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Abstract

Clinical translation of drug-drug interaction (DDI) studies is limited, and knowledge gaps across
different types of DDI evidences make it difficult to consolidate and link them to clinical
consequences. Consequently, we developed information retrieval (IR) models to retrieve DDI and
drug-gene interaction (DGI) evidences from 25 million PubMed abstracts, and distinguish DDI
evidences into /n-vitro pharmacokinetics (PK), and clinical PK and pharmacodynamics (PD)
studies for FDA-approved and withdrawn drugs. Additionally, information extraction models were
developed to extract DDI- and DGI-pairs from the IR-retrieved abstracts. An overlapping analysis
identified 986 DDI-pairs between all three types of evidences. Another 2,157 and 13,012 DDI-
pairs, and 3,173 DGlI-pairs were identified from known clinical PK-PD DDI, clinical PD DDI, and
DGl evidences, respectively. By integrating DDI and DGI evidences, we discovered 119 and 18
new pharmacogenetic hypotheses associated with CYP3A and CYPZD6, respectively. Some of
these DGI evidences can also aid us in understanding DDI mechanisms.
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INTRODUCTION

Drug-drug Interactions (DDIs) are one of the major causes of adverse drug events (ADES)
and have been demonstrated as a public health burden.!: 2 With increasing rates of poly-
pharmacy, the incidence of DDIs is most likely to increase, and thus drug interaction
research remains essential.3 Current DDI studies investigate different but complimentary
scopes of drug interactions: in-vitro pharmacokinetics (/n-vitro PK), clinical
pharmacokinetics (clinical PK), and clinical pharmacodynamics (clinical PD).4-5 /n-vitro
PK studies investigate DDI related molecular mechanisms such as metabolic enzymes or
drug transporter proteins using recombinant systems or cell/tissue models. Clinical PK
studies, on the other hand, evaluate whether one objective drug’s exposure is changed due to
the co-administrated precipitant drug. The molecular mechanisms of clinical PK DDIs are
not necessarily known, unless the two drugs are either known substrates/inhibitors/inducers
of an enzyme. Clinical PD studies investigate whether the objective drug’s efficacy or
adverse drug events (ADEs) are changed because of the co-administrated precipitant.” /n-
vitro PK experiments can be easily connected to pharmacogenetics (PG) studies because of
their shared proteins and genes but this is not necessarily true in case of clinical PK or PD
DDI studies.8 9

The goal of translational research in relation to DDI and PG studies is to achieve a
comprehensive understanding of the PD, PK, and molecular mechanisms underlying drug
effects in order to achieve clinical utility. However, it usually takes a long time to
accomplish this overarching goal because of existing barriers between different scientific
domains.# A salient example is tamoxifen, whose CYP2D6 metabolic pathway was initially
discovered /n-vitroin 2003.10 The genetic effects of CYP2D6 on the exposure of tamoxifen
and its active metabolites was later published in 2007.11 The PK interactions between
tamoxifen and anti-fungals such as fluconazole were subsequently revealed in 2009.12 And
finally, the combined effect of the CYP2D6 genotypes and drug inhibitors on tamoxifen
efficacy and ADEs (hot flashes) was determined in 2010.13 This example clearly
demonstrates the association between DDI and drug-gene interaction (DGI) studies,
however, it also shows the extended duration of DDI and PG research needed to achieve
translational goals.

