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Abstract

Emergence of the novel pathogenic coronavirus SARS-CoV-2 and its rapid pandemic

spread presents challenges that demand immediate attention. Here, we describe the

development of a semi-quantitative high-content microscopy-based assay for detec-

tion of three major classes (IgG, IgA, and IgM) of SARS-CoV-2 specific antibodies in

human samples. The possibility to detect antibodies against the entire viral proteome

together with a robust semi-automated image analysis workflow resulted in specific,

sensitive and unbiased assay that complements the portfolio of SARS-CoV-2 serolog-

ical assays. Sensitive, specific and quantitative serological assays are urgently needed

for a better understanding of humoral immune response against the virus as a basis for

developing public health strategies to control viral spread. The procedure described

here has been used for clinical studies and provides a general framework for the
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application of quantitative high-throughput microscopy to rapidly develop serological

assays for emerging virus infections.

KEYWORDS

antibody, immunofluorescence, machine learning image analysis, quantitative microscopy, SARS-
CoV-2, serological test

INTRODUCTION

The recent emergence of the novel pathogenic coronavirus SARS-

CoV-2 [1–3] and the rapid pandemic spread of the virus has dramatic

consequences in all affected countries. In the absence of a protective

vaccine or a causative antiviral therapy for COVID-19 patients, testing

for SARS-CoV-2 infection and tracking of transmission and outbreak

events are of paramount importance to control viral spread and

avoid the overload of healthcare systems. The sequence of the viral

genome became publicly available only weeks after the initial reports

on COVID-19 via the community online resource virological.org and

allowed rapid development of reliable and standardized quantitative

RT-PCR (qPCR) based tests for direct virus detection in nasopha-

ryngeal swab specimens.[4–6] These tests are the key to identify

acutely infected individuals and monitor virus load as a basis for the

implementation of quarantinemeasures and treatment decisions.

In response to the initial wave of COVID-19 infection many coun-

tries implemented more or less severe lockdown strategies, result-

ing in a gradual decrease in the rate of new infections and deaths.[7]

With gradual release of these lockdown strategies, monitoring and

tracking of SARS-CoV-2 specific antibody levels becomes highly impor-

tant. Many critical aspects of the humoral immune response against

SARS-CoV-2 are currently not well understood.[8] In addition, lev-

els of infection in the general population in different areas remain

largely unknown due to proportion of undocumented cases arising

from asymptomatic individuals.[9,10] who had not been subjected to

RNA testing, or to limitations in testing capacity especially in areas

of relatively high prevalence. Public health control strategies aiming

at regulating human mobility and social behaviour in order to sup-

press the infection rate will have to take into account the proportion of

seropositive individuals in the general population, or in specific popula-

tion groups.[11] Information on the level of antiviral antibodies, as well

as on the serological response against different viral proteins, is also

a key element of understanding the nature, development and durabil-

ity of the antiviral immune response. Therefore, specific, sensitive and

reliable methods for the quantitative detection of virus specific anti-

bodies in human specimens are urgently needed from the beginning of

an emerging pandemic.

Compared to approaches for direct virus diagnostics by PCR, devel-

opment of test systems for detection of SARS-CoV-2 specific antibod-

ies proved to bemore challenging. In particular, cross reactivity of anti-

bodies against circulating common cold coronaviruses (strains OC43,

NL63, 229EandHKU1) areof concern in this respect as itwasobserved

in case of serological tests developed for closely related SARS-CoV

andMERS-CoV.[12] Developments in the past months yielded well val-

idated, commercially available ELISA or (electro)chemoluminescence-

based kits for SARS-CoV-2 serological diagnostics. However, initially

marketed test kits underwent a very rapid development and approval

process due to the emergency of the situation; lownumbers of samples

were used for validation. Consequently, sensitivity and specificity of

the test systems often failed to meet the practical requirements.[13]

Furthermore, the disruption of supply chains and high demand for tests

during pandemic situations can lead to shortage of commercially avail-

able test kits and/or required reagents, aswitnessed in the early phases

of theongoing SARS-CoV-2pandemic. Thus, complementary strategies

to test for antiviral antibodies that canbe rapidly deployed in situations

where commercially available kits are either not yet developed or not

available are an important addition to the diagnostic toolkit.

Immunofluorescence (IF) using virus infected cells as a specimen

is a classical serological approach in virus diagnostics and has been

applied to coronavirus infections, including the closely related virus

SARS-CoV.[14–16] The advantages of IF are (i) that it does not depend

on specific diagnostic reagent kits or instruments, (ii) that the speci-

men contains all viral antigens expressed in the cellular context and

(iii) that the method has the potential to provide high information

content (differentiation of staining patterns and intensities due to

reactivity against various viral proteins). A mayor disadvantage of the

IF approach as it is typically used in serological testing is its limited

throughput capacity due to the involvement of manual microscopy

handling steps and sample evaluation based on visual inspection of

micrographs. Furthermore, visual classification is subjective and thus

not well standardized and yields only binary results. Here, we address

those limitations, making use of advanced automated microscopy and

image analysis strategies developed for basic research.We present the

establishment and validation of a semi-quantitative, semi-automated

workflow for SARS-CoV-2 specific antibody detection.With its 96-well

format, semi-automated microscopy and automated image analysis

workflow it combines advantages of IF with a reliable and objective

semi-quantitative readout and high throughput compatibility. The pro-

tocol described here was developed in response to the emergence of

SARS-CoV-2, but it represents a general approach that can be adapted

for the study of other viral infections and is suitable for rapid deploy-

ment to support diagnostics of emerging viral infections in the future.

RESULTS

Setup of the IF assay for SARS-CoV-2 antibody
detection

We decided to use cells infected with SARS-CoV-2 as samples for our

IF analyses, since this setup provides the best chance for detection of
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antibodies targeted at the different viral proteins expressed in the host

cell context. African green monkey kidney epithelial cells (Vero E6 cell

line) have been used for infection with SARS-CoV-2, virus production

and IF.[3,17] In preparation for our analyses we compared different cell

lines for use in infection and IF experiments, but all tested cell lines

were found to be inferior to Vero E6 cells for our purposes (see Mate-

rials and Methods and Figure S1). All following experiments were thus

carried out using the Vero E6 cell line.

