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Abstract

Clinical translation of drug-drug interaction (DDI) studies is limited, and knowledge gaps across 

different types of DDI evidences make it difficult to consolidate and link them to clinical 

consequences. Consequently, we developed information retrieval (IR) models to retrieve DDI and 

drug-gene interaction (DGI) evidences from 25 million PubMed abstracts, and distinguish DDI 

evidences into in-vitro pharmacokinetics (PK), and clinical PK and pharmacodynamics (PD) 

studies for FDA-approved and withdrawn drugs. Additionally, information extraction models were 

developed to extract DDI- and DGI-pairs from the IR-retrieved abstracts. An overlapping analysis 

identified 986 DDI-pairs between all three types of evidences. Another 2,157 and 13,012 DDI-

pairs, and 3,173 DGI-pairs were identified from known clinical PK-PD DDI, clinical PD DDI, and 

DGI evidences, respectively. By integrating DDI and DGI evidences, we discovered 119 and 18 

new pharmacogenetic hypotheses associated with CYP3A and CYP2D6, respectively. Some of 

these DGI evidences can also aid us in understanding DDI mechanisms.

Keywords

Bioinformatics; drug-drug interactions; adverse drug reactions; discovery

†Co-corresponding authors: Aditi Shendre, aditi.shendre@osumc.edu, Lang Li, lang.li@osumc.edu, Xia Ning, xia.ning@osumc.edu, 
Address: 250 Lincoln Tower, 1800 Cannon Drive, Columbus, OH 43210, Tel: (614) 685-6796.
AUTHOR CONTRIBUTIONS
H.Y.W., A.S., and L.L. wrote the manuscript; H.Y.W., D.Z., L.M.R., H.S., S.K.Q., and L.L. designed the research; H.Y.W., A.S., S.Z., 
L.W., X.N., and L.L. performed the research; H.Y.W., A.S., S.Z., and L.W. analyzed the data; H.Y.W. contributed new reagents/
analytical tools.
*Drs. Heng-Yi Wu and Aditi Shendre have equal contributions.

Conflict of Interest
All authors declare no competing interests for this work.

HHS Public Access
Author manuscript
Clin Pharmacol Ther. Author manuscript; available in PMC 2021 April 01.

Published in final edited form as:
Clin Pharmacol Ther. 2020 April ; 107(4): 886–902. doi:10.1002/cpt.1745.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

Drug-drug Interactions (DDIs) are one of the major causes of adverse drug events (ADEs) 

and have been demonstrated as a public health burden.1, 2 With increasing rates of poly-

pharmacy, the incidence of DDIs is most likely to increase, and thus drug interaction 

research remains essential.3 Current DDI studies investigate different but complimentary 

scopes of drug interactions: in-vitro pharmacokinetics (in-vitro PK), clinical 

pharmacokinetics (clinical PK), and clinical pharmacodynamics (clinical PD).4–6 In-vitro 
PK studies investigate DDI related molecular mechanisms such as metabolic enzymes or 

drug transporter proteins using recombinant systems or cell/tissue models. Clinical PK 

studies, on the other hand, evaluate whether one objective drug’s exposure is changed due to 

the co-administrated precipitant drug. The molecular mechanisms of clinical PK DDIs are 

not necessarily known, unless the two drugs are either known substrates/inhibitors/inducers 

of an enzyme. Clinical PD studies investigate whether the objective drug’s efficacy or 

adverse drug events (ADEs) are changed because of the co-administrated precipitant.7 In-
vitro PK experiments can be easily connected to pharmacogenetics (PG) studies because of 

their shared proteins and genes but this is not necessarily true in case of clinical PK or PD 

DDI studies.8, 9

The goal of translational research in relation to DDI and PG studies is to achieve a 

comprehensive understanding of the PD, PK, and molecular mechanisms underlying drug 

effects in order to achieve clinical utility. However, it usually takes a long time to 

accomplish this overarching goal because of existing barriers between different scientific 

domains.4 A salient example is tamoxifen, whose CYP2D6 metabolic pathway was initially 

discovered in-vitro in 2003.10 The genetic effects of CYP2D6 on the exposure of tamoxifen 

and its active metabolites was later published in 2007.11 The PK interactions between 

tamoxifen and anti-fungals such as fluconazole were subsequently revealed in 2009.12 And 

finally, the combined effect of the CYP2D6 genotypes and drug inhibitors on tamoxifen 

efficacy and ADEs (hot flashes) was determined in 2010.13 This example clearly 

demonstrates the association between DDI and drug-gene interaction (DGI) studies, 

however, it also shows the extended duration of DDI and PG research needed to achieve 

translational goals.

