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Danielle C. Morgan1 | Caroline Morris1 | Amit Mahindra1 | Connor M. Blair |

Gonzalo Tejeda4 | Imogen Herbert2 | Matthew L. Turnbull2 | Gauthier Lieber2 |

Brian J. Willett2 | Nicola Logan2 | Brian Smith4 | Andrew B. Tobin4 |

David Bhella3 | George Baillie | Andrew G. Jamieson1

1School of Chemistry, University of Glasgow,

Glasgow, UK

2MRC-University of Glasgow Centre for Virus

Research, Glasgow, UK

3Sir Michael Stoker Building, Glasgow, UK

4Centre for Translational Pharmacology,

Institute of Molecular Cell and Systems

Biology, Davidson Building, University of

Glasgow, Glasgow, UK

Correspondence

Andrew G. Jamieson, School of Chemistry,

University of Glasgow, Joseph Black Building,

University Avenue, Glasgow G12 8QQ, UK.

Email: andrew.jamieson.2@glasgow.ac.uk

Funding information

Defence Science and Technology Laboratory,

Grant/Award Number: DSTLX-1000141308;

Engineering and Physical Sciences Research

Council, Grant/Award Numbers: EP/

N034260/2, EP/N509668/1, EP/R513222/1

Abstract

COVID-19 is caused by a novel coronavirus called severe acute respiratory

syndrome-coronavirus 2 (SARS-CoV-2). Virus cell entry is mediated through a

protein-protein interaction (PPI) between the SARS-CoV-2 spike protein and

angiotensin-converting enzyme 2 (ACE2). A series of stapled peptide ACE2

peptidomimetics based on the ACE2 interaction motif were designed to bind the

coronavirus S-protein RBD and inhibit binding to the human ACE2 receptor. The

peptidomimetics were assessed for antiviral activity in an array of assays including a

neutralization pseudovirus assay, immunofluorescence (IF) assay and in-vitro fluores-

cence polarization (FP) assay. However, none of the peptidomimetics showed activity

in these assays, suggesting that an enhanced binding interface is required to out-

compete ACE2 for S-protein RBD binding and prevent virus internalization.
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1 | INTRODUCTION

Coronavirus disease 2019 (COVID-19) has emerged as a severe

pandemic with >42 million confirmed cases and 1.1 M deaths glob-

ally since its outbreak (WHO, October 25th, 2020).[1] COVID-19 is

caused by the severe acute respiratory syndrome-coronavirus

2 (SARS-CoV-2) positive-strand RNA virus. The main symptoms of

COVID-19 infection include fever, continuous cough, difficulties in

breathing and/or shortage of breath and loss of taste/smell.

Elderly patients and individuals with pre-existing medical condi-

tions are at highest risk. Several candidate therapies are being

assessed in on-going clinical trials, including the ChAdOx1

vaccine,[2] however no effective treatment for COVID-19 currently

exists and the current standard in care relies on supportive treat-

ments.[3] New therapeutics that directly target the virus are there-

fore urgently required to treat infected patients. As such, there is a

clear and urgent requirement for the development of new, effec-

tive antiviral therapeutics.[4]

SARS-CoV-2 and SARS-CoV infect cells via a critical protein-

protein interaction (PPI) between the SARS-CoV spike glycoprotein

(S-protein) receptor binding domain (RBD) with the protease domain

(PD) of the human cell surface receptor angiotensin-converting

enzyme 2 (ACE2).[5,6] Regulation of PPIs using traditional small mole-

cules is extremely challenging due to the relatively large (typically

�1500-3000 Å2) and dynamic nature of the PPI interface with few, if

any, binding pockets.[7] As such, small molecule regulation of theDanielle C. Morgan, Caroline Morris, and Amit Mahindra contributed equally to this work.
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S-protein RBD-ACE2 PD PPI is unlikely to be a successful approach.