The translational landscape of drug interactions research has created an enormous
opportunity for the field of informatics. The diverse and independent scientific disciplines
involved in DDI and DGI research make it difficult to provide comprehensive evidences for
all drugs. Despite the existence of several databases, none of them have been successful in
linking all the available information. DrugBank is probably the only database that comes
close to identifying and including both DDI and DGI evidences.1 However, it’s PK and PD
DDI evidences lack details on magnitude of drug exposure change and clinical phenotypes,
respectively. DGI evidences in DrugBank include a drug’s relationship with metabolic
enzymes or transporter proteins but not the effect of pharmacogenetics on PK and PD
effects. On the other hand, PharmGKB is designed to provide PG evidences on PK and PD
outcomes, but no DDI evidences.® DIiDB includes a collection of /n-vitro PK and clinical
PK DDI evidences, but very limited PD DDI and PG evidences.1® Therefore, it is of greatest
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translational research interest to consolidate these evidences in order to promote discovery
of knowledge gaps between discordant DDI and DGl studies.>: ¢

Text mining, as an efficient knowledge discovery tool has been extensively applied to mine
drug interaction signals from the biomedical literature.1’-21 For example, Percha and
Altman have developed a novel classification model to map all drug-gene interactions
(DGIs) in MEDLINE abstracts, and discover new drug-gene relationships.® Previously, our
group generated new DDI pairs by mining the PubMed literature using known cytochrome
P450 (CYP450) probe substrates and inhibitors, and identifying all existing CYP450
substrates and inhibitors from /n-vitro experiments.1’ Recently, we also developed a DDI
and DGI corpus with the goal of developing a new text mining algorithm and evaluating the
performance of the text mining analyses separately for /n-vitroand clinical PK DDI
evidences.2! However, we did not investigate the overlapping or non-overlapping evidences
between the two. None of the existing informatics analyses have fully investigated the
translational landscape of DDI and PG studies and the knowledge gaps that exist between
them, nor have they differentiated between /n-vitro and clinical PK, and clinical PD
evidences in the published DDI and PG studies.

In this paper, a text mining approach was utilized to differentially screen /n-vitro PK DDI,
clinical PK DDI, and clinical PD DDI, and DGI evidences, followed by an overlapping
analysis. Our aim was to investigate and identify knowledge gaps among /n-vitro PK,
clinical PK, and clinical PD studies, and translate the literature-based discovery evidences
between DDI and DGI studies.

METHODS

A detailed description of the methods involved in the development of the text mining
approach is presented in the supplemental file. A brief description is included below.

Lexica construction

Lexica comprising of drug names, enzymes, action terms, and ADE terms were prepared.
Based on the drug groups in DrugBank, FDA approved and withdrawn drugs (2403 generic
names) were extracted for text mining. For drug enzyme terms, 94 symbol names and
synonyms (350 terms in total) were collected from Gene ontology,22 HUGO Gene
Nomenclature Committee (HGNC),23 and The Human Cytochrome P450 (CYP) Allele
Nomenclature Database.2* The action terms that describe the drug and enzyme relationships
(i.. inhibition or induction) were collected from our PK ontology2! and the recent work by
Percha and Altman.18 The 19,550 preferred terms (PTs) of adverse drug reactions were
normalized from 70,177 lowest level terms (LLTS) in The Medical Dictionary for Regulatory
Activity (MedDRA) database.2®

Corpus construction

Two types of corpora, including information retrieval (IR) and information extraction (IE)
corpora were constructed for retrieving DDI and DGI abstracts and extracting DDI/DGI
pairs, respectively. The IR corpus has 300 manually curated DDI abstracts in each one of the
in-vitroPK, clinical PK, and clinical PD studies. For PG studies, 3,429 DGI relevant
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abstracts were collected from PharmGKB. The IE corpus consists of 210 /n-vitro PK DDI,
218 clinical PK DDI, 140 clinical PD DDI, and 395 DGI abstracts. In the IE corpus, terms
such as drugs, enzymes and relationships between drug-drug/drug-gene pairs were
annotated. The details of the data collection (Table S1), text annotation, and annotation
evaluation process are provided in the supplemental file.