The translational landscape of drug interactions research has created an enormous 

opportunity for the field of informatics. The diverse and independent scientific disciplines 

involved in DDI and DGI research make it difficult to provide comprehensive evidences for 

all drugs. Despite the existence of several databases, none of them have been successful in 

linking all the available information. DrugBank is probably the only database that comes 

close to identifying and including both DDI and DGI evidences.14 However, it’s PK and PD 

DDI evidences lack details on magnitude of drug exposure change and clinical phenotypes, 

respectively. DGI evidences in DrugBank include a drug’s relationship with metabolic 

enzymes or transporter proteins but not the effect of pharmacogenetics on PK and PD 

effects. On the other hand, PharmGKB is designed to provide PG evidences on PK and PD 

outcomes, but no DDI evidences.15 DiDB includes a collection of in-vitro PK and clinical 

PK DDI evidences, but very limited PD DDI and PG evidences.16 Therefore, it is of greatest 
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translational research interest to consolidate these evidences in order to promote discovery 

of knowledge gaps between discordant DDI and DGI studies.5, 6

Text mining, as an efficient knowledge discovery tool has been extensively applied to mine 

drug interaction signals from the biomedical literature.17–21 For example, Percha and 

Altman have developed a novel classification model to map all drug-gene interactions 

(DGIs) in MEDLINE abstracts, and discover new drug-gene relationships.18 Previously, our 

group generated new DDI pairs by mining the PubMed literature using known cytochrome 

P450 (CYP450) probe substrates and inhibitors, and identifying all existing CYP450 

substrates and inhibitors from in-vitro experiments.17 Recently, we also developed a DDI 

and DGI corpus with the goal of developing a new text mining algorithm and evaluating the 

performance of the text mining analyses separately for in-vitro and clinical PK DDI 

evidences.21 However, we did not investigate the overlapping or non-overlapping evidences 

between the two. None of the existing informatics analyses have fully investigated the 

translational landscape of DDI and PG studies and the knowledge gaps that exist between 

them, nor have they differentiated between in-vitro and clinical PK, and clinical PD 

evidences in the published DDI and PG studies.

In this paper, a text mining approach was utilized to differentially screen in-vitro PK DDI, 

clinical PK DDI, and clinical PD DDI, and DGI evidences, followed by an overlapping 

analysis. Our aim was to investigate and identify knowledge gaps among in-vitro PK, 

clinical PK, and clinical PD studies, and translate the literature-based discovery evidences 

between DDI and DGI studies.

METHODS

A detailed description of the methods involved in the development of the text mining 

approach is presented in the supplemental file. A brief description is included below.

Lexica construction

Lexica comprising of drug names, enzymes, action terms, and ADE terms were prepared. 

Based on the drug groups in DrugBank, FDA approved and withdrawn drugs (2403 generic 

names) were extracted for text mining. For drug enzyme terms, 94 symbol names and 

synonyms (350 terms in total) were collected from Gene ontology,22 HUGO Gene 

Nomenclature Committee (HGNC),23 and The Human Cytochrome P450 (CYP) Allele 

Nomenclature Database.24 The action terms that describe the drug and enzyme relationships 

(i.e. inhibition or induction) were collected from our PK ontology21 and the recent work by 

Percha and Altman.18 The 19,550 preferred terms (PTs) of adverse drug reactions were 

normalized from 70,177 lowest level terms (LLTs) in The Medical Dictionary for Regulatory 

Activity (MedDRA) database.25

Corpus construction

Two types of corpora, including information retrieval (IR) and information extraction (IE) 

corpora were constructed for retrieving DDI and DGI abstracts and extracting DDI/DGI 

pairs, respectively. The IR corpus has 300 manually curated DDI abstracts in each one of the 

in-vitro PK, clinical PK, and clinical PD studies. For PG studies, 3,429 DGI relevant 
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abstracts were collected from PharmGKB. The IE corpus consists of 210 in-vitro PK DDI, 

218 clinical PK DDI, 140 clinical PD DDI, and 395 DGI abstracts. In the IE corpus, terms 

such as drugs, enzymes and relationships between drug-drug/drug-gene pairs were 

annotated. The details of the data collection (Table S1), text annotation, and annotation 

evaluation process are provided in the supplemental file.

Text mining schemes

As shown in Figure 1, text mining for each type of DDI or DGI evidence was accomplished 

in two stages: Information Retrieval (IR) and Information Extraction (IE). In the IR stage, an 

optimal model that maximizes recall rate of identifying relevant abstracts for each type of 

study was built using the IR corpus. The document-level classifier was trained upon N1 

positive DDI abstracts and N2 randomly selected negative abstracts. And, the performance 

of the document-level classifier was evaluated using the testing dataset (N3 DDI abstracts 

and N4 negative abstracts). The data collection statistics for the IR models is shown in Table 

1. After the optimal IR models were built, 25 million abstracts were screened and relevant 

DDI and DGI abstracts were identified.

In the IE stage, an optimal model that maximizes F-measure of extracting relation pairs was 

built using the IE corpus. The DDI or DGI relationship classifiers were built upon 60% of 

the true entity relation pairs in the IE corpus (i.e. training data) and the remaining 40% were 

used for performance evaluation (i.e. testing data). Finally, using the optimal IE models, 

DDI and DGI pairs were extracted from their respective abstracts retrieved in IR stage.

IR Model Development—IR was implemented in Weka.26 String attributes in each 

abstract were converted into a set of attributes representing word occurrence information 

from the text using “StringToWordVector” module. Within the module, a set of word 

features converted from the normal text were extracted using IteratedLovinsStemmer, 

stopwordsHandler, NGramTokenizer (1–3), lowerCaseTokens and wordsToKeep (1000). The 

statistics for these word features, including term frequency-inverse document frequency and 

output word counts were prepared using TFTransform, IDFTransfrom, and 

outputWordCounts. Subject to the optimization of recall rate, sequential minimal 

optimization (SMO) was utilized for the text classification.

IE Model Development—IE of the DDI and DGI pairs was achieved in two steps: entity 

recognition and normalization, and relation pair extraction.