The recently reported cryo-EM structures of SARS-CoV-2 S-protein

RBD and full length human ACE2 receptor have revealed that the

molecular recognition event is predominantly mediated by ACE2 PD

helix α1, which makes several important amino acid side-chain inter-

actions with the SARS-CoV-2 RBD (Figure 1).[8–11] Regulation of helix

mediated PPIs such as this one is achievable using peptides.[12] Previ-

ous studies in this field have included the use of medium length linear

peptides derived from ACE2, which demonstrated micromolar affinity

binding of the SARS-CoV-2 S-protein RBD,[13] targeting RBD for

degradation,[14] and inhibition of ACE2-receptor mediated host cell

SARS-CoV pseudovirus entry in vitro.[15] However, linear peptides are

generally poor lead compounds for drug discovery due to their poor

DMPK properties, including blood plasma stability. A challenge there-

fore exists to design molecules that occupy the chemical space large

enough to modulate this PPI and yet small enough to have suitable

drug-like DMPK properties.

Stapled peptides have recently come of age as tool compounds

for the regulation of PPIs.[16] These peptidomimetics incorporate a

hydrocarbon-bridge that conformationally constrains the peptide into

its α-helical bioactive conformation.[17,18] They have been shown in

numerous biologically relevant examples (e.g., p53/MDM2, Bcl2 and

Aurora-A/TPX2) to have excellent binding affinity, selectivity and also

favorable DMPK properties.[19]

Soluble ACE2 has been investigated as a potential therapeutic,

acting as a competitive interceptor of SARS-CoV-2 and preventing

viral binding to cells.[20] Recent studies have shown that human

recombinant soluble ACE2 (hrsACE2) have shown promise for treating

severe COVID-19.[21,22]

The aim of this work was to develop stable, conformationally con-

strained stapled analogues of the ACE2 PD helix α1 peptide that

would bind to SARS-CoV-2 S-protein RBD and prevent interaction

with endogenous ACE2 receptors. Here we describe the design, syn-

thesis and biological evaluation of a series of stapled peptide ACE2

mimetics.

2 | EXPERIMENTAL

2.1 | Peptide synthesis and characterization

Peptides were synthesized using a Fmoc/tBu strategy on a microwave

assisted solid-phase peptide synthesizer (Biotage Alstra) on a

0.1 mmol scale using Tentagel S RAM resin. N,N0-Diisopropyl-

carbodiimide (DIC)/ 2-Cyano-2-(hydroxyimino)acetic acid ethyl ester

(Oxyma Pure) coupling conditions were employed at 90 �C for

2 minutes. For stapled peptides, commercially available unnatural

amino acids were incorporated in the sequence [(R)-N-Fmoc-

α-(7-octenyl)alanine (R8) and (S)-N-Fmoc-α-(4-pentenyl)alanine (S5)].

Macrocyclisation was achieved on-resin by ring-closing metathesis

(RCM) using Grubbs first Generation Catalyst (20 mol%).[17] The

cyclisation reactions were allowed to proceed for 2 hours and were

then repeated a second time using fresh reagents. Upon cyclisation, a

mixture of cis and trans isomers of the peptides formed as assessed

by LC-MS of the crude mixture following cleavage test (3 mg resin).

The cis and trans isomers had similar retention times making purifica-

tion difficult, however the trans isomer of each peptide could be

isolated by reverse phase high-performance liquid chromatography

(RP-HPLC). All peptides were characterized by analytical-RP-HPLC

and mass spectrometry (see Tables S1-S5). Analogues of each peptide

were synthesized with an N-terminal fluorescein label. Fluorescein

isothiocyanate isomer I (FITC) was reacted with the amine of a

6-aminohexanoic acid linker to space the label from the peptide and

prevent thiohydantoin formation.

3 | RESULTS AND DISCUSSION

3.1 | First generation peptides

SARS-CoV-2 enters cells through the molecular interaction of the

spike protein RBD with the cell entry receptor ACE2.[6] ACE2 is an

essential regulator of renin-angiotensin-aldosterone system (RAAS)

activity, which is a vital regulator of cardiovascular and renal function.