In order to allow for clear identification of positive reactivity in

spite of a variable and sometimes high nonspecific background from

human sera, our strategy involves a direct comparison of the IF signal

from infected and non-infected cells in the same sample. Preferential

antibody binding to infected compared to non-infected cells indicates

the presence of specific SARS-CoV-2 antibodies in the examined

serum. Under our conditions, infection rates of ∼40%–80% of the cell

population were achieved, allowing for a comparison of infected and

non-infected cells in the same well of the test plate. An antibody that

detects dsRNA produced during viral replication was used to distin-

guish infected from non-infected cells within the same field of view

(Figure 1A).

In order to define the conditions for immunostaining using human

serum, we selected a small panel of negative and positive control

sera. Four sera from healthy donors collected before November 2019

were chosen as negative controls, and eight sera from PCR confirmed

COVID-19 inpatients collected at day 14 or later post symptom onset

was employed as positive controls. Sera from this test cohort were

used for primary staining, and bound antibodies were detected using

fluorophore-coupled secondary antibodies against human IgG, IgA or

IgM.

No difference between infected and non-infected cells in serum IgG

antibody binding was observed when sera collected before the onset

of the SARS-CoV-2 pandemic were examined (Figure 1B, Figure S2). In

contrast, COVID-19 patient sera were clearly characterized by higher

serum IgG antibody binding to infected compared to non-infected cells

(Figure 1B). All eight COVID-19 patient serum samples yielded higher

IgG binding to infected compared to non-infected cells as assessed by

visual inspection (Figure S2). Similar results were obtained when an

IgA or IgM specific secondary antibody was used for detection (Fig-

ure S3). In order to allow for the parallel assessment of IgG and IgA

or IgM antibodies, we established conditions for the parallel detection

of anti-IgG coupled to AlexaFluor488 and anti-IgA or anti-IgM coupled

to DyLight650 or AlexaFluor647 secondary antibodies, respectively,

without signal bleedthrough. Using this approach, it was possible to

implement detection of SARS-CoV-2 specific IgG and IgA or IgM anti-

bodies in a single experimental setup (Figure S4).

Titration experiments were performed with positive control sera to

determine the optimal range of serum concentration in the IF exper-

iments. All eight positive control samples showed visually detectable

specific labelling of infected cells over the range of 1:102 and 1:105,

demonstrating robustness of the assay (Figure S5). Serum concentra-

tions of less than 1:105 did not yield detectable signals in all cases. We

decided to employ a dilution of 1:102 in the further experiments

Image analysis

Our next aim was to establish a semi-automated analysis workflow for

image acquisition and analysis for amedium tohigh throughput setting.

Vero E6 cells were seeded into 96-well plates infected and immunos-

tained using anti-dsRNA antibody and patient serum, followed by

indirect detection using a mixture of anti-IgG and anti-IgA/IgM

secondary antibodies. Images were acquired using an automated

widefield microscope (see Materials and Methods section for more

detail).

To obtain a measure for specific antibody binding we performed

automated segmentation of cells and classified them into infected and

non-infected cells based on the dsRNA staining.We thenmeasured flu-

orescence intensities in the serum channel per cell as a proxy for the

amount of bound antibodies for both infected and non-infected cells

and calculated the ratio between these values for infected and non-

infected cells in a given specimen. Toenable training of amachine learn-

ing approach for cell segmentation and to directly evaluate infected

cell classification, we manually labelled cells and annotated them as

infected/non-infected in 10 images chosen from five positive and five

control specimens. Figure 2 presents a graphical overview of all anal-

ysis steps; the full description of every step can be found in Materials

andMethods. Briefly, our approachworks as follows:

First, wemanually discarded all images that contained obvious arte-

facts such as large dust particles or dirt and out-of-focus images. Then,

imageswere processed to correct for the uneven illumination profile in

each channel. Next,we segmented individual cellswith a seededwater-

shed algorithm,[18] using nuclei segmented via StarDist [19] as seeds

and boundary predictions fromaU-Net [20,21] as a heightmap.Weeval-

uated this approach using leave-one-image-out cross-validation on the

manual annotations and measured an average precision[22] of 0.77 ±

0.08 (i.e., on average 77% of segmented cells are matched correctly

to the corresponding cell in the annotations). Combined with exten-

sive automatic quality control, which discards outliers in the results,

the segmentation was found to be of sufficient quality for our analysis,

especially since robust intensity measurements were used to reduce

the effect of remaining errors.

We then classified the segmented cells into infected and non-

infected, by measuring the 95th percentile intensities in the dsRNA

channel and classifying cells as infected if this value exceeded 4.8 times

the noise level, determined by themean absolute deviation. This factor

and the percentile were determined empirically using grid search on

the manually annotated images (see above). Using leave-one-out cross

validation on the image level, we found that this approach yields an

average F1-score of 84.3%.

In order to make our final measurement more reliable, we then dis-

carded whole wells, images or individual segmented cells based on

quality control criteria that were determined by inspection of initial

results. Those criteria include a minimal number of non-infected cells

per well; minimal and maximal number of cells per image; minimal cell

intensities for images; andminimal andmaximal sizes of individual cells

(seeMaterials andMethods for full details).
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F IGURE 1 Principle of the immunofluorescence assay for SARS-CoV-2 antibody detection. (A) Scheme of the IF workflow and the concept for
SARS-CoV-2 antibody detection. (B) Representative images showing immunofluorescence results using a COVID-19 patient serum (positive
control, upper panels) and a negative control serum (lower panels), followed by staining with an AlexaFluor488-coupled anti-IgG secondary
antibody. Nuclei (grey), IgG (green), dsRNA (magenta) channels and a composite image are shown.White boxesmark the zoomed areas. Dashed
lines mark borders of non-infected cells that are not visible at the chosen contrast setting. Note that the upper and lower panels are not displayed
with the same brightness and contrast settings. In the lower panels the brightness and contrast scales have been expanded in order to visualize
cells in the IgG serum channel where only background staining was detected. Scale bar is 20 µm in overview and 10 µm in the insets

To score each sample, we computed the intensity ratio:

r =
mI

mN
(1)

Here, mI is the median serum intensity of infected cells and mN the

median serum intensity of non-infected cells. For each cell, we compute

its intensity by computing themeanpixel intensity in the serumchannel

(excluding the nucleus area where we typically did not observe serum

binding) and then subtracting the background intensity, which is mea-

sured on two control wells that did not contain any serum.