Entity Recognition and Normalization: The relevant entities, including drugs, enzymes, 

ADEs and interaction terms were tagged using name-entity recognition (NER) by string-

matching against the lexica. Extracted drugs, enzymes, and ADEs were normalized to 

generic drug names, gene symbol names, and preferred terms in MeDRA, respectively. 

Interaction terms were normalized to their stemmed forms.

Relation pair extraction: The existing text mining methods recognize a piece of text that 

contains a semantic property of interest and extracts syntactic relations between entities in a 

single sentence using natural language processing.27–32 Different from these works, we 

developed a feature-based approach to extract DDI/DGI pairs from context in an entire 
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abstract. If N unique drug names are mentioned in an abstract, there are N*(N-1)/2 possible 

drug combinations that may or may not have interactions. Our IE model was built to predict 

the interaction relationship between each drug combination and optimize the F-measure.

In our DDI IE models, 16 features were created. These features capture syntactic, statistic, 

and scientific patterns from drug interactions present in the text. They were mainly derived 

from three types of information (entity location, entity statistics, and entity background 

knowledge). The location features provided location information for drug entities and 

interacting terms, or their co-occurrence, i.e., drug pairs co-occurring in the title sentence or 

the same sentence or the relative distance between drug pairs and interacting terms. The 

statistical features offer the frequency of drugs, drug pairs, and drug co-occurrence in a 

sentence or cross sentences. And, the knowledge features supply the background knowledge 

of drug pair relations, such as enzyme-substrate/inhibitor relationships and anatomical 

therapeutic chemical (ATC) classification information.

To perform the DDI IE task, we customized five groups of feature sets from the 16 features 

using different strategies (Table S2 and S3). Three manual (G1, G2, and G5) and two 

statistically (G3 and G4) determined group sets were adopted for the three types of studies. 

For G3 and G4, a stepwise regression model was used to determine statistically significant 

features, with G4 also involving 2-way interaction terms. To maximize the F-measure for 

prediction, the optimal combination of 5 feature groups and 7 popular classifiers [J48, Naïve 

Bayes, SMO, Logistic Regression, Random Forest, Logistic Model Trees (LMT), and 

Iterative Classifier Optimizer (ICO)] were explored for each study type. The details of the 

feature creation and selection are described in the section under “Experimental settings” in 

the supplemental file.

To perform DGI IE, all descriptive structures for the drug-gene relationships were identified 

from PubMed abstracts.18 Based on their findings, two important types of terms, including 

interacting verbs (e.g. inhibit) and mechanism terms (e.g. methylation), were included to 

characterize all dependency paths for DGI presentations. Four types of features (50 features) 

were created: 1) 44 features were scored based on the relative location, distance, and 

negation of each combination of 22 verb or 22 mechanism terms, (2) co-occurrence 

frequency of each combination or each combination with verb terms, (3) relative position of 

the bracket containing drugs or enzymes, and (4) the order of the drug, gene, and verb/

mechanism terms present in the sentences (Table S4). For this task, logistic regression was 

utilized for both feature selection and DGI prediction.

Hypotheses generation

By integrating the DDI and DGI evidences discovered through screening of the biomedical 

literature, and implementing a translational research method to discover knowledge gaps in 

drug interaction studies, we generated research hypotheses to: 1) understand the hazards of 

specific drugs given certain genetic polymorphisms, and 2) explore molecular mechanisms 

of drug interactions (Figure 2).

Translate DDI signals into pharmacogenetic hypotheses—A knowledge discovery 

method was used to translate DDI signals into pharmacogenetic hypotheses. The process 
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included the examination of evidences to determine whether drug D1 changed drug D2’s 

efficacy or ADEs (i.e. PD DDI), D2’s exposure (i.e. PK DDI), or inhibited D2’s metabolic 

enzyme E (in-vitro PK). If these DDI effects were noted, we then hypothesized that the 

functional genetic polymorphisms of E may be associated with D2’s efficacy or ADEs.

Translate DGI signals into DDI mechanistic hypotheses—To explore unknown 

mechanisms involving drug interactions with only clinical PK and PD evidences, a discovery 

method was proposed to translate DGI signals into DDI mechanisms. The process included 

the evaluation of both drugs (D1 and D2) to discern their shared target genes and ADEs. If 

D1 and D2 were reported to interact and had common interacting genes, we hypothesized 

that their interaction may be synergistic or antagonistic for a given ADE.

RESULTS

The number of abstracts from each type of study as well as the recall, F-measure and 

validity related statistics are presented below. Figure 3 presents the number of DDI and PG 

abstracts retrieved and the DDI and DGI pairs extracted from each type of study. The Venn 

diagram in Figure 3 shows the overlap of drug pairs from the three types of DDI studies to 

help identify potential knowledge gaps between DDI and DGI evidences. The data related to 

the Venn Diagram and the DGI associated ADEs are presented in the supplemental excel 

files “Venn diagram data and statistics.xlsx” and “DGI-ADE information.xlsx”.

Information Retrieval (IR): identifying DDI and DGI relevant abstracts from MEDLINE

Using our recently developed corpus, the optimal IR models were built for each study type. 