Text mining schemes

As shown in Figure 1, text mining for each type of DDI or DGI evidence was accomplished
in two stages: Information Retrieval (IR) and Information Extraction (IE). In the IR stage, an
optimal model that maximizes recall rate of identifying relevant abstracts for each type of
study was built using the IR corpus. The document-level classifier was trained upon N1
positive DDI abstracts and N2 randomly selected negative abstracts. And, the performance
of the document-level classifier was evaluated using the testing dataset (N3 DDI abstracts
and N4 negative abstracts). The data collection statistics for the IR models is shown in Table
1. After the optimal IR models were built, 25 million abstracts were screened and relevant
DDI and DGI abstracts were identified.

In the IE stage, an optimal model that maximizes F-measure of extracting relation pairs was
built using the IE corpus. The DDI or DGI relationship classifiers were built upon 60% of
the true entity relation pairs in the IE corpus (i.e. training data) and the remaining 40% were
used for performance evaluation (i.e. testing data). Finally, using the optimal IE models,
DDI and DGI pairs were extracted from their respective abstracts retrieved in IR stage.

IR Model Development—IR was implemented in Weka.28 String attributes in each
abstract were converted into a set of attributes representing word occurrence information
from the text using “StringToWordVector” module. Within the module, a set of word
features converted from the normal text were extracted using IteratedLovinsStemmer,
stopwordsHandler, NGramTokenizer (1-3), lowerCaseTokens and wordsToKeep (1000). The
statistics for these word features, including term frequency-inverse document frequency and
output word counts were prepared using TFTransform, IDFTransfrom, and
outputWordCounts. Subject to the optimization of recall rate, sequential minimal
optimization (SMO) was utilized for the text classification.

IE Model Development—IE of the DDI and DGI pairs was achieved in two steps: entity
recognition and normalization, and relation pair extraction.

Entity Recognition and Normalization: The relevant entities, including drugs, enzymes,
ADESs and interaction terms were tagged using hame-entity recognition (NER) by string-
matching against the lexica. Extracted drugs, enzymes, and ADEs were normalized to
generic drug names, gene symbol names, and preferred terms in MeDRA, respectively.
Interaction terms were normalized to their stemmed forms.

Relation pair extraction: The existing text mining methods recognize a piece of text that
contains a semantic property of interest and extracts syntactic relations between entities in a
single sentence using natural language processing.2’~32 Different from these works, we
developed a feature-based approach to extract DDI/DGI pairs from context in an entire
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abstract. If N unique drug names are mentioned in an abstract, there are N*(N-1)/2 possible
drug combinations that may or may not have interactions. Our IE model was built to predict
the interaction relationship between each drug combination and optimize the F-measure.

In our DDI IE models, 16 features were created. These features capture syntactic, statistic,
and scientific patterns from drug interactions present in the text. They were mainly derived
from three types of information (entity location, entity statistics, and entity background
knowledge). The location features provided location information for drug entities and
interacting terms, or their co-occurrence, i.e., drug pairs co-occurring in the title sentence or
the same sentence or the relative distance between drug pairs and interacting terms. The
statistical features offer the frequency of drugs, drug pairs, and drug co-occurrence in a
sentence or cross sentences. And, the knowledge features supply the background knowledge
of drug pair relations, such as enzyme-substrate/inhibitor relationships and anatomical
therapeutic chemical (ATC) classification information.

To perform the DDI IE task, we customized five groups of feature sets from the 16 features
using different strategies (Table S2 and S3). Three manual (G1, G2, and G5) and two
statistically (G3 and G4) determined group sets were adopted for the three types of studies.
For G3 and G4, a stepwise regression model was used to determine statistically significant
features, with G4 also involving 2-way interaction terms. To maximize the F-measure for
prediction, the optimal combination of 5 feature groups and 7 popular classifiers [J48, Naive
Bayes, SMO, Logistic Regression, Random Forest, Logistic Model Trees (LMT), and
Iterative Classifier Optimizer (ICO)] were explored for each study type. The details of the
feature creation and selection are described in the section under “Experimental settings” in
the supplemental file.