We used efficient implementations for all processing steps and

deployed the analysis software on a computer cluster in order to

enhance the speed of imaging data processing. For visual inspection,

wehave further developed anopen-source software tool (PlateViewer)
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F IGURE 2 Schematic overview of the image processing pipeline. Initially, images are subjected to the first manual quality control, where
images with acquisition defects are discarded. A pre-processing step is then applied to correct for barrel artifacts. Subsequently, segmentation is
obtained via seededwatershed, this algorithm requires seeds obtained from StarDist segmentation of the nuclei and boundary evidence computed
using a neural network. Lastly, using the virus marker channel we classify each cell as infected or not infected andwe computed the scoring. A final
automated quality control identifies and automatically discards non-conform results. All intermediate results are saved in a database for ensuring
fully reproducibility of the results

for interactive visualization of high-throughput microscopy data.[23]

PlateViewer was used in a final quality control step to visually inspect

positive hits. For example, PlateViewer inspection allowed identifying

a characteristic spotted pattern co-localizing with the dsRNA stain-

ing (Figure S6) that was sometimes observed in the IgA channel upon

staining with negative control serum. In contrast, sera from COVID-

19 patients typically displayed cytosol, ER-like and plasma membrane

staining patterns in this channel (Figure 1B, Figure S3). The dsRNA co-

localizing pattern observed for sera from the negative control cohort

is by definition non-specific for SARS-CoV-2, but would be classified as

a positive hit based on staining intensity alone. Using PlateViewer, we

performed a quality control on all IgA positive hits and removed those

displaying the spotted pattern colocalizing with the dsRNA signal from

further analysis.

Assay characterization and validation

With the immunofluorescence protocol and automated image analysis

in place we proceeded to test a larger number of control samples in a

high throughput compatible manner for assay validation. All samples

were processed for IF as described above, and in parallel analysed by a

commercially available semi-quantitative SARS-CoV-2ELISAapproved

for diagnostic use (Euroimmun, Lübeck, Germany) for the presence of

SARS-CoV-2 specific IgG and IgA antibodies.

Assay specificity characterization

As outlined above, a main concern regarding serological assays for

SARS-CoV-2 antibody detection is the occurrence of false positive

results. A particular concern in this case is cross-reactivity of anti-

bodies that originated from infection with any of the four types of

common cold Corona viruses (ccCoV) circulating in the population.

The highly immunogenic major structural proteins of SARS-CoV-2

nucleocapsid (N) and spike (S) protein, have an overall homology of

∼30% [3] to their counterparts in ccCoV and subdomains of these pro-

teins display a higher degree homology; cross-reactivity with ccCoV

has been discussed as the major reason for false positive detection

in serological tests for closely related SARS-CoV and MERS-CoV.[12]
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F IGURE 3 Examples of results from the automated image analysis pipeline. Panels display images that correspond to three different ratio
scores (ratio score is indicated above the image) determined from samples stained with three different human sera, followed by staining with an
anti-IgG secondary antibody coupled to AlexaFluore488. Images represent overlays of three channels—nuclei (blue), IgG (green) and dsRNA (red).
White boxes mark the zoomed area. Cells in the insets are highlightedwith yellow or cyan boundaries, indicating infected and non-infected cells,
respectively. Scale bar= 10 µm

Also, acute infection with Epstein-Barr virus (EBV) or cytomegalovirus

(CMV) may result in unspecific reactivity of human sera.[24,25] We

therefore selected a negative control panel consisting of 218 sera col-

lected before the fall of 2019, comprising samples from healthy donors

(n = 105, cohort B), patients that tested positive for ccCoV several

months before the blood sample was taken (n = 34, all four types

of ccCoV represented; cohort A), as well as patients with diagnosed

Mycoplasma pneumoniae (n = 22; cohort Z), EBV or CMV infection

(n = 57, cohort E). We further selected a panel of 57 sera from 29

RT-PCR confirmedCOVID-19 patients collected at different days’ post

symptom onset as a positive sample set (cohort C, see below).

Sera were employed as primary antisera for IF staining using IgM,

IgA or IgG specific secondary antibodies, and samples were imaged

and analysed as described above. This procedure yielded a ratiometric

intensity score for each serum sample. Based on the scores obtained

for the negative control cohort and the patient sera, we defined the

threshold separating negative frompositive scores for each of the anti-

body channels. For this, we performed ROC curve analysis [26–28] on a

subset of the data (cohorts A, B, C, Z). Using this approach, it is possi-

ble to take the relative importance of sensitivity versus specificity as

well as seroprevalence in the population (if known) into account for

optimal threshold definition. By giving more weight to false positive

or false negative results, one can adjust the threshold dependent on

the context of the study. Whereas high sensitivity is of importance for

e.g. monitoring seroconversion of a patient known to be infected, high

specificity is crucial for population based screening approaches, where

large study cohorts characterized by low seroprevalence are tested.

Since we envision the use of the assay for screening approaches, we

decided to assign more weight to specificity at the cost of sensitivity

for our analyses (see Materials and Methods for an in-depth descrip-

tion of the analysis). Optimal separation in this case was given using

threshold values of 1.39, 1.31, and 1.27 for IgA, IgG and IgM channels,

respectively (Figure S7). We validated the classification performance

on negative control cohort E (n = 57) that was not seen during thresh-

old selection, anddetectednopositive scores. Results from the analysis

of the negative control sera are presented in Figure 4 and Table 1.

Assay specificity comparison between ELISA and IF

While the majority of these samples tested negative in ELISA mea-

surements as well as in the IF analyses, some positive readings were

obtained in each of the assays, in particular in the IgA specific anal-

yses (Figure 4 and Table 1). Since samples from these cohorts were

collected between 2015 and 2019, and donors were therefore not

exposed to SARS-CoV-2 before sampling, these readings represent

false positives. Of note, negative control cohort E displayed a partic-

ularly high rate of false positives in ELISA measurements, but not in IF

(Table 1). We conclude that the threshold values determined achieve

our goal of yielding highly specific IF results (at the cost of sub-maximal

sensitivity).

