immunotherapy. In the present study, we
found that TFAP4 expression was correlated with both TMB and MSI
in COAD, LAML, OV, PCPG, READ, SKCM, THYM, UCS and UVM.
However, further studies are required to determine whether TFAP4
can serve as a predictor for the efficacy of immunotherapy in these
types of cancers. Taken together, the findings of the present study pro-
vide clues for the association between TFAP4 and cancer immunity.
Collectively, our comprehensive pan-cancer analysis has illus-
trated the characterization of TFAP4 within cancer cell lines and tis-
sues. Moreover, we have found that TFAP4 can serve as a valuable
prognostic biomarker for some types of cancer. Based on the results
of the present study, the TFAP4 level is related to cancer immunity.
Moreover, our new integrative omics-based workflow may be ad-

opted to generate hypotheses about novel targets for cancers.
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