To perform DGI IE, all descriptive structures for the drug-gene relationships were identified
from PubMed abstracts.18 Based on their findings, two important types of terms, including
interacting verbs (e.g. inhibit) and mechanism terms (e.g. methylation), were included to
characterize all dependency paths for DGI presentations. Four types of features (50 features)
were created: 1) 44 features were scored based on the relative location, distance, and
negation of each combination of 22 verb or 22 mechanism terms, (2) co-occurrence
frequency of each combination or each combination with verb terms, (3) relative position of
the bracket containing drugs or enzymes, and (4) the order of the drug, gene, and verb/
mechanism terms present in the sentences (Table S4). For this task, logistic regression was
utilized for both feature selection and DGI prediction.

generation

By integrating the DDI and DGI evidences discovered through screening of the biomedical
literature, and implementing a translational research method to discover knowledge gaps in
drug interaction studies, we generated research hypotheses to: 1) understand the hazards of
specific drugs given certain genetic polymorphisms, and 2) explore molecular mechanisms
of drug interactions (Figure 2).

Translate DDI signals into pharmacogenetic hypotheses—A knowledge discovery
method was used to translate DDI signals into pharmacogenetic hypotheses. The process
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included the examination of evidences to determine whether drug D1 changed drug D2’s
efficacy or ADEs (i.e. PD DDI), D2’s exposure (i.e. PK DDI), or inhibited D2’s metabolic
enzyme E (in-vitro PK). If these DDI effects were noted, we then hypothesized that the
functional genetic polymorphisms of E may be associated with D2’s efficacy or ADEs.

Translate DGI signals into DDI mechanistic hypotheses—To explore unknown
mechanisms involving drug interactions with only clinical PK and PD evidences, a discovery
method was proposed to translate DGI signals into DDI mechanisms. The process included
the evaluation of both drugs (D1 and D2) to discern their shared target genes and ADEs. If
D1 and D2 were reported to interact and had common interacting genes, we hypothesized
that their interaction may be synergistic or antagonistic for a given ADE.

RESULTS

The number of abstracts from each type of study as well as the recall, F-measure and
validity related statistics are presented below. Figure 3 presents the number of DDI and PG
abstracts retrieved and the DDI and DGI pairs extracted from each type of study. The Venn
diagram in Figure 3 shows the overlap of drug pairs from the three types of DDI studies to
help identify potential knowledge gaps between DDI and DGI evidences. The data related to
the Venn Diagram and the DGI associated ADEs are presented in the supplemental excel
files “Venn diagram data and statistics.xIsx” and “DGI-ADE information.xIsx”.

Information Retrieval (IR): identifying DDI and DGl relevant abstracts from MEDLINE

Using our recently developed corpus, the optimal IR models were built for each study type.
The F-measures for the performance of the IR models were 0.94, 0.84, 0.70, and 0.78,
respectively; and the recall rates were 0.98, 0.99, 0.86, and 0.97 for /n-vitro PK DDI, clinical
PK DD, clinical PD DDI, and PG, respectively (Table S5). Using these optimally trained
models, a large-scale IR analysis of 25 million MEDLINE abstracts (1975-2015) was
conducted. Studies involving animal models were removed using MeSH terms under the tree
“B01.050” (Animal). We retrieved 5,199 /in-vitro PK, 17,048 clinical PK, 80,246 clinical PD
DDI, and 479,865 PG abstracts (Figure 3). To further demonstrate the performance of these
IR models, studies in the IE corpora (210, 218, 140, and 395 abstracts for /n-vitro PK,
clinical PK, clinical PD, and PG studies) were used since there is no overlap between the IR
and IE corpora. Recall rates for these IE studies were determined to be 1.00, 0.96, 0.99, and
0.94, respectively.