The F-measures for the performance of the IR models were 0.94, 0.84, 0.70, and 0.78, 

respectively; and the recall rates were 0.98, 0.99, 0.86, and 0.97 for in-vitro PK DDI, clinical 

PK DDI, clinical PD DDI, and PG, respectively (Table S5). Using these optimally trained 

models, a large-scale IR analysis of 25 million MEDLINE abstracts (1975–2015) was 

conducted. Studies involving animal models were removed using MeSH terms under the tree 

“B01.050” (Animal). We retrieved 5,199 in-vitro PK, 17,048 clinical PK, 80,246 clinical PD 

DDI, and 479,865 PG abstracts (Figure 3). To further demonstrate the performance of these 

IR models, studies in the IE corpora (210, 218, 140, and 395 abstracts for in-vitro PK, 

clinical PK, clinical PD, and PG studies) were used since there is no overlap between the IR 

and IE corpora. Recall rates for these IE studies were determined to be 1.00, 0.96, 0.99, and 

0.94, respectively.

Information Extraction (IE): identifying DDI and DGI pairs from the MEDLINE Abstracts

To extract DDI and DGI pairs from the MEDLINE abstracts identified in the IR step, IE 

models were customized and optimized. The DDI extraction performances for each of the 

in-vitro PK, clinical PK, and clinical PD studies were compared across five feature sets (G1-

G5) and seven classifiers and are presented in Tables S6, S7, and S8, respectively. The 

optimal F-measure for in-vitro PK studies was 0.83 using feature group 5 (G5) and the 

Naïve Bayes classifier; the optimal F-measure for clinical PK studies was 0.85 using feature 

group 1 (G1) and the Iterative Classifier Optimizer (ICO); and the optimal F-measure for 

clinical PD studies was 0.73 using feature group 1 (G1) and the Naïve Bayes classifier. For 
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DGI IE model, 50 features were trained over logistic linear regression classifier to reach the 

optimal F-measure of 0.82 (Table S9). All four optimized IE models were then applied to the 

relevant DDI/DGI abstracts retrieved from the previous IR stage. The IE analysis focused on 

FDA approved and withdrawn drugs, and identified 3,894, 3,920, and 17,315 unique in-vitro 
PK, clinical PK, and clinical PD DDI pairs, respectively, and 3,173 unique DGI pairs (Figure 

3). Using 3,173 retrieved DGI pairs, 217,562 drug pairs were further generated when both 

drugs shared enzyme relationships.

The overlap and knowledge gap among DDI Evidences

With the drug pairs extracted in the IE stage, the Venn diagram shown in Figure 3 was 

constructed to present the overlapping DDIs. A total of 986 unique drug pairs were found to 

overlap between all three study types. Another 2,157 DDIs represented the overlap between 

clinical PK and clinical PD studies. Lastly, 13,012 DDI pairs were found to only have 

clinical PD evidence.

Another overlapping analysis was performed to compare “extracted DDIs” from DDI IE to 

“predicted DDIs” from DGI IE. In Table 2, 94.8% of the 986 DDI pairs shared by all three 

DDI study types were predicted by DGI results. Other types of DDI evidences that overlap 

well with DGI predicted DDIs include: “clinical PK – in-vitro PK” (95.9%), “clinical PD – 

in-vitro PK” (86.6%), and “in-vitro PK” (85.2%). For the remaining DDIs without in-vitro 
PK evidences, DGI does not predict DDIs well, and the overlapping percentages are below 

70%. Only 42.7% of the clinical PD DDIs were predicted from DGI results.

Comparing DDI text mining evidences to DDI data in the DrugBank database

DDI text mining performance was also evaluated by comparing the results with DDI data 

from the DrugBank database. For our comparison analysis, we only focused on FDA 

approved and withdrawn drugs. Between 222,409 DrugBank DDIs and 19,695 text-mined 

DDIs, 9,587 DDIs overlapped. We compared the overlapping DDIs under the sub-groups 

defined by the three DDI evidence types. In Table 2, DDI pairs with all three types of 

evidences from our text mining analysis overlapped the most with DrugBank DDIs (~88%), 

while DDI pairs with only clinical PD evidence had the lowest overlapping rate (~40%).

To demonstrate the validity of our text mined DDI evidences, top 20 DDI pairs in each study 

type were evaluated manually (Table 2). DDI pairs were ranked by their reporting 

frequencies in different PubMed abstracts. Among top 20 DDIs from in-vitro PK, clinical 

PK, and clinical PD studies, 17, 20, and 19 pairs were manually validated as true DDIs, 

respectively. However, only 9, 16, and 13 of these DDIs were found to be reported in the 

DrugBank. Additionally, for the top 20 DDI pairs in the overlapping areas among two or 

three evidence types, almost all them were validated in our manual review but only few of 

these DDIs were reported in DrugBank. DDI pairs that did not overlap with DrugBank data 

were also manually reviewed for validity. Among the top 20 DDIs from our 119 three-way 

overlapped DDIs, 17 were found to have confirmed DDI evidences in the literature. 

Similarly, all of the top 20 DDIs with overlapping clinical PD and clinical PK evidences 

were confirmed to have DDI evidences in the literature.
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Translate DDI signals into genetics hypotheses

The 986 DDI pairs shared among three types of DDI studies were translated into genetic 

hypotheses with respect to their ADEs. Among these 986 DDIs, 865 (87.8%), 481 (48.8%), 

193 (19.6%), 419 (42.5%), and 365 (37%) were associated with CYP3A, CYP2D6, 

CYP2C8, CYP2C9, and CYP2C19, respectively, with some DDIs involving more than one 

CYP450 enzymes. In our following genetic hypothesis generation analysis, we focused on 

CYP3A and CYP2D6 as they were responsible for 88% and 49% of the 986 DDIs, 

respectively.