Roughly 10.6% (IgA) or 3% (IgG) of the samples were classified

as positive or potentially positive by ELISA (Table 1). The notably

lower specificity of the IgA determination in a seronegative cohort

observed here is in accordance with findings in other studies [29,30]

and information provided by the manufacturer of the test (90.5% for

IgA vs. 99.3% for IgG; Euroimmun SARS-CoV-2 data sheet, April 24,

2020; in response to these findings, an improved version of the test has

been recently developed). The respective proportion of false-positives

obtained based on IF, 0% for IgA and 0.9% for IgG, were lower, indi-

cating higher specificity of the IF readout compared to the ELISA

measurements. Importantly, however, false positive readings did not

correlate between ELISA and IF (Figure 4). Thus, classifying only sam-

ples that test positive in both assays as true positives resulted in the

elimination of false positive results (0 of 218 positives detected). We

conclude that applying both methods in parallel and using the “double
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F IGURE 4 Correlation between SARS-CoV-2 specific IF and ELISA results for the negative control panel obtained in IgA (A) or IgG (B)
measurements. Each dot represents one serum sample. Blue, healthy donors; red, ccCoV positive; green, CMV positive; orange, EBV positive;
black, mycoplasma positive. Bottom panels represent zoomed-in versions of the respective top panel to illustrate the borderline region. (C) IgM
values for the indicated negative control cohorts determined by IF. Since a corresponding IgM specific ELISA kit from Euroimmunwas not
available, correlation was not analysed in this case. In some cases, antibody binding above backgroundwas undetectable by IF in non-infected as
well as in infected cells, indicating low unspecific cross-reactivity and lack of specific reactivity of the respective serum. In order to allow for
inclusion of these data points in the graph, the IF ratio was set to 1.0. Dotted lines indicate the optimal separation cut-off values defined for sample
classification, grey areas indicate borderline results in ELISA

TABLE 1 Summary of positive results for the negative control samples obtained by ELISA and IF

Negative cohort IF IgM IF IgA IF IgG ELISA IgA ELISA IgG

B (n= 105) 1 0 1 7 5

A (n= 34) 0 0 1 3 1

Z (n= 22) 0 0 0 2 0

E (n= 57) 0 0 0 11 1

Total (n= 218) 1 (0.5%) 0 (0.0%) 2 (0.9%) 23a (10.6%) 7a (3.2%)

The classification of positive or borderline results in ELISA followed the definition of the test manufacturer. The classification in IF is described in materials

andmethods. Positive IgA and IgGELISA readingswere derived from the same sample. Cohort B=healthy donors, cohort A=patients that tested positive for

ccCoV (all four types of ccCoV represented), cohort Z = patients with diagnosed Mycoplasma pneumoniae, cohort E = patient with diagnosed EBV or CMV

infection.
a – borderline values were considered positive.

positive” definition for classification notably improves specificity of

SARS-CoV-2 antibody detection.

Assay sensitivity characterization

In order to determine the sensitivity of our IF assay, we employed

57 sera from 29 symptomatic COVID-19 patients that had been

RT-PCR confirmed for SARS-CoV-2 infection. Archived sera from

these patients had been collected in the range between day 5 and 27

post symptom onset. Again, samples were measured both in IF and

ELISA, and the correlation between the semi-quantitative values was

assessed as shown in Figure 5. While there were deviations in the

height of the values, positive correlationwas evident in both cases, and

values for the IgG readoutweremore congruent than those for the less

specific IgA determination (Pearson r: 0.847 for IgG; 0.655 for IgA).

For an assessment of sensitivity, we stratified the samples accord-

ing to the day post symptom onset, as shown in Figure 6. and Table 2.
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F IGURE 5 Correlation between IgA or IgG values obtained by ELISA and IF for sera from 29COVID-19 patients collected at different days’
post infection. In some cases, antibody binding above backgroundwas undetectable by IF in non-infected as well as in infected cells, indicating low
unspecific cross-reactivity and lack of specific reactivity of the respective serum. In order to allow for inclusion of these data points in the graph,
the IF ratio was set to 1.0. Dotted lines indicate the cut-off values defined for classification of readouts, grey areas indicate borderline values

F IGURE 6 Detection of SARS-CoV-2 specific antibodies in sera fromCOVID-19 patients. (A) Fifty-seven serum samples from 29 PCR
confirmed patients collected at the indicated times post symptom onset were analysed by the IFworkflow for the presence of SARS-CoV-2 specific
IgM, IgA and IgG antibodies. Each dot represents one serum sample. Red line: mean value; dotted line: cut-off between negative and positive
values. (B) The same samples as in Awere analysed by ELISA for the presence of SARS-CoV-2 specific IgA and IgG antibodies. Each dot represents
one serum sample. Red line: mean value; dotted lines: cut-off; grey zone: borderline

TABLE 2 Positive results obtained for sera fromCOVID-19 patients collected at the indicated days post symptom onset

Days post symptom onset IF IgM IF IgA IF IgG ELISA IgA ELISA IgG

<11 (n= 17) 7 (41%) 9 (53%) 7 (41%) 11 (65%) 3 (18%)

11–14 (n= 24) 18 (75%) 19 (79%) 19 (79%) 19 (79%) 16 (67%)

>14 (n= 16) 16 (100%) 16 (100%) 16 (100%) 16 (100%) 16 (100%)

Total (n= 57) 42 (73%) 44 (77%) 42 (73%) 46 (80%) 34 (60%)
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For both methods, and for all antibody classes, mean values and the

proportion of positive samples increased over time. In all cases, only

positive values were obtained for samples collected later than day 14

post symptom onset, in accordance with other reports.[30–32] Consis-

tent with other reports,[32] SARS-CoV-2 specific IgMwas not detected

notably earlier than the two other antibody classes in our measure-

ments. At the earlier time points (up to day 14), a similar or higher pro-

portion of positive samples was detected by IF compared to ELISA for

IgG. Although the sample size used here is too small to allow a firm con-

clusion, these results suggest that the sensitivity of IgG detection by

the semi-quantitative IF approach is higher than that of an approved

semi-quantitative ELISA assay routinely used in diagnostic labs. In the

case of IgA detection at earlier time points (<day 11) ELISA performed

slightly better (11/17 samples scored positive) compared to IF (9/17

scored positive) however that came with the price of a very low speci-

ficity of ELISA IgA assay (10.6% false negative detection) compared to

IF (0.5%).