Information Extraction (IE): identifying DDI and DGI pairs from the MEDLINE Abstracts

To extract DDI and DGI pairs from the MEDLINE abstracts identified in the IR step, IE
models were customized and optimized. The DDI extraction performances for each of the
in-vitro PK, clinical PK, and clinical PD studies were compared across five feature sets (G1-
G5) and seven classifiers and are presented in Tables S6, S7, and S8, respectively. The
optimal F-measure for in-vitro PK studies was 0.83 using feature group 5 (G5) and the
Naive Bayes classifier; the optimal F-measure for clinical PK studies was 0.85 using feature
group 1 (G1) and the Iterative Classifier Optimizer (ICO); and the optimal F-measure for
clinical PD studies was 0.73 using feature group 1 (G1) and the Naive Bayes classifier. For
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DGI IE model, 50 features were trained over logistic linear regression classifier to reach the
optimal F-measure of 0.82 (Table S9). All four optimized IE models were then applied to the
relevant DDI/DGI abstracts retrieved from the previous IR stage. The IE analysis focused on
FDA approved and withdrawn drugs, and identified 3,894, 3,920, and 17,315 unique /n-vitro
PK, clinical PK, and clinical PD DDI pairs, respectively, and 3,173 unique DGI pairs (Figure
3). Using 3,173 retrieved DGI pairs, 217,562 drug pairs were further generated when both
drugs shared enzyme relationships.

The overlap and knowledge gap among DDI Evidences

With the drug pairs extracted in the IE stage, the Venn diagram shown in Figure 3 was
constructed to present the overlapping DDIs. A total of 986 unique drug pairs were found to
overlap between all three study types. Another 2,157 DDIs represented the overlap between
clinical PK and clinical PD studies. Lastly, 13,012 DDI pairs were found to only have
clinical PD evidence.

Another overlapping analysis was performed to compare “extracted DDIs” from DDI IE to
“predicted DDIs” from DGI IE. In Table 2, 94.8% of the 986 DDI pairs shared by all three
DDI study types were predicted by DGI results. Other types of DDI evidences that overlap
well with DGI predicted DDIs include: “clinical PK — in-vitro PK” (95.9%), “clinical PD —
in-vitro PK” (86.6%), and “/n-vitro PK” (85.2%). For the remaining DDIs without /n-vitro
PK evidences, DGI does not predict DDIs well, and the overlapping percentages are below
70%. Only 42.7% of the clinical PD DDIs were predicted from DGI results.

Comparing DDI text mining evidences to DDI data in the DrugBank database

DDI text mining performance was also evaluated by comparing the results with DDI data
from the DrugBank database. For our comparison analysis, we only focused on FDA
approved and withdrawn drugs. Between 222,409 DrugBank DDIs and 19,695 text-mined
DDls, 9,587 DDIs overlapped. We compared the overlapping DDIs under the sub-groups
defined by the three DDI evidence types. In Table 2, DDI pairs with all three types of
evidences from our text mining analysis overlapped the most with DrugBank DDIs (~88%),
while DDI pairs with only clinical PD evidence had the lowest overlapping rate (~40%).

To demonstrate the validity of our text mined DDI evidences, top 20 DDI pairs in each study
type were evaluated manually (Table 2). DDI pairs were ranked by their reporting
frequencies in different PubMed abstracts. Among top 20 DDIs from /n-vitro PK, clinical
PK, and clinical PD studies, 17, 20, and 19 pairs were manually validated as true DDISs,
respectively. However, only 9, 16, and 13 of these DDIs were found to be reported in the
DrugBank. Additionally, for the top 20 DDI pairs in the overlapping areas among two or
three evidence types, almost all them were validated in our manual review but only few of
these DDIs were reported in DrugBank. DDI pairs that did not overlap with DrugBank data
were also manually reviewed for validity. Among the top 20 DDIs from our 119 three-way
overlapped DDIs, 17 were found to have confirmed DDI evidences in the literature.
Similarly, all of the top 20 DDIs with overlapping clinical PD and clinical PK evidences
were confirmed to have DDI evidences in the literature.
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Translate DDI signals into genetics hypotheses

The 986 DDI pairs shared among three types of DDI studies were translated into genetic
hypotheses with respect to their ADEs. Among these 986 DDIs, 865 (87.8%), 481 (48.8%),
193 (19.6%), 419 (42.5%), and 365 (37%) were associated with CYP3A, CYP2D6,
CYP2C8, CYP2CY, and CYP2C19, respectively, with some DDIs involving more than one
CYP450 enzymes. In our following genetic hypothesis generation analysis, we focused on
CYP3A and CYPZDE6 as they were responsible for 88% and 49% of the 986 DDlIs,
respectively.