Developing mimics of ACE2 as decoys therefore presents a potential

therapeutic strategy to prevent viral infection. The Cryo-EM structure

of the SARS-CoV-2-S receptor binding domain (RBD) and the full

length human ACE2 receptor provides information on the key amino

acid residues involved in the PPI, and thus provides the opportunity

to rationally design therapeutic peptides based on the interaction

hotspot constellation of ACE2 amino acids.[9,11] Indeed, the structure

reveals the ACE2 interaction hotspot as an alpha-helical motif, α1

(cyan) (Figure 1A,B). From inspection of the structure, α1 helix appears

to interact with the RBD and the residues involved can be clearly

identified (Figure 1C, showing the interacting residues in green). By

F IGURE 1 The structure of the SARS-CoV-2-S receptor binding
domain (RBD) (orange) and a segment of the ACE2 receptor (pink)
(PDB: 6M07). A, Front view. B, Side view. α1 (cyan), appears to
interact with the RBD of SARS-CoV-2 (orange). C, A section of the α1
peptide sequence, showing the interacting residues (green)
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analyzing this crystal structure, we considered resides Gln24, Thr27,

Asp30, Lys31, His34, Glu35, Glu37, Asp38, Tyr41, Gln42 of ACE2 to be

key for this PPI when designing our peptide series.

There have been several reports based on the linear peptide frag-

ment of the ACE2 PD α1 helix[13,23] Both biophysical and pseudoviral

techniques have been used to assess the binding and activity, reveal-

ing that the peptides showed micromolar affinity and anti-viral

activity.

The aim of our work was to develop a series of conformationally

constrained helical ACE2 peptides and to investigate their ability to

bind SARS-CoV-2 S-protein RBD, disrupt the RBD-ACE2 PPI and pre-

vent viral infection. Stapling peptides induces the helical bioactive

conformation and pays the entropic penalty of folding, improving the

biophysical properties and potentially the binding affinity vs the native

peptide. In parallel, we also set out to produce truncated stapled pep-

tides covering the full 23-mer sequence, in an attempt to induce the

bioactive conformation at key interaction residues and therefore

enhance binding affinity with a shorter sequence.

The ACE2 protein domain (PD) α1 helix has a bend at His34 which

should be considered when selecting the position of a staple. We cre-

ated a helix wheel to decide on the staple positioning within the

sequence (Figure 2). The constellation of amino acids on the left-hand

side, or front face of the helix wheel are the residues involved in the

interaction with ACE2. On the right-hand side of the helix wheel are

the residues not involved in the binding event and that will be projec-

ted into solution.

We placed a staple at every available position on the back face of

the helix, avoiding the interaction domain. Peptides were designed to

incorporate either i, i + 7 or i, i + 4 hydrocarbon-staples that would

conformationally constrain the peptide over approximately two turns

or one turn of the helix, respectively.

A range of peptidomimetic analogues with i, i + 7 staples (Table 1,

2-8) were designed to test this positioning, for comparison with the

native peptide 1. Staples were placed either side of the histidine, as

well as across it, to test the importance of this bend within the helix.

Truncated analogues were also designed based on the residues that

interact with the RBD. Three truncated peptides were selected, and i,

i + 4 and i, i + 7 stapled analogues designed (Table 1, 9-15). A peptide

with a scrambled sequence was synthesized as a negative control. A

second negative control incorporating an i, i + 7 hydrocarbon staple

on the binding face of the peptide was produced, which should not

bind to the SARS-CoV-2-RBD.

Conformational analysis was then achieved using circular dichro-

ism (CD) spectroscopy to assess the effect of the staples on the

F IGURE 2 A helix wheel showing the positioning of the amino acids in the sequence with respect to the helix structure. The right side shows
the amino acids on the back, nonbonding face of the helix, where we elected to position our staples (colored bridges)

TABLE 1 Peptides designed based on the ACE2 PD a1 helix 1. A
staple scan was conducted on the back face of the helix, ranging from
N-terminal stapling positions to C-terminal stapling

Name Sequence

Native (1) IEEQAKTFLDKFNHEAEDLFYQS

2 IR8EQAKTFS5DKFNHEAEDLFYQS

3 IEEQR8KTFLDKS5NHEAEDLFYQS

4 IEEQAR8TFLDKFS5HEAEDLFYQS

5 IEEQAKTFR8DKFNHES5EDLFYQS

6 IEEQAKTFLDKR8NHEAEDS5FYQS

7 IEEQAKTFLDKFR8HEAEDLS5YQS

8 IEEQAKTFLDKFNHER8EDLFYQS5

9 HEAEDLFYQS

10 HES5EDLS5YQS

11 IEEQAKTFLDKFNHE

12 IEEQR8KTFLDKS5NHE

13 TFLDKFNHEAEDL

14 TFR8DKFNHES5EDL

15 TS5LDKS5NHEAEDL

Scrambled negative control FHTSEYDEQNEIEAAQLFKDFLK

Stapled negative control IEEQAKR8FLDKFNS5EAEDLFYQS
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structure of the peptides. Each peptide was analyzed at 100 μM