CYP3A related DDIs had 68 distinctive substrates, and CYP2D6 related DDIs had 25 

different substrates. Based on these CYP3A and CYP2D6 substrates, 552 and 192 ADE 

terms were found to co-occur in their clinical PD DDI abstracts, respectively. Similarly, 199 

and 57 ADE terms related with the 68 CYP3A and 25 CYP2D6 substrates from DGI 

abstracts were retrieved. The common ADE terms from both DDI and DGI abstracts were 

considered as potential CYP3A or CYP2D6 genes related ADEs. These common DDI and 

DGI ADEs were further evaluated through manual review. Overall, 150 and 31 genetic 

hypotheses were generated from the 68 CYP3A substrates and 25 CYP2D6 substrates, 

respectively. Out of these, 31 CYP3A-related and 13 CYP2D6-related PG evidences were 

reported in published pharmacogenetics studies (Table 3). As a result, 119 and 18 new 

pharmacogenetic hypotheses were generated for CYP3A and CYP2D6, respectively.

Translate DGI signals into DDI molecular mechanistic hypotheses

Among the 2,157 DDIs shared between clinical PD and PK DDI evidences, 1,497 DDI pairs 

shared the same metabolic enzymes (i.e. CYPs and UGTs) in their drug-gene-interactions. 

Therefore, these 1,497 DDI pairs potentially have a pharmacokinetics drug interactions 

mechanism. Among the remaining 660 DDIs, 68 DDI pairs were found to share the same 

molecular pathways, 38 DDI pairs shared common genes, and 12 DDI pairs shared common 

genetic variants. The 38 DDI pairs with shared genes were reviewed further to determine if 

they shared the same ADEs, whether the risk of the shared ADEs were increased by these 

DDIs, and whether any in-vitro cell culture studies had investigated their DDI mechanisms. 

After manual review, seven of 38 DDI pairs were validated to have increased ADEs, and 

three had additional DDI evidence from in-vitro experiments (Table 4).

DISCUSSION

Adverse drug events caused by drug interactions are a critical issue for prescriptions. In 

clinical practice, prescription decision support typically stems from in-vivo and clinical 

evidence. However, there is high variability in drug responses, which are affected by both 

genetic and environmental factors. Therefore, studying genetic or molecular mechanisms 

underlying DDIs is essential to help: 1) understand the hazards of specific drugs given 

certain genetic polymorphisms, and 2) explore molecular mechanisms of such interactions. 

Today, more than 2,000 genetic tests are currently available, but not every drug is covered 

and the tests can be expensive.33 To address these challenges, we introduced a translational 

research method to discover knowledge gaps in drug interaction studies. Utilizing the results 

from our large-scale screening, two sets of hypotheses were generated by 1) translating DDI 

Wu et al. Page 8

Clin Pharmacol Ther. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



signals into genetic information for adverse drug events and 2) translating DGI signals into 

molecular mechanistic hypotheses.

To demonstrate the process of pharmacogenetic hypotheses generation, evaluation, and 

validation, we use the example of tacrolimus, a CYP3A substrate. Among 87 clinical PD 

DDI abstracts showing the interaction evidences between tacrolimus and CYP3A inhibitors 

such as ketoconazole, clarithromycin, cyclosporine or ritonavir, 141 ADE terms were 

identified and extracted. From these results, we assume that 141 genetic hypotheses can be 

generated for tacrolimus. Another 153 ADEs were extracted from DGI abstracts related to 

tacrolimus and CYP3A. A total of 25 ADE terms were common between the DDI and DGI 

abstracts. From these, three ADEs (nephrotoxicity, hepatotoxicity, and hyperglycemia) were 

validated and found to be associated with the CYP3A5 polymorphism, rs776746 

(PharmGKB level 2A or level 3 evidence).34–37 Thus, we were able to validate our 

tacrolimus ADEs-related genetic hypotheses, underscoring the accuracy of our text mining 

algorithm. More importantly, the generation of 119 new pharmacogenetic hypotheses 

highlights the significance of our translational research method in enabling the discovery of 

potentially new genetic mechanisms that may otherwise not have been explored through 

conventional DDI research methods. An example of this is simvastatin-induced 

rhabdomyolysis. Even though there are reported evidences for the association between 

CYP3A4 and CYP3A5 genetic polymorphisms and simvastatin induced mild myopathy 

symptoms,38 there is no reported study on the association between CYP3A and the more 

severe form of myopathy, i.e. rhabdomyolysis.