CYP3A related DDIs had 68 distinctive substrates, and CYP2D6 related DDIs had 25
different substrates. Based on these CYP3A and CYP2D6 substrates, 552 and 192 ADE
terms were found to co-occur in their clinical PD DDI abstracts, respectively. Similarly, 199
and 57 ADE terms related with the 68 CYP3A and 25 CYP2D6 substrates from DGl
abstracts were retrieved. The common ADE terms from both DDI and DGI abstracts were
considered as potential CYP3A or CYPZD6 genes related ADEs. These common DDI and
DGI ADEs were further evaluated through manual review. Overall, 150 and 31 genetic
hypotheses were generated from the 68 CYP3A substrates and 25 CYP2D6 substrates,
respectively. Out of these, 31 CYP3A-related and 13 CYP2D6-related PG evidences were
reported in published pharmacogenetics studies (Table 3). As a result, 119 and 18 new
pharmacogenetic hypotheses were generated for CYP3A and CYPZD6, respectively.

Translate DGI signals into DDI molecular mechanistic hypotheses

Among the 2,157 DDIs shared between clinical PD and PK DDI evidences, 1,497 DDI pairs
shared the same metabolic enzymes (i.e. CYPs and UGTS) in their drug-gene-interactions.
Therefore, these 1,497 DDI pairs potentially have a pharmacokinetics drug interactions
mechanism. Among the remaining 660 DDIs, 68 DDI pairs were found to share the same
molecular pathways, 38 DDI pairs shared common genes, and 12 DDI pairs shared common
genetic variants. The 38 DDI pairs with shared genes were reviewed further to determine if
they shared the same ADEs, whether the risk of the shared ADEs were increased by these
DDls, and whether any /n-vitro cell culture studies had investigated their DDI mechanisms.
After manual review, seven of 38 DDI pairs were validated to have increased ADEs, and
three had additional DDI evidence from /n-vitro experiments (Table 4).

DISCUSSION

Adverse drug events caused by drug interactions are a critical issue for prescriptions. In
clinical practice, prescription decision support typically stems from /n-vivo and clinical
evidence. However, there is high variability in drug responses, which are affected by both
genetic and environmental factors. Therefore, studying genetic or molecular mechanisms
underlying DDIs is essential to help: 1) understand the hazards of specific drugs given
certain genetic polymorphisms, and 2) explore molecular mechanisms of such interactions.
Today, more than 2,000 genetic tests are currently available, but not every drug is covered
and the tests can be expensive.33 To address these challenges, we introduced a translational
research method to discover knowledge gaps in drug interaction studies. Utilizing the results
from our large-scale screening, two sets of hypotheses were generated by 1) translating DDI
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signals into genetic information for adverse drug events and 2) translating DGI signals into
molecular mechanistic hypotheses.