(Figure 3) in phosphate buffered saline (PBS, pH 7.4). CD spectra were

measured from 190 to 260 nm in order to observe the characteristic

α-helical minima at 208 nm and 222 nm.[24]

CD experiments confirmed that hydrocarbon stapling stabilizes

the sequence into an α-helix, relative to peptide 1 which is random

coil (Figure 3A). The most helical peptidomimetic is peptide 8,

suggesting that positioning of the staple C-terminal is favorable. This

is mirrored with the truncated peptide series (Figure 3B), where 10,

the only truncated peptidomimetic with its staple C-terminal to His34,

exhibits the greatest helicity. The raw CD data was converted to

molar residue ellipticity (MRE) and the value at 222 nm was used to

calculate the % helicities using Equation S1 (see SI). The most helical

peptide was stapled peptide 8 with 72% helicity, in comparison to the

native peptide 1 with 9% helicity (see SI for all peptide %

helicities—Table S6). As such, the hydrocarbon conformational con-

straints are clearly effective at inducing the helical bioactive confor-

mation of α1.

Assays were then selected to assess the ability of the

peptidomimetics to bind SARS-CoV-2 RBD, disrupt the PPI with

ACE2 and neutralize viral infectivity.

3.1.1 | Pseudovirus inhibition assay

To determine if the stapled peptidomimetics can inhibit SARS-CoV-2

entry in vitro, pseudovirus inhibition assays were utilized. Pseudovirus

consisting of a HIV core, with a luciferase reporter gene, and Wuhan-

Hu-1 strain of the SARS-CoV-2 spike was used. Peptides were incu-

bated with the pseudovirus for 1 hour before addition of 293 T ACE2

expressing cells. After a 48-hour incubation luciferase activity was

measured and inhibition was calculated as a percentage against

DMSO negative controls. Soluble ACE2 (sACE2) protein has previ-

ously been shown to effectively act as a decoy, bind to the SARS

CoV-2 spike protein and prevent viral infection. sACE2 was thus used

as a positive control to validate the assay (Figure 4). It can be seen

that the presence of ACE2 inhibited viral entry into cells

(IC50 = 5.36 nM). The most helical peptidomimetic 8, native α1 pep-

tide 1 and the two negative control peptides (scrambled and stapled)

were tested. None of these compounds including stapled peptide

8 inhibited viral entry at up to 5 mM concentration (Figure 4). The full

series of peptides 1-15 were also assessed however did not show any

activity in this assay (Figure S1).

3.1.2 | Immunofluorescence (IF) assay

To directly probe the ability of the peptidomimetics to disrupt the

SARS-CoV-2 RBD/ACE2 PPI in a cellular context, yet avoiding the

complexity of a pseudovirus assay, we designed an immunofluores-

cence assay. The lung cancerogenic cell line A549 was chosen as an

alveolar Type II pulmonary epithelium cell model because SARS-

CoV-2 predominately infects the host via the lung. Incubation of a

commercial His-tagged S-RBD protein was able to stimulate the inter-

nalization of ACE2 overexpressed in A549 cells (Figure S2). Further-

more, S-RBD protein colocalized with the ACE2 endocytic vesicles,

which suggests that the entry of both proteins as a complex. Impor-

tantly, no S-RBD signal was observed in control A549 cells, indicating

that the internalization is ACE2-dependent (Figure S2). Preincubation

of the S-RBD protein with soluble ACE2 before addition to the cells

partially reduced the number of ACE2 vesicles in the cytoplasm

(Figure 5). However, treatment with native α1 peptide 1 and pep-

tidomimetic 8 showed a similar ACE2 internalization response than

with the control conditions (Figure 5).