DISCUSSION

Application of the developed assay

Here, we describe the development of a semi-quantitative IF based

assay for detection of SARS-CoV-2 specific antibodies in human sam-

ples that complements available ELISA-based testing systems.[33,34]

Alternatives to ELISA-based commercial test kits are important in

situations where those kits are not available either because they are

not yet developed in early days of the pandemic or due to high global

demands for tests and required reagents. The microscopy-based assay

described here has been developed during the early phase of the

COVID-19 pandemic to support the serological testing needs of the

University Hospital Heidelberg, Germany and is employed as a confir-

matory assay in clinical studies [35] and ongoing studies]. The assay dis-

played comparable or slightly better sensitivity and specificity than a

commercially available semi-quantitative SARS-CoV-2ELISAapproved

for diagnostic use at the time.More importantly, combining two techni-

cally different serological assays, IF and ELISA, and classifying as “posi-

tive hits” only those that scored positive in both assays was instrumen-

tal to minimize false positive results while maintaining high sensitivity,

and thus serves as a principle for serological studies or diagnostics

where specificity of detection is of critical importance. Specificity of

detection is essential in settings of relatively lowSARS-CoV-2 antibody

prevalence [36–38] in conjunction with high prevalence of potentially

cross-reactive anti-ccCoV antibodies in a global population.[39]

Advantages and disadvantages

One advantage of the IF based assay presented here is that the speci-

mens used for detection present the entire viral proteome,while ELISA

or chemiluminescent approaches use a single recombinantly expressed

antigen. Both the N and S protein of coronaviruses are highly immuno-

genic, and antibodies binding to the receptor binding domain on the S1

subunit are considered most relevant for neutralization. However, the

relative importance of antibodies directed against the N protein for

potential protective immunity against SARS-CoV-2 and the possible

relevance of the overall breadth of the antibody response is currently

unclear. Other SARS-CoV-2 structural and non-structural proteins

might play a role in immune response as it was shown for proteins 3a

and 9b of the closely related SARS-CoV.[40] In addition, expression

of the viral proteome in permissive cells ensures correct protein

folding and post-translational modification patterns. Alterations in

post-translational modifications are likely to influence the ability of

serum antibodies to bind to different viral epitopes as it was shown for

other viruses such as HIV-1.[41] It has to be noted that the detection of

viral RNA requires fixation and permeabilization of cells, which has the

potential to affect epitope preservation. However, based on the high

sensitivity of antibody detection and the good correlation to ELISA

measurements observed we conclude that this was no major concern

in this case.

Two major disadvantages of typical IF-based serological assays as

applied in the past are manual microscopy acquisition steps and eval-

uation of samples based on a visual inspection. This procedure is

incompatible with high throughput approaches and results are subjec-

tive, not quantitative and difficult to standardize. We have addressed

these disadvantages by implementing automated microscopy acquisi-

tion and developing a robust software platform that is able to iden-

tify individual cells, classify infected and non-infected cells and take

into account specific and non-specific background in order to generate

semi-quantitative results. Depending on the context of a study and the

questions to be addressed, sensitivity or specificity may be of higher

importance. The automated image analysis protocol developed here

allows the user to adapt the classification according to the study needs,

puttingmore weight on either one of the parameters.

Automated image acquisition and image analysis presentedhere are

compatiblewith a high throughput approach. Plateswith fixed samples

of infected cells can be prepared in advance and stored at 4◦C for sev-

eral weeks. In themanual workflow used here, four 96-well plates (384

samples) could easily be analysed within a typical work day (1.5 h for

immunofluorescence, 1.5 h for image acquisition, 2 h of image analysis).

This is already the throughput in the range of some ELISA-based auto-

mated systems used in diagnostics and is sufficient for urgent applica-

tions in an early phase of disease response.

Further development and application perspective

The major disadvantage of the procedure described here for a virus

like SARS-CoV-2 is the requirement of a BSL3 containment area to

generate virus stocks and produce infected cell specimens. Recombi-

nant cell lines expressing key viral antigens can address this drawback

and also allows to easily implement already established automated

cell seeding and immunostaining pipelines for a true high-throughput

application.[42,43] Combining such cell lines with spectral unmixing

microscopy [44] would not only enable simultaneous determination of
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levels of all three major classes of antibodies (IgM, IgG, and IgA), but

also identification of the viral antigens recognized, in a single mul-

tiplexed approach. The high information content of the IF data (dif-

ferential staining patterns) together with a machine learning-based

approach [45] and the implementation of stable cell lines expressing

selected viral antigens in the IF assay will provide additional param-

eters for classification of patient sera and further improve sensitivity

and specificity of the presented IF assay.

The described analysis pipeline canbe readily applied for serological

analysis of other virus infections, provided that an infectable cell line

and a staining procedure that allows differentiating between infected

and non-infected cells are available. The assay described here thus

offers potential as an immediate response to any future virus pan-

demic, as it can be rapidly deployed from the moment the first isolate

of the pathogen has been obtained without requiring information on

the expression or immunogenicity of viral proteins.

CONCLUSION

In summary, we have developed a microscopy-based assay for semi-

quantitative detection of SARS-CoV-2 specific antibodies in human

serum, which is generally adaptable to the detection of antibody

responses against other viruses. The assay can be used in situations

where commercial assays are not readily available such as early in

a pandemic or during increased demand. It is also suited to be used

in combination with other serological assays to increase the speci-

ficity of detection as we have shown here. Due to the presence of

the entire viral proteome, correctly folded and with appropriate post-

translational modifications the assay complements and expands avail-

able ELISA-based commercial tests. The automated image acquisition

and image analysis pipeline developed increases throughput of IF-

based serological assays and yields semi-quantitative information. The

strategy presented provides a general framework how quantitative

high-throughputmicroscopymaybeapplied for serological testingpur-

poses, in particular in the setting of emerging viral infections.