To demonstrate the process of pharmacogenetic hypotheses generation, evaluation, and
validation, we use the example of tacrolimus, a CYP3A substrate. Among 87 clinical PD
DDl abstracts showing the interaction evidences between tacrolimus and CYP3A inhibitors
such as ketoconazole, clarithromycin, cyclosporine or ritonavir, 141 ADE terms were
identified and extracted. From these results, we assume that 141 genetic hypotheses can be
generated for tacrolimus. Another 153 ADEs were extracted from DGI abstracts related to
tacrolimus and CYP3A. A total of 25 ADE terms were common between the DDI and DGI
abstracts. From these, three ADEs (nephrotoxicity, hepatotoxicity, and hyperglycemia) were
validated and found to be associated with the CYP3A5 polymorphism, rs776746
(PharmGKB level 2A or level 3 evidence).34-37 Thus, we were able to validate our
tacrolimus ADEs-related genetic hypotheses, underscoring the accuracy of our text mining
algorithm. More importantly, the generation of 119 new pharmacogenetic hypotheses
highlights the significance of our translational research method in enabling the discovery of
potentially new genetic mechanisms that may otherwise not have been explored through
conventional DDI research methods. An example of this is simvastatin-induced
rhabdomyolysis. Even though there are reported evidences for the association between
CYP3A4and CYP3A5 genetic polymorphisms and simvastatin induced mild myopathy
symptoms,38 there is no reported study on the association between CYP3A and the more
severe form of myopathy, i.e. rhabdomyolysis.

Similar to the PG hypotheses, molecular mechanistic hypotheses were validated or
determined to be new through our manual review process. For example, the combination of
cisplatin and pemetrexed showed improved response rate in mesothelioma patients in a
randomized phase 111 trial.3° Both drugs share the ABCC2, MTHFR, and SLC19A1 target
genes among them (PharmGKB level 4 evidence). Patients with ABCCZ2rs2273697 (AA or
AG genotype) were reported to have improved overall and progression-free survival when
treated with either cisplatin or pemetrexed compared to patients with the ABCC2 GG
genotype.“0 The synergistic PD DDI between cisplatin and pemetrexed has been
demonstrated in /n-vitro studies over multiple cancer cell lines (MCF7, A549, and PAL
cells).# In particular, when MCF7 cells were incubated with pemetrexed for 24 h followed
by cisplatin for 24 h, synergistic inhibition of cell proliferation was noted. Similar
synergistic effects were also observed in the A549 and PAL cell lines. Another example is
the interaction between etanercept and methotrexate which results in improved response in
rheumatoid arthritis patients especially with the A7P5Frs1059150 (GG), HLA-E rs1264457
(AA), or KLRC1rs7301582 (CT or TT) variants (PharmGKB level 3 evidence). However,
no /n-vitro experiments have been reported that illustrate their DDI mechanisms. This
etanercept/methotrexate example demonstrates that our translational discovery method can
also generate novel pharmacodynamic DDI mechanisms.

Our study has both strengths and limitations. Our text mining algorithm enabled us to screen
~25 million MEDLINE abstracts in order to retrieve DDI and DGI evidences. We were also
able to extract a substantial number of DDI and DGI pairs from the literature, and
distinguish them based on the type of study involved. However, we only focused on drug
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pairs and the CYP450-related enzymes and genes. Therefore, we could not evaluate DDIs or
ADESs associated with high dimensional drug combinations or their interactions with other
enzymes and drug transporters. Our algorithm was also designed to identify co-occurrence
of drugs and ADE terms, as such, a manual review process was required to verify and
confirm these associations. Additionally, our algorithm does no collect information on drug
dosage or sample size from individual studies at the moment but we are planning to add this
information along with the information on drug transporters and other enzymes in the future.
Despite these limitations, our study provides a tremendous amount of information on DDIs,
DGls and ADEs and allowed us to generate several novel genetic hypotheses.

In conclusion, a text mining pipeline was developed to extract DDI evidences from the
biomedical literature in the current study. Initially, golden standard corpora for DDIs and
DGls were created to facilitate the text mining development. Subsequently, a large-scale
analysis was conducted to identify knowledge gaps in DDI and DGI research, which were
then used to generate hypotheses in order to identify novel genetic mechanisms involving
drug interactions and predict potential molecular mechanistic DDI mechanisms.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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STUDY HIGHLIGHTS
» What is the current knowledge on the topic?

Several studies have explored different informatics approaches to mine drug interactions
data from the biomedical literature. However, none of them have distinguished the DDI
evidences into /n-vitro PK, clinical PK, and clinical PD studies, which can impede the
translational scope of drug interactions research.