Similar to the PG hypotheses, molecular mechanistic hypotheses were validated or 

determined to be new through our manual review process. For example, the combination of 

cisplatin and pemetrexed showed improved response rate in mesothelioma patients in a 

randomized phase III trial.39 Both drugs share the ABCC2, MTHFR, and SLC19A1 target 

genes among them (PharmGKB level 4 evidence). Patients with ABCC2 rs2273697 (AA or 

AG genotype) were reported to have improved overall and progression-free survival when 

treated with either cisplatin or pemetrexed compared to patients with the ABCC2 GG 

genotype.40 The synergistic PD DDI between cisplatin and pemetrexed has been 

demonstrated in in-vitro studies over multiple cancer cell lines (MCF7, A549, and PA1 

cells).41 In particular, when MCF7 cells were incubated with pemetrexed for 24 h followed 

by cisplatin for 24 h, synergistic inhibition of cell proliferation was noted. Similar 

synergistic effects were also observed in the A549 and PA1 cell lines. Another example is 

the interaction between etanercept and methotrexate which results in improved response in 

rheumatoid arthritis patients especially with the ATP5E rs1059150 (GG), HLA-E rs1264457 

(AA), or KLRC1 rs7301582 (CT or TT) variants (PharmGKB level 3 evidence). However, 

no in-vitro experiments have been reported that illustrate their DDI mechanisms. This 

etanercept/methotrexate example demonstrates that our translational discovery method can 

also generate novel pharmacodynamic DDI mechanisms.

Our study has both strengths and limitations. Our text mining algorithm enabled us to screen 

~25 million MEDLINE abstracts in order to retrieve DDI and DGI evidences. We were also 

able to extract a substantial number of DDI and DGI pairs from the literature, and 

distinguish them based on the type of study involved. However, we only focused on drug 
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pairs and the CYP450-related enzymes and genes. Therefore, we could not evaluate DDIs or 

ADEs associated with high dimensional drug combinations or their interactions with other 

enzymes and drug transporters. Our algorithm was also designed to identify co-occurrence 

of drugs and ADE terms, as such, a manual review process was required to verify and 

confirm these associations. Additionally, our algorithm does no collect information on drug 

dosage or sample size from individual studies at the moment but we are planning to add this 

information along with the information on drug transporters and other enzymes in the future. 

Despite these limitations, our study provides a tremendous amount of information on DDIs, 

DGIs and ADEs and allowed us to generate several novel genetic hypotheses.

In conclusion, a text mining pipeline was developed to extract DDI evidences from the 

biomedical literature in the current study. Initially, golden standard corpora for DDIs and 

DGIs were created to facilitate the text mining development. Subsequently, a large-scale 

analysis was conducted to identify knowledge gaps in DDI and DGI research, which were 

then used to generate hypotheses in order to identify novel genetic mechanisms involving 

drug interactions and predict potential molecular mechanistic DDI mechanisms.
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Refer to Web version on PubMed Central for supplementary material.

Funding sources

This work is supported by grants from the National Library of Medicine (R01LM011945), and the National 
Institute of General Medical Sciences (R01GM104483).

REFERENCES

1. Hall MJ, DeFrances CJ, Williams SN, Golosinskiy A & Schwartzman A National Hospital 
Discharge Survey: 2007 summary. Natl Health Stat Report, 1–20, 4 (2010).

2. Niska R, Bhuiya F & Xu J National Hospital Ambulatory Medical Care Survey: 2007 emergency 
department summary. Natl Health Stat Report, 1–31 (2010).

3. Hajjar ER, Cafiero AC & Hanlon JT Polypharmacy in elderly patients. Am J Geriatr Pharmacother 
5, 345–51 (2007). [PubMed: 18179993] 

4. Hennessy S & Flockhart DA The need for translational research on drug-drug interactions. Clin 
Pharmacol Ther 91, 771–3 (2012). [PubMed: 22513312] 

5. Boyce R, Collins C, Horn J & Kalet I Computing with evidence Part II: An evidential approach to 
predicting metabolic drug-drug interactions. J Biomed Inform 42, 990–1003 (2009). [PubMed: 
19539050] 

6. Boyce R, Collins C, Horn J & Kalet I Computing with evidence Part I: A drug-mechanism evidence 
taxonomy oriented toward confidence assignment. J Biomed Inform 42, 979–89 (2009). [PubMed: 
19435613] 

7. Prueksaritanont T et al. Drug-drug interaction studies: regulatory guidance and an industry 
perspective. AAPS J 15, 629–45 (2013). [PubMed: 23543602] 

8. Crews KR et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for 
codeine therapy in the context of cytochrome P450 2D6 (CYP2D6) genotype. Clin Pharmacol Ther 
91, 321–6 (2012). [PubMed: 22205192] 

9. Wilke RA et al. The clinical pharmacogenomics implementation consortium: CPIC guideline for 
SLCO1B1 and simvastatin-induced myopathy. Clin Pharmacol Ther 92, 112–7 (2012). [PubMed: 
22617227] 

Wu et al. Page 10

Clin Pharmacol Ther. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Desta Z, Ward BA, Soukhova NV & Flockhart DA Comprehensive evaluation of tamoxifen 
sequential biotransformation by the human cytochrome P450 system in vitro: prominent roles for 
CYP3A and CYP2D6. J Pharmacol Exp Ther 310, 1062–75 (2004). [PubMed: 15159443] 

11. Goetz MP et al. The impact of cytochrome P450 2D6 metabolism in women receiving adjuvant 
tamoxifen. Breast Cancer Res Treat 101, 113–21 (2007). [PubMed: 17115111] 

12. In brief: Tamoxifen and SSRI interaction. Med Lett Drugs Ther 51, 45 (2009).

13. Hertz DL, McLeod HL & Irvin WJ Jr. Tamoxifen and CYP2D6: a contradiction of data. Oncologist 
17, 620–30 (2012). [PubMed: 22531359] 

14. Wishart DS et al. DrugBank: a comprehensive resource for in silico drug discovery and 
exploration. Nucleic Acids Res 34, D668–72 (2006). [PubMed: 16381955] 