EXPERIMENTAL SECTION

Human material

Negative control serum samples (n = 218) were collected for various

serological testing in the routine laboratory of the Center of Infectious

Diseases, University Hospital Heidelberg between 2015 and 2019,

before the start of the SARS-CoV-2 outbreak. Samples used corre-

sponded to pseudonymized remaining material from the archive of

the Center of Infectious Diseases Heidelberg. SARS-CoV-2 positive

sera were collected from 29 PCR confirmed symptomatic COVID-19

inpatients (n = 17) or outpatients (n = 12) treated at the University

Hospital Heidelberg under general informed consent (ethics votum

no. S-148/2020, University Hospital Heidelberg). Days post symp-

tom onset were defined based on the anamnesis carried out upon

admission. Serum samples were stored at –20◦C until use.

Virus stock production

Vero E6 cells were cultured in Dulbecco’s modified Eagle medium

(DMEM, Life Technologies) containing 10% fetal bovine serum,

100 U/mL penicillin, 100 µg/mL streptomycin and 1% non-essential

amino acids (completemedium).

SARS-CoV-2 virus stocks were produced by amplification of the

BavPat1/2020 strain (European Virus Archive) in Vero E6 cells. To

generate the seed virus (passage 3), Vero E6 cells were infected with

the original virus isolate, received as passage 2, at an MOI of 0.01. At

48 h post infection (p.i.), the supernatant was harvested and cell debris

was removed by centrifugation at 800 x g for 10 min. For production

of virus stocks (passage 4), 500 µL of the seed virus was used to infect
9 × 106 Vero E6 cells. The resulting supernatant was harvested 48

h later as described above. Virus titers were determined by plaque

assay. Briefly, 2.5 × 106 Vero E6 cells were plated into 24-well plates.

24 h later, cells were infected with serial dilutions of SARS-CoV-2

for 1 h. Inoculum was then removed and the cells were overlaid with

serum free DMEM containing 0.8% carboxymethylcellulose. At 72

h p.i., cells were fixed with 5% formaldehyde for 1 h followed by

staining with 1% Crystal violet solution. Plaque forming units per mL

(PFU/mL) were estimated by manual counting of the viral plaques.

Stock solutions were stored in aliquots at –80◦C until use for infection

experiments.

Infection of cells and immunofluorescence staining

In order to find a suitable cell line for our application, we performed

pre-experiments comparing different cell lines with respect to their

susceptibility to SARS-CoV-2 infection. Cells were seeded on glass

coverslips and infected on the following day with SARS-CoV-2 strain

BavPat1/2020 for 16 h at empirically determined MOI 0.01 achieving

infection rates of ∼40%–80% of the cell population, allowing for a

comparison of infected and non-infected cells in the same well of the

test plate. Cells were fixed with 6% PFA in PBS, followed by permeabi-

lization with 0.5% Triton X100 in PBS and then subjected to a standard

immunofluorescence staining protocol as described in materials and

methods. Only very few infected calls were detected in the case of

hepatocyte-derived carcinoma cells (HUH-7), human embryonic kid-

ney (HEK293T) andhumanalveolar basal epithelial (A549) cells (Figure

S1). Calu-3 cells grew in small clumps, often on top of each other, a

feature that affected our microscopy-based readout. In contrast, Vero

E6 cells grew as amonolayer andwere viable for at least 24 h p.i. Based

on these results, Vero E6 cells were chosen for all experiments in this

manuscript.

For serum screening by IF microscopy, Vero E6 cells were seeded

at a density of 7000 cells per well into a black-wall glass-bottom 96

well plates (Corning, Product Number 353219) or on glass coverslips

placed in a 24-well plate. 24 h after seeding, cells were infected with

SARS-CoV-2 at an MOI of 0.01 for 16 h. Cells were then fixed with 6%

Formaldehyde for 1 h followed bywashing 3xwith phosphate buffered

saline (PBS) under biosafety level 3. Afterwards, sampleswere handled
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under biosafety level 2. Cells were washed once in PBS containing

0.02% Tween 20 (Sigma) and permeabilised using 0.5% Triton X100

(Sigma) for 10 min. Samples were washed again and blocked using 2%

powdered milk (Roth) in PBS for 20 min followed by two additional

washing steps. All washing steps in a 96-well format were performed

using the HydroFlex microplate washer (Tecan). Next, cells were incu-

bated with patient serum (prediluted 1:1 in 0,4% Triton-X100 in PBS;

further dilution 1:50 in PBS if not stated otherwise) and anti-ds-RNA

mouse monoclonal J2 antibody (Scicons, #10010500, 1:4000) in PBS

for 30 min at room temperature. After 3 washing steps, cognate sec-

ondary antibodies were applied for 20 min at room temperature. Goat

anti-human IgG-AlexaFluor 488 (Invitrogen, Thermofisher Scientific,

#A-11013), goat anti-human IgADyLight650 (Abcam,#ab96998), goat

anti-human IgM u chain-AlexaFluor 488 (Invitrogen, Thermofisher

Scientific, # A51011), for detecting immunoglobulins in human serum

together with goat anti-mouse IgG-AlexaFluor 568 (Invitrogen, Ther-

mofisher Scientific, #A-11031) for dsRNA detection, all at 1:2000

dilution in PBS, have been used. After incubation with secondary anti-

bodies cells were washed twice, stained with Hoechst (0.002 µg/mL in

PBS) for 3min, washed again twice and stored at+4◦C until imaging.

Microscopy

Samples were imaged on motorized Nikon Ti2 widefield microscope

using a Plan Apo lambda 20x/0.75 air objective and a back-illuminated

EM-CCD camera (Andor iXon DU-888). To automatically acquire

images in 96-well format, the JOBS module was used. The system was

configured to acquire nine images per well (in a regular 3 × 3 pat-

tern centred in the middle of each well). The Perfect Focus System

was used for autofocusing followed by a software-based fine focus-

ing using the Hoechst signal in an axial range of 40 µm. Images were

acquired in four channels using the following excitation/emission set-

tings: Ex 377/50, Em 447/60 (Hoechst); Ex 482/35, Em 536/40 (Alex-

aFluor 488); Ex 562/40, Em 624/40 (AlexaFluor 568) and Ex 628/40,

Em 692/40 (AlexaFluor 647 and DyLight 650). Exposure times were in

the range between 50 and 100mswith EM gain between 50 and 150.