» What question did this study address?

The goal of this study was to retrieve and extract DDI and DGI evidences from the
biomedical literature and distinguish the DDI study types into /n-vitro PK, clinical PK
and clinical PD studies. Additionally, the integrated DDI and DGI evidences were used to
determine knowledge gaps that could enable the generation of novel DDI and ADE
related hypotheses.

» What does this study add to our knowledge?

This study adds to the existing knowledge by providing 1) a novel algorithm that extracts
drug interaction evidences from diverse DDI and DGI studies, 2) a method to distinguish
the different types of DDI studies, and 3) an integrated drug interactions data that enables
knowledge discovery through generation of novel genetic hypotheses or molecular DDI
mechanisms.

» How might this change clinical pharmacology of translational science?

The integrated knowledge generated by our study is valuable for translational research in
drug interaction studies as it can facilitate future studies that help in improving our
understanding of DDI-related ADEs through the detection of novel genetic or molecular
mechanisms. The validated hypotheses can then be evaluated for potential clinical
applications in the future.
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Text mining pipeline for the information retrieval and information extraction tasks
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Table 1.
Data collection statistics for IR models
Training data Testing data
Study types  Positive (N1)  Negative (N2) Positive (N3)  Negative (N4)
DDI
In-vitro PK
Clinical PK 150 10,000 150 8007
Clinical PD
DGI 1,700 1,700 1,729 8,300

IR: information retrieval, PK: pharmacokinetics, PD: pharmacodynamics, DGI: drug-gene interactions

*
The 150 abstracts were different for training and testing as well as each of the /n-vitro PK, clinical PK, and clinical PD DDI studies

fAmong 800 negative abstracts, 500 were single-drug or nutrition-related abstracts and 300 were randomly selected abstracts
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Table 2.
Overlapping analysis for DDI studies
No. of DDIs Top 20 DDIs
No. of DDIs in predicted by DGI No. of DDIs found in (Found in DrugBank/
Venn Diagram Area LS result (%) DrugBank (%) Validated DDIs)
Full in-vitro PK area 3,894 3,443 (88.4) 2,594 (66.6) 9/17
Full clinical PK area 3,920 2,980 (76.0) 2,734 (69.8) 16/20
Full clinical PD area 17,315 8,991 (51.9) 8,296 (47.9) 13/19
Overlap of clinical PD - clinical PK - /n- 986 935 (94.8) 867 (87.9) 19/20
vitro PK
Overlap of clinical PK - in-vitro PK 145 139 (95.9) 112 (77.2) 19/20
Overlap of clinical PD - in-vitro PK 1,160 1,004 (86.6) 785 (67.7) 19/20
Overlap of clinical PD — clinical PK 2,157 1,494 (69.3) 1,406 (65.2) 13/19
Only clinical PK 632 412 (65.2) 349 (55.2) 13/14
Only in-vitro PK 1,603 1,365 (85.2) 830 (51.8) 11/11
Only clinical PD 13,012 5,558 (42.7) 5,238 (40.3) 8/18
No. of DDIs found in

Venn Diagram Area No. of DDIs in Venn Diagram Area DrugBank (%) Type of Evidence
Clinical PD - clinical PK — /n-vitro PK
Clinical PK — in-vitroPK
Clinical PD — /n-vitroPK

6,683 3,271 (48.9) PK Evidence
Clinical PD — clinical PK
Clinical PK
In-vitroPK
Clinical PD - clinical PK — /n-vitro PK
Clinical PK — in-vitroPK
Clinical PD - in-vitro PK 17,315 4,016 (23.2) PD Evidence

Clinical PD - clinical PK

Clinical PD

No.: Number, DDI: drug-drug interactions, LS: literature search, DGI: drug-gene interactions, PK: pharmacokinetics, PD: pharmacodynamics
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