15. Whirl-Carrillo M et al. Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol 
Ther 92, 414–7 (2012). [PubMed: 22992668] 

16. Drug Interaction Database. <https://www.druginteractioninfo.org/solutions/drug-interaction-
database/>.

17. Duke JD et al. Literature based drug interaction prediction with clinical assessment using 
electronic medical records: novel myopathy associated drug interactions. PLoS Comput Biol 8, 
e1002614 (2012). [PubMed: 22912565] 

18. Percha B & Altman RB Learning the Structure of Biomedical Relationships from Unstructured 
Text. PLoS Comput Biol 11, e1004216 (2015). [PubMed: 26219079] 

19. Percha B, Garten Y & Altman RB Discovery and explanation of drug-drug interactions via text 
mining. Pac Symp Biocomput, 410–21 (2012). [PubMed: 22174296] 

20. Tari L, Anwar S, Liang S, Cai J & Baral C Discovering drug-drug interactions: a text-mining and 
reasoning approach based on properties of drug metabolism. Bioinformatics 26, i547–53 (2010). 
[PubMed: 20823320] 

21. Wu HY et al. An integrated pharmacokinetics ontology and corpus for text mining. BMC 
Bioinformatics 14, 35 (2013). [PubMed: 23374886] 

22. Gene Ontology Consortium: going forward. Nucleic Acids Res 43, D1049–56 (2015). [PubMed: 
25428369] 

23. HUGO Gene Nomenclature Committee at the European Bioinformatics Institute. <http://
www.genenames.org>.

24. Sim SC & Ingelman-Sundberg M The Human Cytochrome P450 (CYP) Allele Nomenclature 
website: a peer-reviewed database of CYP variants and their associated effects. Hum Genomics 4, 
278–81 (2010). [PubMed: 20511141] 

25. Brown EG, Wood L & Wood S The medical dictionary for regulatory activities (MedDRA). Drug 
Saf 20, 109–17 (1999). [PubMed: 10082069] 

26. Witten IH, Frank E, Hall MA & Pal CJ Data Mining: Practical machine learning tools and 
techniques (Morgan Kaufmann: 2016).

27. Percha B, Garten Y, and Altman RB Discovery and explanation of drug-drug interactions via text 
mining. Pacific Symp Biocomput, 410–21 (2012).

28. Segura-Bedmar I, Martinez P & de Pablo-Sanchez C Using a shallow linguistic kernel for drug-
drug interaction extraction. Journal of biomedical informatics 44, 789–804 (2011). [PubMed: 
21545845] 

29. Segura-Bedmar I, Martinez P & de Pablo-Sanchez C A linguistic rule-based approach to extract 
drug-drug interactions from pharmacological documents. BMC Bioinformatics 12 Suppl 2, S1 
(2011).

30. Segura-Bedmar I, Martinez P & Herrero-Zazo M Lessons learnt from the DDIExtraction-2013 
Shared Task. J Biomed Inform 51, 152–64 (2014). [PubMed: 24858490] 

31. Segura-Bedmar I, Martınez P & Sánchez-Cisneros D The 1st DDIExtraction-2011 challenge task: 
Extraction of Drug-Drug Interactions from biomedical texts. Challenge Task on Drug-Drug 
Interaction Extraction 2011, 1–9 (2011).

32. Tari L, Anwar S, Liang S, Cai J, Baral C Discovering drug-drug interactions: a text-mining and 
reasoning approach based on properties of drug metabolism. Bioinformatics 26, i547–53 (2010). 
[PubMed: 20823320] 

Wu et al. Page 11

Clin Pharmacol Ther. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.druginteractioninfo.org/solutions/drug-interaction-database/
https://www.druginteractioninfo.org/solutions/drug-interaction-database/
http://www.genenames.org
http://www.genenames.org


33. Genetic Testing: MedlinePlus. <https://medlineplus.gov/genetictesting.html>.

34. Quaglia M, Terrazzino S, Boldorini R, Stratta P & Genazzani AA Severe acute nephrotoxicity in a 
kidney transplant patient despite low tacrolimus levels: a possible interaction between donor and 
recipient genetic polymorphisms. J Clin Pharm Ther 38, 333–6 (2013). [PubMed: 23574377] 

35. Wang L, Li N, Wang MX & Lu SC Benefits of minimizing immunosuppressive dosage according 
to cytochrome P450 3A5 genotype in liver transplant patients: findings from a single-center study. 
Genet Mol Res 14, 3191–9 (2015). [PubMed: 25966085] 

36. Xue F et al. CYP3A5 genotypes affect tacrolimus pharmacokinetics and infectious complications 
in Chinese pediatric liver transplant patients. Pediatr Transplant 18, 166–76 (2014). [PubMed: 
24438215] 

37. Kuypers DR, Naesens M, de Jonge H, Lerut E, Verbeke K & Vanrenterghem Y Tacrolimus dose 
requirements and CYP3A5 genotype and the development of calcineurin inhibitor-associated 
nephrotoxicity in renal allograft recipients. Ther Drug Monit 32, 394–404 (2010). [PubMed: 
20526235] 

38. Yang WH et al. Simvastatin-induced myopathy with concomitant use of cyclosporine: case report. 
Int J Clin Pharmacol Ther 49, 772–7 (2011). [PubMed: 22122820] 