Enzyme linked immuno-sorbent assay (ELISA)

ELISA measurements for determination of reactivity against the S1

domain of the viral spike protein were carried out using the Euroim-

mun Anti-SARS-CoV-2-ELISA (IgA) and Anti-SARS-CoV-2-ELISA (IgG)

test kits (Euroimmun, Lübeck, Germany; EI 2606–9601A and EI 2606–

9601 G) run on an Euroimmun Analyzer I instrument according to the

manufacturer’s instructions. Optical densities measured for the sam-

ples were normalized using the value obtained for a calibrator sam-

ple provided in the test kit. The interpretation of the semi-quantitative

ratiometric values obtained followed themanufacturer’s protocol: val-

ues <0.8 were classified as negative, 0.8–1.1 as borderline, and values

of 1.1 or higher as positive.

Image analysis

Manual annotations

Two of our processing steps require manually annotated data: in

order to train the convolutional neural network used for boundary

and foreground prediction, we needed label masks for the individual

cells. To determine suitable parameters for the infected cell classifi-

cation, we needed a set of cells classified as being infected or non-

infected. We have produced these annotations for 10 images with

the following steps. First, we created an initial segmentation following

the approach outlined in the Segmentation subsection, using bound-

ary and foreground predictions from the ilastik [46] pixel classifica-

tion workflow, which can be obtained from a few sparse annotations.

We then corrected this segmentation using the annotation tool BigCat

(https://github.com/saalfeldlab/bigcat). After correction, we manually

annotated these cells as infected or non-infected. Note that this mode

of annotations can introduce two types of bias: the segmentation labels

are derived from an initial segmentation. Small systematic errors in the

initial segmentation thatwere not found during correction, could influ-

ence the boundary prediction network. More importantly, when anno-

tating the infected/non-infected cells, both the serum channel and the

virus marker channel have to be available to the annotators, in order

to visually delineate the cells. This may result in subconscious bias, and

the possibility of the observed intensity in the serum channel influenc-

ing the decision on the infection status of a cell.

Preprocessing

On all acquired images, we performedminimal preprocessing (i.e., flat-

field correction) in order compensate for uneven illumination of the

microscope system.[47] First, we subtract a constant CCD camera off-

set (ccd_offset). Secondly, we correct uneven illumination by dividing

each channel by a corresponding corrector image (flatfield(x, y)), which

was obtained as a normalized average of all images of that channel,

smoothed by a normalized convolution with a Gaussian filter with a

bandwidth of 30 pixels.

processed (x, y) =
raw (x, y) − ccd_offset

flatfield(x, y) − ccd_offset
(2)

This corrector image was obtained for all images of a given micro-

scope set-up. Full background subtraction is performed later in the

pipeline using either the background measured on wells that (deliber-

ately) do not contain any serum or, if not available, using a fixed value

that was determinedmanually.

Segmentation

Cell segmentation forms the basis of our analysis method. In order to

obtain an accurate segmentation, we make use of both the DAPI and

the serum channel. First, we segment the nuclei on the DAPI channel
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using the StarDist method [19] trained on data from Caicedo et al.

2019.[48] Note that this method yields an instance segmentation: each

nucleus in the image is assigned a unique ID. In addition, we predict

per pixel probabilities for the boundaries between cells and for the

foreground (i.e., whether a given pixel is part of a cell) using a 2D

U-Net [20] based on the implementation of Wolny et al. 2020.[21] This

method was trained using the nine annotated images, see above. The

cells are then segmented by the seeded watershed algorithm.[18] We

use the nucleus segmentation, dilated by three pixels, as seeds and

the boundary predictions as the height map. In addition, we threshold

the foreground predictions, erode the resulting binary image by 20

pixels and intersect it with the binarised seeds. The result is used as a

foreground mask for the watershed. The dilation/erosion is performed

to alleviate issues with very small nucleus segments/imprecise fore-

ground predictions. In order to evaluate this segmentation method,

we train nine different networks using leave-one-out cross-validation,

training each network on eight of the manually annotated images and

evaluating it on the remaining one. We measure the segmentation

quality using average precision [22] at an intersection over union

(IoU) threshold of 0.5 as described in https://www.kaggle.com/c/data-

science-bowl-2018/overview/evaluation. We measure a value of 0.77

± 0.08with the optimum value being 1.0.

Quantitation and scoring

Infection classification

To distinguish infected cells from control cells we use the dsRNA virus

marker channel: infected cells show a signal in this channel while the

non-infected control cells should ideally be invisible (see Figure 3). We

classified each cell in the cell segmentation (see above) individually,

using the following procedure. First, we denoized the marker channel

using awhite tophat filterwith a radius of 20pixels. To account for inac-

curacies in the cell segmentation (the exact position of cell borders is

not always clear), we then eroded all cell maskswith a radius of 5 pixels

and thereby discard pixels close to segment boundaries. This step does

not lead to information loss, since the virus marker is mostly concen-

trated around the nuclei. On the remaining pixels of each cell, we com-

pute the 0.95 quantile (q) of the intensity in themarker channel. For the

pixels that the neural network predicts to belong to the background (b),

we compute themedian intensity of the virusmarker channel across all

images in the current plate. Finally, we classify the cell as infected if the

0.95 quantile of its intensity exceeds the median background by more

than a given threshold:

q −median (b) > t (3)

For additional robustness against intensity variations we adapt the

threshold based on the variation in the background in the plate. Hence,

we define it as a multiple of the mean absolute deviation of all back-

ground pixels of that plate with N= 4.8:

t = N ⋅mad (b) (4)

To determine the optimal values of the parameters used in our pro-

cedure, we used the cells manually annotated as infected/non-infected

(see above). We performed grid search over the following parameter

ranges:

∙ Quantile: 0.9, 0.93, 0.95, 0.96, 0.97, 0.98, 0.99, 0.995

∙ N: 0 to 10 in intervals of 0.1

To estimate the validation accuracy, we performed leave-one-out

cross-validation on the image level. This yields an average validation F1

scoreof 84.3%, precisionof 84.3%and recall of 84.8%. These values are

the arithmetic means of the individual results per split.