These results show that none of these peptides are able to bind

the S-RBD and disrupt the SARS-CoV-2 RBD/ACE2 PPI. ACE2

F IGURE 4 Neutralization data for the positive control—soluble
ACE2, and data for peptide 1, 8 and the negative controls

F IGURE 3 Circular dichroism spectra of the native ACE2 peptide
and the stapled peptidomimetics. A, CD data of the native peptides
compared to the stapled analogues. B, CD data of the truncated
analogues and their stapled variants. Conditions: peptides 100 μM in
PBS, pH 7.4. Spectra recorded between 190 and 260 nm
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evidently has significantly higher binding affinity for the S-RBD than

the stapled peptidomimetics. With both the pseudo-virus and IF

assays indicating that the peptidomimetics lack the ability to disrupt

the ACE2/SARS-CoV-2 PPI, we then turned to a biophysical assay to

measure the binding affinity of the peptidomimetics for the SARS-

CoV-2 S-protein RBD.

3.1.3 | Fluorescence polarization (FP) assay

FP was used to compare the direct binding affinities of N-terminal

fluorescein labeled analogues of α1 peptide 1 and the

peptidomimetics 1-15 with S-RBD. Figure 6 shows the comparison

between the native peptide 1, stapled peptide 8, along with the nega-

tive controls No fluorescent positive control is currently available.

Increasing concentrations of S-RBD were incubated with 100 nM final

concentration of N-terminally fluorescein labeled ACE2 peptides.

Fluorescent polarization measurements were taken at 30 minutes

(Figure 6 and S3), 60 minutes (Figure S4), 120 minutes (Figure S5),

240 minutes (Figure S6) and overnight (Figure S7) post-incubation at

room temperature. None of the peptides bound to S-RBD at up to

1.25 μM concentration.

A C-terminally fluorescein labeled peptide was also synthesized,

to test whether the positioning of the fluorophore affected binding

(Figure S8). The C-terminally labeled peptide also did not show any

binding. The FP data shows that all of the fluorescein labeled ACE2

peptides direct binding “curves” were similar to the ACE2 scrambled

negative control, indicative of no binding with S-RBD being observed.

3.2 | Second generation peptides

As our initial peptide designs did not have any detectable binding

affinity or activity, we next designed a series of longer peptides

(Table 2). The critical determinants of SARS-CoV S-protein interaction

with hACE2 required for cell entry have previously been reported.[15]

A 31-mer peptide was prepared that incorporates the α1 helix linked

to a hACE2 loop sequence that includes a lysine residue that makes

an electrostatic interaction with the RBD. This peptide was shown to

have potent activity (IC50 100 nM) in a SARS-CoV pseudovirus neu-

tralization assay.

The RBD/ACE2 binding interfaces of SARS-CoV and SARS-

CoV-2 are similar[25] and so we prepared this longer peptide (G-Link)

and assessed its activity in our SARS-CoV-2 pseudovirus assay. In

F IGURE 6 Direct binding assay (fluorescent polarization (FP) data
for peptide 1, 8 and the negative controls—Fluorescent polarization
measurements taken at 30 minutes post-incubation at room
temperature

TABLE 2 A second generation array of peptides were designed
based on previous work for SARS-CoV[15]and a mutant peptide was
included

G-link IEEQAKTFLDKFNHEAEDLFYQSS-G-LGKGDFR

D30E IEEQAKTFLEKFNHEAEDLFYQSS-G-LGKGDFR

G-link stapled IR8EQAKTFS5DKFNHEAEDLFYQSS-G-LGKGDFR

Mutant Peptide IEEQAKYFLEWFNPEAEDLFYLSS-G-FGKGDFR

F IGURE 5 Immunofluorescence data shows that cells treated with ACE2 can block the entry of His-tagged SARS-CoV RBD (green). The cells
treated with peptides 1, 8 show entry of the His-tagged SARS-CoV RBD into cells. Stapled peptides (10 μM concentration) or soluble hACE2
(�100 nM) were incubated with 50 nM SRBD for 30 min at 37 �C and later added to A549 cells for 3 hours. Scale bar, 20 μm
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F IGURE 8 A, Neutralization data for the second generation peptides. B, Immunofluorescence data shows that cells treated with ACE2 can
block the entry of His-tagged SARS-CoV RBD (green). The cells that were treated with the second gen. Peptides showed entry of the His-tagged
SARS-CoV RBD into cells. Stapled peptides (10 μM concentration) or soluble hACE2 (100 nM) were incubated with 100 nM S-RBD for
30 minutes at RT and later added to A549 cells overexpressing ACE2 for 3 hours. S-RBD induces ACE2 internalization but recognition by His
antibody is very weak. Scale bar, 20 μm. C, The Western Blot indicates that the peptides show no ability to block entry of the SARS-CoV-2 RBD