39. Janne PA et al. Pemetrexed alone or in combination with cisplatin in previously treated malignant 
pleural mesothelioma: outcomes from a phase IIIB expanded access program. J Thorac Oncol 1, 
506–12 (2006). [PubMed: 17409909] 

40. Goricar K, Kovac V & Dolzan V Clinical-pharmacogenetic models for personalized cancer 
treatment: application to malignant mesothelioma. Sci Rep 7, 46537 (2017). [PubMed: 28422153] 

41. Kano Y et al. Schedule-dependent interactions between pemetrexed and cisplatin in human 
carcinoma cell lines in vitro. Oncol Res 16, 85–95 (2006). [PubMed: 16898269] 

Wu et al. Page 12

Clin Pharmacol Ther. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://medlineplus.gov/genetictesting.html


STUDY HIGHLIGHTS

• What is the current knowledge on the topic?

Several studies have explored different informatics approaches to mine drug interactions 

data from the biomedical literature. However, none of them have distinguished the DDI 

evidences into in-vitro PK, clinical PK, and clinical PD studies, which can impede the 

translational scope of drug interactions research.

• What question did this study address?

The goal of this study was to retrieve and extract DDI and DGI evidences from the 

biomedical literature and distinguish the DDI study types into in-vitro PK, clinical PK 

and clinical PD studies. Additionally, the integrated DDI and DGI evidences were used to 

determine knowledge gaps that could enable the generation of novel DDI and ADE 

related hypotheses.

• What does this study add to our knowledge?

This study adds to the existing knowledge by providing 1) a novel algorithm that extracts 

drug interaction evidences from diverse DDI and DGI studies, 2) a method to distinguish 

the different types of DDI studies, and 3) an integrated drug interactions data that enables 

knowledge discovery through generation of novel genetic hypotheses or molecular DDI 

mechanisms.

• How might this change clinical pharmacology of translational science?

The integrated knowledge generated by our study is valuable for translational research in 

drug interaction studies as it can facilitate future studies that help in improving our 

understanding of DDI-related ADEs through the detection of novel genetic or molecular 

mechanisms. The validated hypotheses can then be evaluated for potential clinical 

applications in the future.
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Figure 1. 
Text mining pipeline for the information retrieval and information extraction tasks
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Figure 2. Hypotheses generation
a) Translate drug-drug interaction (DDI) signals to predict genetic effects related to Adverse 

Drug Events (ADEs) and

b) Translate drug-gene interaction (DGI) signals to predict molecular mechanisms of DDI
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Figure 3. 
Results from the information retrieval and information extraction stages accompanied by a 

Venn diagram illustrating the overlap between the different DDI studies
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Table 1.

Data collection statistics for IR models

Training data Testing data

Study types Positive (N1) Negative (N2) Positive (N3) Negative (N4)

DDI

In-vitro PK

150* 10,000 150* 800
†Clinical PK

Clinical PD

DGI 1,700 1,700 1,729 8,300

IR: information retrieval, PK: pharmacokinetics, PD: pharmacodynamics, DGI: drug-gene interactions

*
The 150 abstracts were different for training and testing as well as each of the in-vitro PK, clinical PK, and clinical PD DDI studies

†
Among 800 negative abstracts, 500 were single-drug or nutrition-related abstracts and 300 were randomly selected abstracts
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Table 2.

Overlapping analysis for DDI studies

Venn Diagram Area
No. of DDIs in 

LS result

No. of DDIs 
predicted by DGI 

(%)
No. of DDIs found in 

DrugBank (%)

Top 20 DDIs
(Found in DrugBank/

Validated DDIs)

Full in-vitro PK area 3,894 3,443 (88.4) 2,594 (66.6) 9/17

Full clinical PK area 3,920 2,980 (76.0) 2,734 (69.8) 16/20

Full clinical PD area 17,315 8,991 (51.9) 8,296 (47.9) 13/19

Overlap of clinical PD – clinical PK – in-
vitro PK

986 935 (94.8) 867 (87.9) 19/20

Overlap of clinical PK – in-vitro PK 145 139 (95.9) 112 (77.2) 19/20

Overlap of clinical PD – in-vitro PK 1,160 1,004 (86.6) 785 (67.7) 19/20

Overlap of clinical PD – clinical PK 2,157 1,494 (69.3) 1,406 (65.2) 13/19

Only clinical PK 632 412 (65.2) 349 (55.2) 13/14

Only in-vitro PK 1,603 1,365 (85.2) 830 (51.8) 11/11

Only clinical PD 13,012 5,558 (42.7) 5,238 (40.3) 8/18

Venn Diagram Area No. of DDIs in Venn Diagram Area
No. of DDIs found in 

DrugBank (%) Type of Evidence

Clinical PD – clinical PK – in-vitro PK

6,683 3,271 (48.9) PK Evidence

Clinical PK – in-vitro PK

Clinical PD – in-vitro PK

Clinical PD – clinical PK

Clinical PK

In-vitro PK

Clinical PD – clinical PK – in-vitro PK

17,315 4,016 (23.2) PD Evidence

Clinical PK – in-vitro PK

Clinical PD – in-vitro PK

Clinical PD – clinical PK

Clinical PD

No.: Number, DDI: drug-drug interactions, LS: literature search, DGI: drug-gene interactions, PK: pharmacokinetics, PD: pharmacodynamics
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