Immunoglobulin intensity measurements

In order to obtain a relative measure of antibody binding, we deter-

mined the mean intensity and the integrated intensity in each seg-

mented cell from images recorded in the IgG, IgA, or IgM channel. A

comparative analysis revealed that themean intensitywasmore robust

against the variability of cell sizes, whereas using the integrated inten-

sity as a proxy yielded a higher variance in non-infected cells. Thus,

mean intensity per cell was chosen as a proxy for the amount of anti-

body bound. Non-specific auto-fluorescence signals required a back-

ground correction of the measured average serum channel intensities.

For background normalization, we used cells (one well per plate) that

were not immunostained with primary antiserum. From this we com-

puted the background to be the median serum intensity of all pixels of

images taken from this well. This value was subtracted from all images

recorded from the respective plate. In case this control well was not

available, background was subtracted manually by selecting the area

outside of cells in randomly selected wells and measuring the median

intensity.

Scoring

The core interest of the assay is to measure the difference of anti-

body binding to cells infected with the coronavirus in comparison

to non-infected control cells. To this end, utilizing the results of the

image analysis, we compute the following summary statistics of the

background corrected antibody binding of infected cells, I, and of

non-infected cells,N:

mI = median (I) (5)

mN = median (N) (6)

𝜎N = mad (N) (7)

Using these, the ratio r, difference d and robust z score z are com-

puted:

r =
mI

mN
(8)

d = mI −mN (9)

z =
mI −mN

𝜎N
(10)

https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation
https://www.kaggle.com/c/data-science-bowl-2018/overview/evaluation
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We compute above scores for each well and each image, taking

into account only the cells that passed all quality control criteria (see

below).While the final readout of the assay is well-based, image scores

are useful for quality control.

Decision threshold selection

In order to determine the presence of SARS-CoV-2 specific antibod-

ies in patient sera, it was necessary to define a decision threshold r*.

If a measured intensity ratio r is above a decision threshold r* than the

serum would be characterized as positive for SARS-CoV-2 antibodies.

For this an ROC analysis was performed.[28] Each possible choice of

r* for a test corresponds to a particular sensitivity/specificity pair. By

continuously varying the decision threshold, we measured all possible

sensitivity/specificity pairs, known asROCcurves (Figure S7). To deter-

mine the appropriate r* we considered two factors [26]:

∙ The undesirability of errors or relative cost of false-positive and

false-negative classifications

∙ The prevalence, or prior probability of disease

These factors can be combined to calculate a slope in the ROC

plot[26–28]

m =
(falsepositivecost)
(falsenegativecost)

(1 − P)
P

(11)

where P is the prevalence or prior probability of disease.

The optimal decision threshold r*, given the false-positive/false-

negative cost ratio andprevalence, is thepoint on theROCcurvewhere

a line with slope m touches the curve. As discussed in the main text,

a major concern regarding serological assays for SARS-CoV-2 anti-

body detection is the occurrence of false-positive results. Therefore,

we choose m to be larger than one in our analysis. In particular, we

determine r* for the choice of m= 10 (see Figure S7).

Quality control

We performed quality control of the images and analysis results at the

level of wells, images and cells. The entities that did not pass quality

control are not taken into account when computing the score during

final analysis.We excludewells that contain less than 100 non-infected

cells, that have a median serum intensity of infected cells smaller than

three times the noise level (measured by the median absolute devia-

tion), or that have negative intensity ratios, which can happen due to

the background subtraction. Out of 1736 wells, 94 did not pass the

quality control, corresponding to 5.4% of wells. At the image level, we

visually inspect all images and mark those that contain imaging arti-

facts using a viewer based on napari.[49] We distinguish the follow-

ing types of artifacts during the visual inspection: empty, unstained

or over-saturated images, as well as images covered by a large bright

object. In addition, we automatically exclude images that contain less

than 10 or more than 1000 cells. These thresholds are motivated by

the observation that too fewor toomany cells often result fromaprob-

lem in the assay. Thus, 296 of the total 15,624 images were excluded

from further analysis, corresponding to 1.9% of images. Out of these,

295 were manually marked as outliers and only a single one did not

pass the subsequent automatic quality control. Finally, we automati-

cally exclude segmented cells with a size smaller than 250 pixels or

larger than 12,500 pixels that most likely correspond to segmentation

errors. These limits were derived by the histogram of cell sizes inves-

tigated for several plates. Two percent of the approximate 5.5 million

segmented cells did not pass this quality control. In addition, we have

also inspected all samples scored as positives. For the IgA channel, we

have found a dotty staining pattern in ten cases that produced positive

hits based on intensity ratio in negative control cohorts, but does not

appear to indicate a specific antibody response.We have also excluded

these samples from further analysis.

Implementation

In order to scale the analysis workflow to the large number of images

produced by the assay, we implemented an open-source python library

to run the individual analysis steps. This library allows rerunning exper-

iments for a given plate for newly added data on demand and caches

intermediate results in order to rerun the analysis from checkpoints

in case of errors in one of the processing steps. To this end, we use

a file layout based on hdf5 [50] to store multi-resolution image data

and tabular data. The processing steps are parallelized over the images

of a plate if possible. We use efficient implementations for the U-

Net,[21] StarDist [19] and the watershed algorithm (http://ukoethe.

github.io/vigra/) as well as other image processing algorithms.[51] We

use pytorch (https://pytorch.org/) to implement GPU-accelerated cell

feature extraction. The total processing time for a plate (containing

around 800 images) is about 2 h 30 min using a single GPU and 8

CPU cores. In addition, the results of the analysis as well as meta-data

associated with individual plates are automatically saved in a central-

izedMongoDBdatabase (https://www.mongodb.com) at the end of the

workflow execution. Apart from keeping track of the analysis outcome

and meta-data, a user can save additional information about a given

plate/well/image in the database conveniently using the PlateViewer

(see below). All source code is available open source under the permis-

siveMIT license at https://github.com/hci-unihd/batchlib.

Data visualization

In order to explore the numerical results of our analysis together with

the underlying image data we further developed a Fiji [52] based open-

source software tool for interactive visualization of high-throughput

microscopy data.[23] The PlateViewer links interactive results tables

and configurable scatter plots (image and well based) with a plate view

of all raw, processed and segmentation images. The PlateViewer is con-

nected to the centralised database such that also image andwell based

metadata can be accessed. The viewer thus enables efficient visual

inspection and scientific exploration of all relevant data of the pre-

sented assay.
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