F IGURE 9 Direct binding assay (fluorescent polarization (FP) data
for the second generation peptides—Fluorescent polarization
measurements taken at 30 minutes post-incubation at room
temperature

F IGURE 7 The ACE2 PD helix α1 (cyan) plus the discontinuous
fragment (green). A, Front view. B, Side view. In previous work by Han
et al. on SARS-CoV, the peptide fragments were joined by a glycine
(dashed red line). C, The longer G-link peptides were conformationally
constrained using an i, i + 7 alkene staple. (PDB: 6M07)
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addition, an analogue of this peptide with an amino acid substitution

(D30E) previously reported to enhance binding affinity of ACE2 for

the RBD was prepared.[26] To constrain the helical bioactive confor-

mation of the α1 sequence a stapled peptide analogue of this longer

peptide was also synthesized (Table 2 and Figure 7C).

Finally, an analogue of this extended G-link peptide was designed

based on a series of amino acid mutations previously reported in the

literature (Table 2).[14,27,28] Conformational analysis using CD demon-

strated that the native G-link peptide adopts a random coil conforma-

tion. However, upon stapling the α1 component of this sequence an

enhancement in α-helical character was observed (Figure S9).

These second-generation peptides were tested in the same neu-

tralization, immunofluorescence and FP binding assays, again with sol-

uble ACE2 as a positive control.

These longer peptides also showed no inhibition in the

pseudovirus neutralization assay (A) or the immunofluorescence

assay (B) (Figure 8). A western blot (WB) also indicated that the pep-

tides show no ability to block entry of the SARS-CoV-2 RBD

(Figure 8C), yet the positive control, sACE2, has the ability to block

entry.

FP was then used to assess if the second generation G-link pep-

tides bind to isolated, soluble RBD protein. Again, we were surprised

that no binding was observed up to 1.25 μM concentration (Figure 9).

FP was then used to assess if the second generation G-link peptides

bind to isolated, soluble RBD protein. Again, we were surprised that

no binding was observed up to 1.25 μM concentration (Figure 9).

4 | CONCLUSIONS

We have designed and synthesized a series of peptidomimetics based

on the α1 helix interaction hotspot of native ACE2 PD. Our aim was

to develop conformationally constrained peptides that would prevent

viral infection through disrupting the SARS-CoV-2/ACE2 PPI. The

preparation of 13 different stapled peptidomimetic analogues and

2 mutant peptides was successfully achieved using microwave

assisted SPPS. Peptide stapling effectively constrained the helical

structure in solution as confirmed by CD. However, none of these

peptides showed activity in a neutralization assay. Furthermore, no

evidence of binding to the target SARS-CoV-2 S-protein RBD was

detected in either immunofluorescence or in-vitro fluorescence polari-

zation assays.

While preparing this manuscript, Curreli et al. reported the design

and synthesis of double stapled peptide analogues also based on

native ACE2 PD α1.[23] We also synthesized double stapled analogues

of the α1 helix, however these were isolated as crude mixtures of

cis/trans alkene isomers and when tested in the pseudovirus inhibi-

tion assay and they showed no anti-viral activity (data not shown). In

their studies, like us, they confirmed that the peptide designed by

G. Zhang et al. did not show any binding. However, a pseudoviral

assay determined that the most helical double stapled peptides did

inhibit viral entry, suggesting that double stapling is a viable approach

for inducing α1 helicity. Recently there have also been reports of

miniprotein inhibitors of the SARS-CoV-2/ACE2 PPI with picomolar

RBD binding affinity and comparable activity with ACE2 in cell-based

assays.[29] These data, together with that presented here, indicate that

larger ligands with enhanced binding interactions are required for

effective SARS-CoV-2 S-protein RBD binding, to outcompete mem-

brane bound ACE2 and effectively prevent viral infection.
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